Acayaba, G. M. A., de Escalona, P. M., 2015. Prediction of surface roughness in low speed turning of AISI316 austenitic stainless steel. CIRP Journal of Manufacturing Science and Technology, 11, 62–67, DOI: 10.1016/j.cirpj.2015.08.004.
Bharasi, N. S., Pujar, M.G., Das, C.R., Philip, J., Thyagarajan, K., Paneerselvi, S., Moitra, A., Chandramouli, S., Karki, V., Kannan, S., 2019. Microstructure, corrosion and mechanical properties characterization of AISI type 316L(N) stainless steel and modified 9Cr-1Mo steel after 40,000 h of dynamic sodium exposure at 525 °C. Journal of Nu-clear Materials, 516, 84–99, DOI: 10.1016/J.JNUCMAT.2019.01.012
Buranská, E., Buranský, I., Kritikos, M., Gerulová, K., Líška, J., (2019). Cutting Environment Impact on the Aluminium Alloy Machining. Vedeckee prace materialovotechnologickej fakulty slovenskej technickej Univerzity v Bratislave so Sidlom v Trnave, 27(44), 21–28, DOI: 10.2478/rput-2019-0002
Freddi, A., Salmon, M., 2019. Introduction to the Taguchi Method, Design Principles and Methodologies. Springer Tracts in Mechanical Engineering. Springer, Cham.
Gerth, J., Gustavsson, F., Collin, M., Andersson, G., Nordh, L.-G., Heinrichs, J., Wiklund, U., 2014. Adhesion phenomena in the secondary shear zone in turning of austenitic stainless steel and carbon steel. Journal of Materials Processing Technology, 214(8), 1467–1481, DOI: 10.1016/J.JMATPROTEC.2014.01.017
Gökkaya, H., Nalbant, M., (2007). The effects of cutting tool geometry and processing parameters on the surface roughness of AISI 1030 steel. Materials & Design. 28(2), 717–721, DOI: 10.1016/j.matdes.2005.09.013
Kónya, G., Kovács, Z. F., 2023. The Comparison of Effects of Liquid Carbon Dioxide and Conventional Flood Cooling on the Machining Conditions During Milling of Nickel-based Superalloys. Periodica Polytechnica Mechanical Engineering, DOI: 10.3311/PPme.22265
Kónya, G., Kovács, Zs. F., Kókai, E., 2022. Milling of Nickel-based superalloy by Trochoidal Strategies, 2022 IEEE 22nd International Symposium on Computational Intelligence and Informatics and 8th IEEE International Conference on Recent Achievements in Mechatronics. Automation, Computer Science and Robotics (CINTI-MACRo). Targu-Mures, Romania, 1–6.
Kovács, Z. F., Viharos, Z. J., Kodácsy, J., 2022. Improvements of surface tribological properties by magnetic assisted ball burnishing. Surface and Coatings Technology, 437, 128317, DOI: 10.1016/j.surfcoat.2022.128317
Krolczyk, G. M., Nieslony, P., Legutko, S., 2015. Determination of tool life and research wear during duplex stainless steel turning. Archives of Civil and Mechanical Engineering, 15(2), 347–354, DOI: 10.1016/J.ACME.2014.05.001/METRICS
Kulkarni, A. P., Joshi, G. G., Karekar, A., Sargade, V. G., 2014. Investigation on cutting temperature and cutting force in turning AISI 304 austenitic stainless steel using AlTiCrN coated carbide insert. International Journal of Machining and Machinability of Materials, 15(3–4), 147–156, DOI: 10.1504/IJMMM.2014.060546
Kun, K., Kodácsy, J., Vaczkó, D., Kovács, Zs. F., 2019. Machinability of Ni-based Superalloys by Indexable End Mills. Acta Materialia Transylvanica, 2(1), 49–54, DOI: 10.33924/amt-2019-01-08
Leksycki K., Maruda, R. W., Feldshtein, E., Wojciechowski, S., Habrat, W, Gupta, M. K., Królczyk, G. M., 2023. Evaluation of tribological interactions and machinability of Ti6Al4V alloy during finish turning under different cooling conditions. Tribology International, 189, 109002, DOI: 10.1016/j.triboint.2023.109002
Móricz, L., Viharos, Z. J., 2022. Investigation of ductile/brittle chip formation zone in the context of manufactured geometry with different CAM paths strategies. IFAC-PapersOnLine, 55(10), 2300–2305, DOI: 10.1016/j.ifacol.2022.10.051
Nalbant, M., Gökkaya, H., Sur, G., 2007. Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning. Materials & Design, 28(4), 1379–1385, DOI: 10.1016/j.matdes.2006.01.008.
Saketi, S., Östby, J., Olsson, M., 2016. Influence of tool surface topography on the material transfer tendency and tool wear in the turning of 316L stainless steel. Wear, 368–369, 239–252, DOI: 10.1016/j.wear.2016.09.023
Sipos, S., 2018. A new method for analysing the efficiency of cutting inserts. IOP Conference Series: Materials Science and Engineering, 448(1), 012043, DOI: 10.1088/1757-899X/448/1/012043
Sonawane, S., Wangikar, S., Pukale, K., 2021. Multi-Independent Optimization while Turning of Inconel-600 alloy using Grey Interactive Exploration. Production Engineering Archives, 27(4), 277-282, DOI: 10.30657/pea.2021.27.37
Szczotkarz, N., Mrugalski, R., Maruda, R. W., Królczyk, G. M., Legutko, S., Leksycki, K., Dębowski, D., Pruncu, C. I., 2021. Cutting tool wear in turning 316L stainless steel in the conditions of minimized lubrication. Tribology International, 156, 106813, DOI: 10.1016/j.triboint.2020.106813
Venkatesan, K., 2017. The study on force, surface integrity, tool life and chip on laser assisted machining of inconel 718 using Nd:YAG laser source. Journal of Advanced Research, 8(4), 407–423, DOI: 10.1016/j.jare. 2017.05.004