Have a personal or library account? Click to login
Innovative acoustic emission method for monitoring the quality and integrity of ferritic steel gas pipelines Cover

Innovative acoustic emission method for monitoring the quality and integrity of ferritic steel gas pipelines

Open Access
|May 2024

References

  1. Aljaroudi, A., Khan, F., Akinturk, A., Haddara, M., Thodi, P., 2015. Risk assessment of offshore crude oil pipeline failure. Journal of Loss Prevention in the Process Industries, 37, 101–109. DOI: 10.1016/j.jlp.2015.07.004
  2. Alzyod, H., Ficzere, P., 2023. Correlation Between Printing Parameters and Residual Stress in Additive Manufacturing: A Numerical Simulation Approach. Production Engineering Archives, 29, 279–287.
  3. Amyotte, P.R., Berger, S., Edwards, D.W., Gupta, J.P., Hendershot, D.C., Khan, F.I., Mannan, M.S., Willey, R.J., 2016. Why major accidents are still occurring. Current Opinion in Chemical Engineering. Biotechnology and bioprocess engineering / Process systems engineering, 14, 1–8. DOI: 10.1016/j.coche.2016.07.003
  4. ASTM E8 / E8M-16ae1, 2016. ASTM E8 / E8M-16ae1, Standard Test Methods for Tension Testing of Metallic Materials. ASTM International, West Conshohocken.
  5. Avelino, Á.M., de Paiva, J.Á., da Silva, R.E.F., de Araujo, G.J.M., de Azevedo, F.M., de O. Quintaes, F., Maitelli, A.L., Neto, A.D.D., Salazar, A.O., 2009. Real time leak detection system applied to oil pipelines using sonic technology and neural networks, in: 2009 35th Annual Conference of IEEE Industrial Electronics. Presented at the 2009 35th Annual Conference of IEEE Industrial Electronics, pp. 2109–2114. DOI: 10.1109/IECON.2009.5415324
  6. Benhamena, A., Fatima, B., Foudil, K., Baltach, A., Chaouch, M.I., 2023. Numerical Analysis of Fracture Behavior of Functionally Graded Materials using 3D-XFEM. Advances in Materials Science, 23, 33–46.
  7. Bokůvka, O., Jambor, M., Trško, L., Nový, F., Lisiecka, B., 2018. Fatigue lifetime of 20MnV6 steel with holes manufactured by various methods. Production Engineering Archives, 19, 3–5. DOI: 10.30657/pea. 2018.19.01
  8. Cataldo, A., Cannazza, G., De Benedetto, E., Giaquinto, N., 2012. A New Method for Detecting Leaks in Underground Water Pipelines. IEEE Sensors Journal, 12, 1660–1667. DOI: 10.1109/JSEN.2011.2176484
  9. Cui, X., Yan, Y., Ma, Y., Ma, L., Han, X., 2016. Localization of CO2 leakage from transportation pipelines through low frequency acoustic emission detection. Sensors and Actuators A: Physical, 237, 107–118. DOI: 10.1016/j.sna. 2015.11.029
  10. Kubicki, K., 2023. Technical and economic aspects of load-bearing welded joints in reinforcing steel. Construction of Optimized Energy Potential, 12(1), 228–235. DOI: 10.17512/bozpe.2023.12.25
  11. Feng, J., Li, F., Lu, S., Liu, J., Ma, D., 2017. Injurious or Noninjurious Defect Identification From MFL Images in Pipeline Inspection Using Convolutional Neural Network. IEEE Transactions on Instrumentation and Measurement, 66, 1883–1892. DOI: 10.1109/TIM.2017.2673024
  12. Gumen, O., Ujma, A., Kruzhkova, M., 2021. Research into the process of spraying complex titanium and zirconium nitride on structural steel and reaction times relating to the final finish and quality obtained. Construction of Optimized Energy Potential, 10, 71–76. DOI: 10.17512/bozpe.2021.1.07
  13. Hu, Z., Tariq, S., Zayed, T., 2021. A comprehensive review of acoustic based leak localization method in pressurized pipelines. Mechanical Systems and Signal Processing, 161, 107994. DOI: 10.1016/j.ymssp.2021.107994
  14. Jin, H., Zhang, L., Liang, W., Ding, Q., 2014. Integrated leakage detection and localization model for gas pipelines based on the acoustic wave method. Journal of Loss Prevention in the Process Industries, 27, 74–88. DOI: 10.1016/j.jlp.2013.11.006
  15. Li, J., Zheng, Q., Qian, Z., Yang, X., 2019. A novel location algorithm for pipeline leakage based on the attenuation of negative pressure wave. Process Safety and Environmental Protection, 123, 309–316. DOI: 10.1016/j.psep. 2019.01.010
  16. Li, Z., Zhang, H., Tan, D., Chen, X., Lei, H., 2017. A novel acoustic emission detection module for leakage recognition in a gas pipeline valve. Process Safety and Environmental Protection, 105, 32–40. DOI: 10.1016/j.psep.2016.10.005
  17. Liu, C., Li, Y., Meng, L., Wang, W., Zhang, F., 2014. Study on leak-acoustics generation mechanism for natural gas pipelines. Journal of Loss Prevention in the Process Industries, 32, 174–181. DOI: 10.1016/j.jlp.2014.08.010
  18. PN-EN ISO 6892-1:2020-05, 2019. PN-EN ISO 6892-1:2020-05, Metallic materials — Tensile testing — Part 1: Method of test at room temperature. International Organization for Standardization, Geneva.
  19. Sun, J., Xiao, Q., Wen, J., Zhang, Y., 2016. Natural gas pipeline leak aperture identification and location based on local mean decomposition analysis. Measurement, 79, 147–157. DOI: 10.1016/j.measurement.2015.10.015
  20. Świt, G., Dzioba, I., Adamczak-Bugno, A., Krampikowska, A., 2022. Identification of the Fracture Process in Gas Pipeline Steel Based on the Analysis of AE Signals. Materials, 15, 2659. DOI: 10.3390/ma15072659
  21. Świt, G., Dzioba, I., Ulewicz, M., Lipiec, S., Adamczak-Bugno, A., Krampikowska, A., 2023. Experimental-numerical analysis of the fracture process in smooth and notched V specimens. Production Engineering Archives, 29, 444–451. DOI: 10.30657/pea.2023.29.49
  22. Wang, F., Lin, W., Liu, Z., Wu, S., Qiu, X., 2017. Pipeline Leak Detection by Using Time-Domain Statistical Features. IEEE Sensors Journal, 17, 6431–6442. DOI: 10.1109/JSEN.2017.2740220
  23. Wang, L., Narasimman, S.C., Reddy Ravula, S., Ukil, A., 2017. Water Ingress Detection in Low-Pressure Gas Pipelines Using Distributed Temperature Sensing System. IEEE Sensors Journal, 17, 3165–3173. DOI: 10.1109/JSEN.2017.2686982
  24. Xiao, R., Hu, Q., Li, J., 2019. Leak detection of gas pipelines using acoustic signals based on wavelet transform and Support Vector Machine. Measurement, 146, 479–489. DOI: 10.1016/j.measurement.2019.06.050
  25. Xu, Q., Zhang, L., Liang, W., 2013. Acoustic detection technology for gas pipeline leakage. Process Safety and Environmental Protection, 91, 253–261. DOI: 10.1016/j.psep.2012.05.012
  26. Zadkarami, M., Shahbazian, M., Salahshoor, K., 2017. Pipeline leak diagnosis based on wavelet and statistical features using Dempster–Shafer classifier fusion technique. Process Safety and Environmental Protection, 105, 156–163. DOI: 10.1016/j.psep.2016.11.002
DOI: https://doi.org/10.30657/pea.2024.30.22 | Journal eISSN: 2353-7779 | Journal ISSN: 2353-5156
Language: English
Page range: 233 - 240
Submitted on: Jan 10, 2024
Accepted on: Apr 3, 2024
Published on: May 26, 2024
Published by: Quality and Production Managers Association
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Grzegorz Świt, Małgorzata Ulewicz, Robert Pała, Anna Adamczak-Bugno, Sebastian Lipiec, Aleksandra Krampikowska, Ihor Dzioba, published by Quality and Production Managers Association
This work is licensed under the Creative Commons Attribution 4.0 License.