Anandarajan, M., Khan, A., Tandon, A., 2019. Predictive Analytics in insurance fraud detection: A conceptual framework. Journal of Financial Crime, 26(2), 361-377.
Bender, J. K., Fish, A., 2021. Exploring the development of HR analytics in organizations: A systematic review. International Journal of Human Resource Management, 32(2), 298-333.
Bondarouk, T., Parry, E., Furtmueller, E., 2017. Electronic HRM: Four decades of research on adoption and consequences. The International Journal of Human Resource Management, 28(1), 98-131.
Braganza, A., Bharati, P., 2021. Employee turnover prediction using predictive analytics: An empirical study. International Journal of Information Management, 56, 102200.
Conte, F., Siano, A., 2023. Data-driven human resource and data-driven talent management in internal and recruitment communication strategies: an empirical survey on Italian firms and insights for European context. Corporate Communications: An International Journal, 28(4), 618-637.
Copuš, L., Wojčák, L., Majtánová, M., Šajgalíková, H., 2019. Industry 4.0 and its Impact on Organizational Systems and Human Resources. The Journal of Culture, 9 (2), 3-8.
Fajčíková, A., Urbancová, H., 2019. Factors influencing students’ motivation to seek higher education - A case study at a State University in the Czech Republic. Sustainability, 11(17), 4699.
Fernandez, V. and Gallardo-Gallardo, E., 2021. Tackling the HR digitalization challenge: key factors and barriers to HR analytics adoption. Competitiveness Review, 31(1), 162-187
Hitka, M., Lorincová, S., Bartáková, G. P., Ližbetinová, L., Štarchoň, P., Li, C., ... Mura, L., 2018. Strategic tool of human resource management for operation of SMEs in the wood-processing industry. BioResources, 13(2), 2759-2774.
Hitka, M., Lorincová, S., Ližbetinová, L., Bartáková, G. P., Merková, M., 2017. Cluster analysis used as the strategic advantage of human resource management in small and medium-sized enterprises in the wood-processing industry. BioResources, 12(4), 7884-7897.
Huang, J. L., Niu, X., 2019. A review of human resource analytics: Evolution, applications, and future directions. Human Resource Management Review, 29(3), 347-357.
Ibrahim, H., Mohd Zin, M. L., Aman-Ullah, A., Mohd Ghazi, M. R., 2023. Impact of technostress and information technology support on HRIS user satisfaction: a moderation study through technology self-efficacy. Kybernetes.
Jaffara Z., Noorb W., Kanwalc Z.(2019): Predictive Human Resource Analytics Using Data Mining Classification Techniques, International Journal of Computer
Jankelová, N., Joniaková, Z., Procházková, K., Blštáková, J., 2020. Diversity Management as a Tool for Sustainable Development of Health Care Facilities. Sustainability, 12 (13), 5226. DOI: 10.3390/su12135226
Kapler, M., 2021. Barriers to the implementation of innovations in information systems in SMEs. Production Engineering Archives,27(2) 156-162. DOI: 10.30657/pea.2021.27.20
Kruger. N.A., 2023. Entrepreneurial Ecosystems in Technology Transfer: A Case Study on Successful Innovation Commercialization. Polish Journal of Management Studies, 2023, 27(1)
Liao, S. H., Chu, P. H., Hsiao, P. Y., 2017. Data mining techniques and applications–A decade review from 2007 to 2016. Expert Systems with Applications, 83, 298-321.
Lorincová, S., Hitka, M., Bajzíková, Ľ., Weberová, D., 2019. Are the motivational preferences of employees working in small enterprises in Slovakia changing in time? Entrepreneurship and sustainability issues, 6(4), 1618-1635. DOI: 10.9770/jesi.2019.6.4(5)
Margherita A., 2021. Human resources analytics: A systematization of research topics and directions for future research, Human Resource Management Review, ISSN 1053-4822
Nascimento, A. L., Rocha, T. V., Serra, R. M., Soares, C. D., 2019. Evolution of HR Analytics: A Systematic Literature Review. In Proceedings of the 14th International Conference on Software Technologies (ICSOFT 2019) (pp. 152-15)
Nedeliaková, E., Štefancová, V. Hranický, M., 2019. Implementation of Six Sigma methodology using DMAIC to achieve processes improvement in railway transport. Production Engineering Archives, 23 (23), 18-21. DOI: 10.30657/pea.2019.23.03
Nguyen, H. T., Nguyen, V. T., Nguyen, V. P., Duong, T. H., 2021. Predictive analytics in healthcare: A systematic review. International Journal of Medical Informatics, 148, 104414.
Papula J., Kohnová L., Papulová Z. Suchoba M., 2019. Industry 4.0: Preparation of Slovak Companies, the Comparative Study. EAI/Springer Innovations in Communication and Computing. DOI: 10.1007/978-3-319-76998-1_8
Rosak Szyrocka, J., Żywiołek, J., Shengelia, N., Stverkova, H., Santo, P. Pilař, L., 2022. Employee perception of CSR and its effects on the company’s image. Production Engineering Archives,28(3) 210-216. DOI: 10.30657/pea.2022.28.25
Singh, N., Singh, V., Singh, H., 2020. Performance evaluation of machine learning algorithms for heart disease prediction using UCI dataset. International Journal of Advanced Science and Technology, 29(4), 10754-10760.
Sirkova, M., Taha, V. A., Ferencova, M., 2016. Management of HR processes in the specific contexts of selected area. Polish journal of management studies, 13(2), 142-152.
Stanbery, K., Lindley, K., Huffman, C., 2023. The feasibility of using net promoter score to measure real-time employee engagement. JONA: The Journal of Nursing Administration, 53(1), 34-39.
Stareček, A., Babeľová, Z. G., Vraňaková, N., Jurík, L., 2023. The impact of Industry 4.0 implementation on required general competencies of employees in the automotive sector, Production Engineering Archives, 29(3), 3923, pp.254-262.
Starecek, A., Gyurak Babel’Ova, Z., Makysova, H., Caganova, D., 2021. Sustainable human resource management and generations of employees in industrial enterprises. Acta Logistica, 8(1), 45-53. doi:10.22306/al.v8i1.201
Tharwat, A., 2020. Classification assessment methods for machine learning-based breast cancer prediction: A comprehensive evaluation. Computer Methods and Programs in Biomedicine, 188, 105314.
Van der Rijt, P., Bondarouk, T., Looise, J. K., 2019. HR analytics adoption: The influence of organizational factors. The International Journal of Human Resource Management, 30(15), 2123-2152
Vetráková, M., Smerek, L., 2019. Competitiveness of Slovak enterprises in Central and Eastern European region. E+M Ekonomie a Management, 22(4), 36-51. DOI: 10.15240/tul/001/2019-4-003
Xue, Y., Sheng, W., 2019. Predictive analytics in banking: Trends, challenges, and opportunities. Journal of Financial Services Research, 55(3), 261-295.
Yahia, N. B., Hlel, J. and Colomo-Palacios, R., 2021. From Big Data to Deep Data to Support People Analytics for Employee Turnover Prediction, in IEEE Access, vol. 9, pp. 60447-60458