Have a personal or library account? Click to login
A Model for Decision-making to Parameterizing Demand Driven Material Requirement Planning Using Deep Reinforcement Learning Cover

A Model for Decision-making to Parameterizing Demand Driven Material Requirement Planning Using Deep Reinforcement Learning

Open Access
|Sep 2024

References

  1. Azzamouri, A., Baptiste, P., Dessevre, G., Pellerin, R., 2021. Demand driven material requirements planning (Ddmrp): A systematic review and classification. Journal of Industrial Engineering and Management, 14(3), 439–456. DOI: 10.3926/jiem.3331
  2. Bahu, B., Bironneau, L., Hovelaque, V., 2019. Compréhension du DDMRP et de son adoption : premiers éléments empiriques. Logistique & Management, 27(1), 20–32. DOI: 10.1080/12507970.2018.1547130
  3. Benavente, D., Peralta, S., Quispe, G., Moguerza, J., Raymundo, C., 2023. The Demand Driven MRP Implementation in Complex Manufacturing Industries: A Systematic Literature Reviews. International Journal of Engineering Trends and Technology, 71(3), 33–45. DOI: 10.14445/22315381/IJETT-V71I3P205
  4. Bennett, N., Lemoine, G. J., 2014. What a difference a word makes: Understanding threats to performance in a VUCA world. Business Horizons, 57(3), 311–317. DOI: 10.1016/j.bushor.2014.01.001
  5. Boute, R. N., Gijsbrechts, J., van Jaarsveld, W., Vanvuchelen, N., 2021. Deep Reinforcement Learning for Inventory Control: A Roadmap. In SSRN Electronic Journal. DOI: 10.2139/ssrn.3861821
  6. Cuartas, C., Aguilar, J., 2023. Hybrid algorithm based on reinforcement learning for smart inventory management. Journal of Intelligent Manufacturing, 34(1), 123–149. DOI: 10.1007/s10845-022-01982-5
  7. Damand, D., Lahrichi, Y., Barth, M., 2022. Parameterisation of demand-driven material requirements planning: a multi-objective genetic algorithm. International Journal of Production Research. DOI: 10.1080/00207543.2022.2098074
  8. Duhem, L., Benali, M., Martin, G., 2023. Parametrization of a demand-driven operating model using reinforcement learning. Computers in Industry, 147(September 2022), 103874. DOI: 10.1016/j.compind.2023.103874
  9. El Marzougui, M., Messaoudi, N., Dachry, W., Bensassi, B., 2022a. Industry 4.0 Technologies on Demand Driven Material Requirement Planning: Theoretical Background and Impacts. 59–69.
  10. El Marzougui, M., Messaoudi, N., Dachry, W., Bensassi, B., 2022b. Integration Model for Demand-Driven Material Requirement Planning and Industry 4.0. SAE International Journal of Materials and Manufacturing, 16(1), 5–16. DOI: 10.4271/05-16-01-0001
  11. El Marzougui, M., Messaoudi, N., Dachry, W., Bensassi, B., 2023. Demand Driven Material Requirement Planning and Industry 4.0 Integration: Conceptual Framework and Hypotheses. International Journal of Engineering Trends and Technology, 71(12), 201–216. DOI: 10.14445/22315381/IJETT-V71I12P220
  12. Esteso, A., Peidro, D., Mula, J., Díaz-Madroñero, M., 2022. Reinforcement learning applied to production planning and control. International Journal of Production Research. DOI: 10.1080/00207543.2022.2104180
  13. Kortabarria, A., Apaolaza, U., Lizarralde, A., Amorrortu, I., 2018. Material Management without Forecasting: From MRP to Demand Driven MRP. Journal of Industrial Engineering and Management, 11(4), 632–650. https://pubmed.ncbi.nlm.nih.gov/34103776/
  14. Lahrichi, Y., Damand, D., Barth, M., 2022. A first MILP model for the parameterization of DDMRP.pdf. Computers & Industrial Engineering, 174, 108769.
  15. Lee, C. J., Rim, S. C., 2019. A Mathematical Safety Stock Model for DDMRP Inventory Replenishment. Mathematical Problems in Engineering, 2019. DOI: 10.1155/2019/6496309
  16. Martin, G., 2020. Contrôle dynamique du Demand Driven Sales and Operations Planning. https://tel.archives-ouvertes.fr/tel-03165839%0Ahttps://tel.archives-ouvertes.fr/tel-03165839/document
  17. Marzougui, M. El, Messaoudi, N., Dachry, W., Sarir, H., Demand, B. B., Mrp, D., 2021. Demand driven mrp : literature review and research issues M El Marzougui, N . Messaoudi, W Dachry, H Sarir, B Bensassi To cite this version : HAL Id : hal-03193163.
  18. Miclo, R., 2016. Challenging the “Demand Driven MRP” Promises: a Discrete Event Simulation Approach. 186.
  19. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M., 2013. Playing Atari with Deep Reinforcement Learning. 1–9. http://arxiv.org/abs/1312.5602
  20. Mousavi, S. S., Schukat, M., Howley, E., 2018. Deep Reinforcement Learning: An Overview. Lecture Notes in Networks and Systems, 16, 426–440. DOI: 10.1007/978-3-319-56991-8_32
  21. Ptak, C., Smith, C., 2016. Demand driven material requirements planning (DDMRP).
  22. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O., 2017. Proximal Policy Optimization Algorithms. 1–12.
  23. Silver, D., Schrittwieser, J., Simonyan, K., Nature, I. A.-, 2017, U., 2016. Mastering the game of Go without human knowledge. Nature, 550(7676), 354.
  24. Sutton, R. S., Barto, A. G., 2017. Reinforcement learning: An introduction (T. M. P. 978-0262039246. (Ed.); 2nd ed. Ca).
  25. Velasco Acosta, A. P., Mascle, C., Baptiste, P., 2020. Applicability of Demand-Driven MRP in a complex manufacturing environment. International Journal of Production Research, 58(14), 4233–4245. DOI: 10.1080/00207543.2019.1650978
DOI: https://doi.org/10.30657/pea.2024.30.37 | Journal eISSN: 2353-7779 | Journal ISSN: 2353-5156
Language: English
Page range: 377 - 393
Submitted on: Dec 20, 2023
Accepted on: Aug 10, 2024
Published on: Sep 7, 2024
Published by: Quality and Production Managers Association
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Mustapha El Marzougui, Najat Messaoudi, Wafaa Dachry, Bahloul Bensassi, published by Quality and Production Managers Association
This work is licensed under the Creative Commons Attribution 4.0 License.