Have a personal or library account? Click to login
Application of laser treatment technology for boiling heat transfer augmentation Cover

Application of laser treatment technology for boiling heat transfer augmentation

Open Access
|May 2024

References

  1. Dharmendra, M., Suresh, S., Hafiz, M.A., Udaya Kumar, G. 2020. Investigation to improve the pool boiling heat transfer characteristics using laser-textured copper-grooved surfaces. Int. J. Photoenergy, 3846157. DOI: 10.1155/2020/3846157
  2. Dudkiewicz, E., Szałański, P., 2019. A review of heat recovery possibility in flue gases discharge system of gas radiant heaters. Int. Conf. on Advances in Energy Systems and Environmental Engineering (ASEE19). E3S Web of Conferences, 116, 00017. DOI: 10.1051/e3sconf/201911600017
  3. Eid, E.I., Al-Nagdy, A.A., Khalaf-Allah, R.A., 2022. Nucleate pool boiling heat transfer above laser machining heating surfaces with different micro-cavity geometric shape for water-aluminum oxide nanofluid. Experimental Heat Transfer, 35(5), 688–707. DOI: 10.1080/08916152.2021.1946207
  4. Grabas, B., 2015. Vibration-assisted laser surface texturing of metals as a passive method for heat transfer enhancement. Experimental Thermal and Fluid Science, 68, 499–508. DOI: 10.1016/j.expthermflusci.2015.06.006
  5. Kaniowski, R., Pastuszko, R., 2018. Comparison of heat transfer coefficients of open micro-channels and plain micro-fins. EPJ Web of Conferences, 180, 02041.DOI: 10.1051/epjconf/201818002041
  6. Karthikeyan, A., Coulombe, S., Kietzig, A.M., 2018. Boiling heat transfer enhancement with stable nanofluids and laser textured copper surfaces. International Journal of Heat and Mass Transfer, 126, 287–296. DOI: 10.1016/j.ijheatmasstransfer.2018.05.118
  7. Kozłowski, C.A., Ulewicz, M., Walkowiak, W., Girek, T., Jabłońska, J., 2002. The effect of tautomeric rearrangement on the separation of Zn(II) and Cd(II) in ion flotation process with 4-thiazolidinone derivatives. Minerals Engineering, 15(9), 677–682. DOI: 10.1016/S0892-6875(02)00166-8
  8. Može, M., Zupančič, M., Hočevar, M., Golobič, I., Gregorčič, P., 2019. Surface chemistry and morphology transition induced by critical heat flux incipience on laser-textured copper surfaces. Applied Surface Science, 490, 220–230. DOI: 10.1016/j.apsusc.2019.06.068
  9. Mukherjee, S., Ebrahim, S., Mishra, P.C., Ali, N., Chaudhuri, P. A., 2022. Review on Pool and Flow Boiling Enhancement Using Nanofluids: Nuclear Reactor Application. Processes, 10, 177. DOI: 10.3390/pr10010177
  10. Mukherjee, S., Wciślik, S., Mishra, P.C., Chaudhuri, P., 2024. Nanofluids: Critical issues, economics and sustainability perspectives. Particuology, 87, 147–172. DOI: 10.1016/j.partic.2023.06.021
  11. Nirgude, V.V., Sahu, S.K., 2018. Enhancement in nucleate pool boiling heat transfer on nano-second laser processed copper surfaces. Experimental Heat Transfer, 566–583. DOI: 10.1080/08916152.2018.1559262
  12. Nirgude, V.V., Sahu, S.K., 2020. Heat transfer enhancement in nucleate pool boiling using laser processed surfaces: Effect of laser wavelength and power variation. Thermochimica Acta 694, 178788. DOI: 10.1016/j.tca.2020.178788
  13. Nirgude, V.V., Sahu, S.K., 2020. Nucleate boiling heat transfer performance of different laser processed copper surfaces. International Journal of Green Energy, 17:1, 38–47. DOI: 10.1080/15435075.2019.1686000
  14. Orman, Ł.J., Radek, N., Pietraszek, J., Szczepaniak, M., 2020. Analysis of Enhanced Pool Boiling Heat Transfer on Laser—Textured Surfaces. Energies 13, 2700. DOI: 10.3390/en13112700
  15. Orzechowski, T., 2009. Boiling heat transfer on the fin with laser modified surface, International Symposium on Convective Heat and Mass Transfer in Sustainable Energy, Tunisia, 1–14 DOI: 10.1615/ICHMT.2009.CONV.1110
  16. Pastuszko, R., Kaniowski, R., Dadas, N., Bedla-Pawlusek, M., 2021. Pool boiling enhancement and a method of bubble diameter determination on surfaces with deep minichannels. International Journal of Heat and Mass Transfer, 179, 121713 DOI: 10.1016/j.ijheatmasstransfer.2021.121713
  17. Piasecka, M., Maciejewska, B., Michalski, D., Dadas, N., Piasecki, A., 2024. Investigations of Flow Boiling in Mini-Channels: Heat Transfer Calculations with Temperature Uncertainty Analyses. Energies, 17, 791 DOI: 10.3390/en17040791
  18. Pietraszek, J., 2003. Response surface methodology at irregular grids based on Voronoi scheme with neural network approximator. Neural Networks and Soft Computing, Advances in Soft Computing, 19, 250–255. DOI: 10.1007/978-3-7908-1902-1_35
  19. Pietraszek, J., Gądek-Moszczak, A., 2013. The Smooth Bootstrap Approach to the Distribution of a Shape in the Ferritic Stainless Steel AISI 434L Powders. Solid State Phenomena, 197, 162–167. DOI: 10.4028/www.scientific.net/SSP.197.162
  20. Pietraszek, J., Gądek-Moszczak, A., Toruński, T., 2014. Modeling Counting System for PCB Soldered in the Wave Soldering Technology. Advanced Materials Research, 874, 139–143. DOI: 10.4028/www.scientific.net/AMR.874.139
  21. Radek, N., Pietraszek, J., Antoszewski, B., 2014. The average friction coefficient of laser textured surfaces of silicon carbide identified by RSM methodology. Advanced Materials Research, 874, 29–34. DOI: 10.4028/www.scientific.net/AMR.874.29
  22. Radek, N., Pietraszek, J., Goroshko, A., 2018. The impact of laser welding parameters on the mechanical properties of the weld. AIP Conf. Proc. 2017, 020025. DOI: 10.1063/1.5056288
  23. Radek, N., Tokar, D., Kalinowski, A., Pietraszek, J., 2021. Influence of laser texturing on tribological properties of DLC coatings. Production Engineering Archives, 27(2), 119–123. DOI: 10.30657/pea.2021.27.15
  24. Serdyukov, V., Starinskiy, S., Malakhov, I., Safonov, A., Surtaev, A., 2021. Laser texturing of silicon surface to enhance nucleate pool boiling heat transfer. Applied Thermal Engineering, 194, 117102. DOI: 10.1016/j.applthermaleng.2021.117102
  25. Sitar, A., Moze, M., Crivellari, M., Schille, J., Golobic, I., 2020. Nucleate pool boiling heat transfer on etched and laser structured silicon surfaces. International Journal of Heat and Mass Transfer, 147, 118956 DOI: 10.1016/j.ijheatmasstransfer.2019.118956
  26. Smirnov, G.F., 1977. Približennaja teorija teploobmena pri kipenii na poverchnostjach pokrytych kapilljarno – poristymi strukturami. Teploenergetika, 9, 77–80.
  27. Styrylska, T., Pietraszek, J., 1992. Numerical Modeling of Non-Steady-State Temperature-Fields with Supplementary Data. Zeitschrift für Angewandte Mathematik und Mechanik, 72(6), T537–T539.
  28. Szataniak, P., Nový, F., Ulewicz, R., 2014. HSLA Steels – Comparison of Cutting Techniques. METAL 2014: 23rd Int. Conf. on Metallurgy and Materials, 778–783.
  29. Ulewicz, M., Walkowiak, W., Brandt, K., Porwolik-Czomperlik, I., 2003. Ion flotation of zinc(II) and cadmium(II) in the presence of side-armed diphosphaza-16-crown-6 ethers. Separation Science and Technology, 38(3), 633–645. DOI: 10.1081/SS-120016655
  30. Ulewicz, R., Ulewicz, M., 2020. Problems in the Implementation of the Lean Concept in the Construction Industries. LNCE, 47, 495–500. DOI: 0.1007/978-3-030-27011-7_63
  31. Vilhena, L.M., Sedlaček, M., Podgornik, B., Vižintin, J., Babnik, A., Možina, J., 2009. Surface texturing by pulsed Nd:YAG laser. Tribology International, 42, 1496–1504. DOI: 10.1016/j.triboint.2009.06.003
  32. Wciślik S., Mukherjee S., 2022. Evaluation of three methods of static contact angle measurements for TiO2 nanofluid droplets during evaporation. Physics of Fluids, 34, 062006. DOI: 10.1063/5.0096644
  33. Wojtkowiak J., Amanowicz Ł., Mróz T., 2019. A new type of cooling ceiling panel with corrugated surface – Experimental investigation. International Journal of Energy Research, 43(13), 7275–7286. DOI: 10.1002/er.4753
  34. Wong, K.K., Leong, K.C., 2018. Saturated pool boiling enhancement using porous lattice structures produced by Selective Laser Melting. International Journal of Heat and Mass Transfer, 121, 46–63. DOI: 10.1016/j.ijheatmasstransfer.2017.12.148
  35. Xin, M.-D., Chao, Y.-D., 1987. Analysis and experiment of boiling heat transfer on T-shaped finned surfaces. Chem. Eng, Comm. 50, 185–199.
  36. Zhang, C., Zhang, L., Xu, H., Li, P., Qian, B., 2019. Performance of pool boiling with 3D grid structure manufactured by selective laser melting technique. International Journal of Heat and Mass Transfer, 128, 570–580. DOI: 10.1016/j.ijheatmasstransfer.2018.09.021
  37. Zhang J., Li, P., Qian, B., Li, B., Qiu, Z., Xuan, F., 2020. Selective laser melting of G-surface lattice: forming process and boiling heat transfer characteristics. Journal of Nanoparticle Research, 22, 178. DOI: 10.1007/s11051-020-04914-7
  38. Zuhlke, C.A., Anderson, T.P., Alexander, D.R., 2013. Formation of multiscale surface structures on nickel via above surface growth and below surface growth mechanisms using femtosecond laser pulses. Optics Express, 21 (7), 8473. DOI: 10.1364/OE.21.008460
  39. Zupančič, M., Gregorčič, P., Bucci, M., Wang, C., Aguiar, G.M., Bucci, M., 2022. The wall heat flux partitioning during the pool boiling of water on thin metallic foils. Applied Thermal Engineering, 200, 117638. DOI: 10.1016/j.applthermaleng.2021.117638
  40. Zupančič, M., Steinbücher, M., Gregor, P., Golobič, I., 2015. Enhanced pool-boiling heat transfer on laser-made hydrophobic/superhydrophilic polydimethylsiloxane-silica patterned surfaces. Applied Thermal Engineering, 91, 288–297. DOI: 10.1016/j.applthermaleng.2015.08.026
DOI: https://doi.org/10.30657/pea.2024.30.25 | Journal eISSN: 2353-7779 | Journal ISSN: 2353-5156
Language: English
Page range: 259 - 265
Submitted on: Feb 19, 2024
Accepted on: May 3, 2024
Published on: May 26, 2024
Published by: Quality and Production Managers Association
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Łukasz J. Orman, Norbert Radek, Stanislav Honus, Jacek Pietraszek, published by Quality and Production Managers Association
This work is licensed under the Creative Commons Attribution 4.0 License.