Have a personal or library account? Click to login
Trends and Perspectives in Enhancing the Competitiveness of Slovak Businesses Through Predictive HR Analytics Cover

Trends and Perspectives in Enhancing the Competitiveness of Slovak Businesses Through Predictive HR Analytics

Open Access
|Sep 2024

References

  1. Albert, J.,Bennett, G., 2018. The value of analytics in sports: An overview. Journal of Sports Analytics, 4(1), 43-59.
  2. Al-Tit, A. A.,Eleyan, D., 2018. Predictive analytics in supply chain management: A review. International Journal of Production Economics, 203, 70-87.
  3. Anandarajan, M., Khan, A., Tandon, A., 2019. Predictive Analytics in insurance fraud detection: A conceptual framework. Journal of Financial Crime, 26(2), 361-377.
  4. Arora, A., Goyal, N., Mahajan, V., 2022. Big Data in HR Analytics: A Comprehensive Overview. Springer.
  5. Bender, J. K., Fish, A., 2021. Exploring the development of HR analytics in organizations: A systematic review. International Journal of Human Resource Management, 32(2), 298-333.
  6. Berry, M. J. A., Linoff, G., 2019. Predictive Analytics for Business: Algorithms, Tools, and Statistical Methods. Wiley.
  7. Bersin, J., 2013. HR technology disruptions for 2014: A ten-year view. Deloitte Development LLC.
  8. Bondarouk, T., Ruël, H., 2019. Electronic HRM in Theory and Practice. Emerald Publishing Limited.
  9. Bondarouk, T., Parry, E., Furtmueller, E., 2017. Electronic HRM: Four decades of research on adoption and consequences. The International Journal of Human Resource Management, 28(1), 98-131.
  10. Boudreau, J. W., 2018. Re-examining the potential of HR analytics. Human Resource Management Review, 28(3), 310-320.
  11. Boudreau, J. W., Cascio, W. F., 2017. Investing in people: Financial impact of human resource initiatives. Routledge.
  12. Braganza, A., Bharati, P., 2021. Employee turnover prediction using predictive analytics: An empirical study. International Journal of Information Management, 56, 102200.
  13. Cappelli, P., Meister, J. C., 2018. Big data in human resources and talent management: Emerging practices. Routledge
  14. Chen, C. Y., Wu, J., Lin, J., 2019. Machine learning for credit scoring: A review. Expert Systems with Applications, 118, 104-112.
  15. Chen, Z., Yu, H., Ma, L., Chen, X., 2020. Predicting stock prices using a combination of machine learning algorithms and technical indicators. PloS One, 15(12)
  16. Conte, F., Siano, A., 2023. Data-driven human resource and data-driven talent management in internal and recruitment communication strategies: an empirical survey on Italian firms and insights for European context. Corporate Communications: An International Journal, 28(4), 618-637.
  17. Copuš, L., Wojčák, L., Majtánová, M., Šajgalíková, H., 2019. Industry 4.0 and its Impact on Organizational Systems and Human Resources. The Journal of Culture, 9 (2), 3-8.
  18. Dhar, S., 2021. HR Analytics: The What, Why, and How. Springer.
  19. Diez, F., Bussin, M. Lee, V., 2019. Tools for HR Analytics. 10.1108/978-1-78973-961-920191002.
  20. Fajčíková, A., Urbancová, H., 2019. Factors influencing students’ motivation to seek higher education - A case study at a State University in the Czech Republic. Sustainability, 11(17), 4699.
  21. Fernandez, V. and Gallardo-Gallardo, E., 2021. Tackling the HR digitalization challenge: key factors and barriers to HR analytics adoption. Competitiveness Review, 31(1), 162-187
  22. Gupta, A., Sagar, M., 2022. Predictive analytics for employee turnover: A case study in the IT industry. Journal of Business Research, 141, 87-95.
  23. Gupta, M., 2020. HR Analytics: A Tool for Talent Management. International Journal of Psychosocial Rehabilitation. 24. 2667-2673
  24. Hitka, M., Lorincová, S., Bartáková, G. P., Ližbetinová, L., Štarchoň, P., Li, C., ... Mura, L., 2018. Strategic tool of human resource management for operation of SMEs in the wood-processing industry. BioResources, 13(2), 2759-2774.
  25. Hitka, M., Lorincová, S., Ližbetinová, L., Bartáková, G. P., Merková, M., 2017. Cluster analysis used as the strategic advantage of human resource management in small and medium-sized enterprises in the wood-processing industry. BioResources, 12(4), 7884-7897.
  26. Huang, J. L., Niu, X., 2019. A review of human resource analytics: Evolution, applications, and future directions. Human Resource Management Review, 29(3), 347-357.
  27. Ibrahim, H., Mohd Zin, M. L., Aman-Ullah, A., Mohd Ghazi, M. R., 2023. Impact of technostress and information technology support on HRIS user satisfaction: a moderation study through technology self-efficacy. Kybernetes.
  28. Jaffara Z., Noorb W., Kanwalc Z.(2019): Predictive Human Resource Analytics Using Data Mining Classification Techniques, International Journal of Computer
  29. Jain et al., 2020. Understanding the concept of HR analytics, International Journal on Emerging Technologies, 11(2), p. 644 – 652
  30. Jankelová, N., Joniaková, Z., Procházková, K., Blštáková, J., 2020. Diversity Management as a Tool for Sustainable Development of Health Care Facilities. Sustainability, 12 (13), 5226. DOI: 10.3390/su12135226
  31. Kapler, M., 2021. Barriers to the implementation of innovations in information systems in SMEs. Production Engineering Archives,27(2) 156-162. DOI: 10.30657/pea.2021.27.20
  32. Kavanagh, M. J., Johnson, R. D., 2017. The human resources scorecard: Measuring the return on investment. Routledge.
  33. Kavanagh, M. J., Thite, M., 2019. Human resource information systems: Basics, applications, and future directions (3rd ed.. Sage Publications
  34. Kelleher, J. D., Tierney, B., Tierney, B., 2018. Data science fundamentals. Chapman and Hall/CRC.
  35. Kruger. N.A., 2023. Entrepreneurial Ecosystems in Technology Transfer: A Case Study on Successful Innovation Commercialization. Polish Journal of Management Studies, 2023, 27(1)
  36. Lawler, E. E., Levenson, A. R., Boudreau, J. W., 2021. Human resource management and analytics: An era of change. Emerald Publishing Limited.
  37. Lawler, J. J., Levenson, A., 2019. Talent management: A focus on big data and analytics. Organizational Dynamics, 48(1), 1-7.
  38. Liao, S. H., Chu, P. H., Hsiao, P. Y., 2017. Data mining techniques and applications–A decade review from 2007 to 2016. Expert Systems with Applications, 83, 298-321.
  39. London, M., Volmer, J., Zyberaj, J., Kluger, A. N., 2023. Attachment style and quality listening: Keys to meaningful feedback and stronger leader-member connections. Organizational Dynamics, 100977.
  40. Lorincová, S., Hitka, M., Bajzíková, Ľ., Weberová, D., 2019. Are the motivational preferences of employees working in small enterprises in Slovakia changing in time? Entrepreneurship and sustainability issues, 6(4), 1618-1635. DOI: 10.9770/jesi.2019.6.4(5)
  41. Margherita A., 2021. Human resources analytics: A systematization of research topics and directions for future research, Human Resource Management Review, ISSN 1053-4822
  42. Marr, B., 2018. Data-driven HR: How to use analytics and metrics to drive performance. Kogan Page Publishers
  43. Marr, B., 2021. HR Analytics: The What, Why, and How. Kogan Page Publishers.
  44. Marr, B., 2023. Data-driven HR: How to Use AI, Analytics and Data to Drive Performance. Kogan Page Publishers.
  45. Mayo, A., 2018. Applying HR analytics to talent management. Strategic HR Review. 17. 10.1108/SHR-08-2018-0072
  46. Nascimento, A. L., Rocha, T. V., Serra, R. M., Soares, C. D., 2019. Evolution of HR Analytics: A Systematic Literature Review. In Proceedings of the 14th International Conference on Software Technologies (ICSOFT 2019) (pp. 152-15)
  47. Nedeliaková, E., Štefancová, V. Hranický, M., 2019. Implementation of Six Sigma methodology using DMAIC to achieve processes improvement in railway transport. Production Engineering Archives, 23 (23), 18-21. DOI: 10.30657/pea.2019.23.03
  48. Nguyen, H. T., Nguyen, V. T., Nguyen, V. P., Duong, T. H., 2021. Predictive analytics in healthcare: A systematic review. International Journal of Medical Informatics, 148, 104414.
  49. Olexová, C., Gajdoš, J., 2016. Logistics Simulation Game Proposal–a Tool for Employees’ Induction. Quality Innovation Prosperity, 20 (2), 53-68. DOI: 10.12776/qip.v20i2.753
  50. Papula J., Kohnová L., Papulová Z. Suchoba M., 2019. Industry 4.0: Preparation of Slovak Companies, the Comparative Study. EAI/Springer Innovations in Communication and Computing. DOI: 10.1007/978-3-319-76998-1_8
  51. Phillips, J. J., Connell, A. D., 2003. Costing human resources: The financial impact of behavior in organizations. Cengage Learning EMEA
  52. Rosak Szyrocka, J., Żywiołek, J., Shengelia, N., Stverkova, H., Santo, P. Pilař, L., 2022. Employee perception of CSR and its effects on the company’s image. Production Engineering Archives,28(3) 210-216. DOI: 10.30657/pea.2022.28.25
  53. Siegel, E., 2016. Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die. Wiley.
  54. Singh, N., Singh, V., Singh, H., 2020. Performance evaluation of machine learning algorithms for heart disease prediction using UCI dataset. International Journal of Advanced Science and Technology, 29(4), 10754-10760.
  55. Sirkova, M., Taha, V. A., Ferencova, M., 2016. Management of HR processes in the specific contexts of selected area. Polish journal of management studies, 13(2), 142-152.
  56. Štaffenová, N., Kucharčíková, A., 2023. Digitalization in the Human Capital Management. Systems, 11(7), 337.
  57. Stanbery, K., Lindley, K., Huffman, C., 2023. The feasibility of using net promoter score to measure real-time employee engagement. JONA: The Journal of Nursing Administration, 53(1), 34-39.
  58. Stareček, A., Babeľová, Z. G., Vraňaková, N., Jurík, L., 2023. The impact of Industry 4.0 implementation on required general competencies of employees in the automotive sector, Production Engineering Archives, 29(3), 3923, pp.254-262.
  59. Starecek, A., Gyurak Babel’Ova, Z., Makysova, H., Caganova, D., 2021. Sustainable human resource management and generations of employees in industrial enterprises. Acta Logistica, 8(1), 45-53. doi:10.22306/al.v8i1.201
  60. Tharwat, A., 2020. Classification assessment methods for machine learning-based breast cancer prediction: A comprehensive evaluation. Computer Methods and Programs in Biomedicine, 188, 105314.
  61. Tseng, W. C., Chen, Y. S., 2020. Predictive analytics of NBA games: A machine learning approach. Journal of Sports Analytics, 6(3), 181-190.
  62. Urbancová, H., Vnouckova, L., 2015. Investigating talent management philosophies. Journal of Competitiveness, 7(3), 3-18.
  63. Van der Rijt, P., Bondarouk, T., Looise, J. K., 2019. HR analytics adoption: The influence of organizational factors. The International Journal of Human Resource Management, 30(15), 2123-2152
  64. Verma, D., Singh, R., 2019. Predictive analytics in banking: A literature review. International Journal of Bank Marketing, 37(1), 53-73.
  65. Vetráková, M., Smerek, L., 2019. Competitiveness of Slovak enterprises in Central and Eastern European region. E+M Ekonomie a Management, 22(4), 36-51. DOI: 10.15240/tul/001/2019-4-003
  66. Wang, S., Gupta, M., 2020. Big data analytics for quality control in manufacturing: A review. Journal of Manufacturing Systems, 54, 165-180.
  67. Wexler, S., Shaffer, J., Cotgreave, A., 2017. The Big Book of Dashboards: Visualizing Your Data Using Real-World Business Scenarios. Wiley.
  68. Winters, R., 2019. Practical Predictive Analytics: Models and Methods for the Business Problems of Today. Apress.
  69. Wojčák, E., Copuš, L., Majtánová, M., 2018. Requirements on Human Resources in Context of Industry 4.0. Grant Journal, 7 (2), 6-11.
  70. Xue, Y., Sheng, W., 2019. Predictive analytics in banking: Trends, challenges, and opportunities. Journal of Financial Services Research, 55(3), 261-295.
  71. Yahia, N. B., Hlel, J. and Colomo-Palacios, R., 2021. From Big Data to Deep Data to Support People Analytics for Employee Turnover Prediction, in IEEE Access, vol. 9, pp. 60447-60458
  72. Zeng, S., Chen, X., Liu, H., 2019. Big data analytics for predictive maintenance: A review. IEEE Access, 7, 142006-142020.
  73. Zhang, L., Zhao, Y., Cao, J., Mao, Y., 2019. Predicting stock prices using ensemble machine learning algorithms. Journal of Risk Financial Management, 12(4), 1-18.
DOI: https://doi.org/10.30657/pea.2024.30.33 | Journal eISSN: 2353-7779 | Journal ISSN: 2353-5156
Language: English
Page range: 333 - 343
Submitted on: Feb 25, 2024
Accepted on: Jun 18, 2024
Published on: Sep 7, 2024
Published by: Quality and Production Managers Association
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Zdenko Stacho, Katarína Stachová, Alexandra Barok, Cecília Olexová, published by Quality and Production Managers Association
This work is licensed under the Creative Commons Attribution 4.0 License.