Have a personal or library account? Click to login
Hybrid predictive maintenance model – study and implementation example Cover

Hybrid predictive maintenance model – study and implementation example

By: Jakub WierciochORCID  
Open Access
|Sep 2024

References

  1. Achouch,M., Dimitrova,M., Ziane, K., Sattarpanah Karganroudi, S., Dhouib, R., Ibrahim, H., Adda, M., 2022. On Predictive Maintenance in Industry 4.0: Overview, Models, and Challenges. Applied Sciences, 12, 8081, DOI: 10.3390/app12168081
  2. Ahmed, U., Carpitella, S., Certa, A., 2021. An integrated methodological ap-proach for optimising complex systems subjected to predictive mainte-nance. Reliability Engineering & System Safety, 216, 108022, DOI: 10.1016/j.ress.2021.108022
  3. Cao, Q., Zanni-Merk, C., Samet, A., Reich, C., Beuvron, F., Beckmann, A., Giannetti, C., 2022. KSPMI: A Knowledge-based System for Predictive Maintenance in Industry 4.0. Robotics and Computer-Integrated Manu-facturing, 74, 102281, DOI: 10.1016/j.rcim.2021.102281
  4. Carnero, M.C., Gomez, A., 2017. Maintenance strategy selection in electric power distribution systems. Energy, Volume 129, 255-272, DOI: 10.1016/j.energy.2017.04.100
  5. Daniewski, K., Kosicka, E., Mazurkiewicz, D, 2018. Analysis of the correct-ness of determination of the effectiveness of maintenance service actions. Management and Production Engineering Review, 9(2), 20-25, DOI: 10.24425/119522
  6. Fossier, S., Robic, P.O., 2017. Maintenance of Complex Systems – From Pre-ventive to Predictive. 12th International Conference on Live Maintenance (ICOLIM), IEEE, 1-6.
  7. Ighravwe, D.E, Oke, S.A., 2019. A multi-criteria decision-making framework for selecting a suitable maintenance strategy for public buildings using sustainability criteria. Journal of Building Engineering, 24, 100753, DOI: 10.1016/j.jobe.2019.100753
  8. Ji, B., Bang, S., Park, H., Cho, H., 2019. Multi-Criteria Decision-Making-Based Critical Component Identification and Prioritization for Predictive Maintenance. Industrial Engineering & Management Systems 18(3), 305–314, DOI: 10.7232/iems.2019.18.3.305
  9. Keleko, A.T., Kamsu-Foguem, B., Ngouna, R.H., Tongne, A., 2022. Artificial intelligence and real-time predictive maintenance in industry 4.0: a bibli-ometric analysis. AI and Ethics 2, 553–577, DOI: 10.1007/s43681-021-00132-6
  10. Kumar, A.S., Iyer, E., 2019. An industrial IoT engineering and manufacturing industries – benefits and challenges. International Journal of Mechanical and Production Engineering Research and Development (IJMPERD), 9(2), 151-160, DOI: 10.24247/ijmperdapr201914
  11. Lampropoulos, G., Siakas, K., Anastasiadis, T., 2018. Internet of Things (IoT) in Industry: Contemporary Application Domains, Innovative Technolo-gies and Intelligent Manufacturing. International Journal of Advances in Scientific Research and Engineering (ijasre), 4(10), 109-118, DOI: 10.31695/IJASRE.2018.32910
  12. Lisnianski, A., Frenkel, I., Khvatskin, L., 2021. Modern Dynamic Reliability Analysis for Multi-State Systems. Springer: Berlin/Heidelberg, Ger-many, DOI: 10.1007/978-3-030-52488-3
  13. Luo, W., Hu, T., Ye, Y., Zhang, C., Wei, Y., 2020. A hybrid predictive maintenance approach for CNC machine tool driven by Digital Twin. Ro-botics and Computer-Integrated Manufacturing, 65, 101974, DOI: 10.1016/j.rcim.2020.101974
  14. Mallioris, P., Aivazidou, E., Bechtsis, D., 2024. Predictive maintenance in Industry 4.0: A systematic multi-sector mapping. CIRP Journal of Man-ufacturing Science and Technology, 50, 80-103, DOI: 10.1016/j.cirpj.2024.02.003
  15. Moleda, M., Malysiak-Mrozek, B., Ding, W., Sunderam, V., Mrozek, D., 2023. From Corrective to Predictive Maintenance—A Review of Mainte-nance Approaches for the Power Industry. Sensors, 23(13), 5970, DOI: 10.3390/s23135970
  16. Nunes, P., Santos, J., Rocha, E., 2023. Challenges in predictive maintenance – A review. CIRP Journal of Manufacturing Science and Technology, Volume 40, 53-67, DOI: 10.1016/j.cirpj.2022.11.004
  17. Randall, R.B., 2011. Vibration-based condition monitoring: industrial, aero-space and automotive applications. John Wiley & Sons Ltd, New York, USA, DOI: 10.1002/9780470977668
  18. Rosati, R., Romeo, L., Cecchini, G., Tonetto, F., Viti, P., Mancini, A., Fron-toni, E., 2022. From knowledge-based to big data analytic model: a novel IoT and machine learning based decision support system for predictive maintenance in Industry 4.0. Journal of Intelligent Manufacturing 34, 107–121, DOI: 10.1007/s10845-022-01960-x
  19. Scope, C., Vogel, M., Guenther, E., 2021.Greener, cheaper, or more sustain-able: Reviewing sustainability assessments of maintenance strategies of concrete structures. Sustainable Production and Consumption, 26, 838-858, DOI: 10.1016/j.spc.2020.12.022
  20. Shafiee, M., Labib, A., Maiti, J., Starr, A., 2019. Maintenance strategy selec-tion for multi-component systems using a combined analytic network process and cost-risk criticality model. Journal of Risk and Reliability, Proc IMechE Part O: J Risk and Reliability, 1–16, DOI: 10.1177/1748006X17712071
  21. Stodola, P., Stodola, J., 2020. Model of Predictive Maintenance of Machines and Equipment. Applied Sciences, 10, 213, DOI: 10.3390/app10010213
  22. Tiddens,W., Braaksma, J., Tinga, T., 2023. Decision Framework for Predic-tive Maintenance Method Selection. Applied Sciences, 13, 2021, DOI: 10.3390/app13032021
  23. Tran, M., Elsisi, M., Mahmoud, K., Liu, M., Lehtonen, M., Darwish, M. M. F., 2021. Experimental Setup for Online Fault Diagnosis of Induction Machines via Promising IoT and Machine Learning: Towards Industry 4.0 Empowerment. IEEE Access, 9, 115429-115441, DOI: 10.1109/ACCESS.2021.3105297
  24. Wiercioch, J., 2023. Development of a hybrid predictive maintenance model. Journal of KONBiN, 53(2), 141-158, DOI: 10.5604/01.3001.0053.7130
  25. Yazdi, M., 2024. Maintenance Strategies and Optimization Techniques. In: Advances in Computational Methematics for Industrial System Reliabil-ity and Maintainability. Springer Series in Reliability Engineering, Springer Cham, 59-77, DOI: 10.1007/978-3-031-53514-7_4
  26. Zhang, M., Amaitik, N., Wang, Z., Xu, Y., Maisuradze, A., Peschl, M., Tzovaras, D., 2022. Predictive Maintenance for Remanufacturing Based on Hybrid-Driven Remaining Useful Life Prediction. Applied Sciences, 12, 3218, DOI: 10.3390/app12073218
  27. Zhao, J., Gao, C., Tang, T., 2022. A Review of Sustainable Maintenance Strat-egies for Single Component and Multicomponent Equipment. Sustaina-bility, 14, 2992, DOI: 10.3390/su14052992
  28. Zwolińska, B., Wiercioch, J., 2022. Selection of Maintenance Strategies for Machines in a Series-Parallel System. Sustainability, 14, 11953, DOI: 10.3390/su141911953
  29. Zwolińska, B., 2019. Modeling convergent processes in complex production systems. Wydawnictwa AGH, Krakow, Poland
DOI: https://doi.org/10.30657/pea.2024.30.28 | Journal eISSN: 2353-7779 | Journal ISSN: 2353-5156
Language: English
Page range: 285 - 295
Submitted on: Jun 5, 2024
Accepted on: Aug 9, 2024
Published on: Sep 7, 2024
Published by: Quality and Production Managers Association
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Jakub Wiercioch, published by Quality and Production Managers Association
This work is licensed under the Creative Commons Attribution 4.0 License.