Abolghasemi, M., Beh, E., Tarr, G., Gerlach, R., 2020. Demand forecasting in supply chain: the impact of demand volatility in the presence of promotion. Computers & Industrial Engineering, 142, 106308.
Alam, K.M., El Saddik, A., 2017. C2PS: a Digital Twin architecture reference model for the cloud-based cyber-physical systems. IEEE Access: Practical Innovations, Open Solutions, 5, 2050-2062.
Allen, A., Siefkas, A., Pellegrini, E., Burdick, H., Barnes, G., Calvert, J., Mao, Q., Das, R., 2021. A Digital Twins Machine Learning Model for Forecasting Disease Progression in Stroke Patients. Applied Sciences, 11, 5576
Arshinder, K., Kanda, A., Deshmukh, S.G., 2011. A review supply chain coordination: coordination mechanisms, managing uncertainty and research directions, Supply Chain Coordination under Uncertainty. SpringerVerlag Berlin Heidelberg, 39-82.
Averkyna, M.F., Shulyk, Y.V. 2018. Financial and Logistic coordination in the context of providing sustainable urban development in terms of decentralization in Ukraine, Financial and Credit Activity: Problems of Theory and Practice, 3, 82-90.
Barrow, D., Kourentzes, N., Sandberg, R., Niklewski, J., 2020. Automatic robust estimation for exponential smoothing: Perspectives from statistics and machine learning. Expert Systems with Applications, 160, 113637
Barth, M., Godemann, J., Rieckmann, M., Stoltenberg, U., 2007. Develiping key competencies for sustainable development in higher education. International Journal of Sustainability in Higher Education, 8, 416-430.
Beikverdi, A., Song, J., 2015. Trend of centralization in Bitcoin’s distributed network, IEEE/ACIS 16th International Conference on Software Engineering. Artificial Inteligence, Networking and Parallel/Distributed Computing.
Bergenhenegouwen, G.J., 1996. Competence development – a challenge for HRM professionals: core competences of organizations as guidelines for the development of employees. Journal of European Industrial Training 20, 29-35.
Chen, S-C., Kuo, S-Y., Chang, K-W., Wang, Y-T., 2012. Improving the forecasting accuracy of air passenger and air cargo demand: the application of back-propagation neural networks. Transportation Planning and Technology, 35, 373-392
Danese, P., Kalchschmidt, M., 2011. The role of the forecasting process in improving forecast accuracy and operational performance. Int. J. Production Economics, 131, 204-214
Dmuchowski, R., Szmitka, S., 2016. Znaczenie klastrów w obniżaniu kosztów logistycznych. Metodyka kalkulacji korzyści, Zarządzanie i Finanse. Journal of Management and Finance, 14, 296-309
Dolinskaya, I.S., Shi, Z., Smilowitz, K.R., Ross, M., 2011. Decentralized approaches to logistics coordination in humanitarian relief. Proceedings of the 2011 Industrial Engineering Research Conference.
Grzelak, M., Borucka, M., Buczyński, Z., 2019. Forecasting the demand for transport services on the example of a selected logistic operator. Archives of Transport, 52, 81-93.
Gumiński, A., Dohn, K., 2017. LMFEA method for the identification of key determinants to improve the efficacy of a logistics operator in transport processes. Carpathian Logistics Congress, 185-196.
Gupta, A., Singh, R., Suri, P.K., 2018. Sustainable service quality management by logistics service providers: an Indian perspective. Global Business Review, 19, 130-150.
Intagliata, J., Ulrich, D., Smallwood, N., 2000. Leveraging leadership competencies to produce leadership brand: creating distinctiveness by focusing on strategy and results. Human Resources Planning 23.4, 12-23.
Joshi, A.W., Campbell, A.J., 2003. Effect of Environmental Dynamism on Relational Governance in Manufacturer-Supplier Relationships: A Contingent Framework and an Empirical Test. Academy of Marketing Science Journal, 31, 176-188.
Kmiecik, M., 2021a. Concept of distribution network configuration in the conditions of centralised forecasting. Organization & Management Scientific Quarterly, No. 1(53), 29-40.
Kmiecik, M., 2021b. Implementation of forecasting tool in the logistics company - case study. Scientific Papers of Silesian University of Technology, No. 152, 119-126.
Kramarz, M., Kmiecik, M., 2022. Quality of Forecasts as the Factor Determining the Coordination of Logistics Processes by Logistic Operator. Sustainability, 14, 1013
Krejner-Nowecka, A., 2002. Jakość partnerstwa a sukces outsourcingu w przedsiębiorstwie. [w:] Przedsiębiorstwo partnerskie, red. M. Romanowska, M. Trocki, Difin, Warszawa, 125.
Lai, K.K., Yu, L., Wang, S., Huang, W., 2006. Hybridizing exponential smoothing and neural network for financial time series predication. In International Conference on Computational Science. Springer, Berlin, Heidelberg, 493-500.
Lu, X., Hu, Z. 2018. Research on Russian cross-border e-commerce logistics platform based on block chain technology. International Conference on Humanities and Advanced Education Technology, 435-438.
Ma, S., Fildes, R., Huang, T., 2016. Demand forecasting with high dimensional data: the case of SKU retail sales forecasting with intra- and inter-category promotional information. European Journal of Operational Research, 249, 245-257.
Maia, A.L.S., de Carvalho, F.A.T., 2010. Holt’s exponential smoothing and neural network models for forecasting interval-valued time series. International Journal of Forecasting, 27, 740-759.
Matejun, M., 2009. Outsourcing a koncentracja na kluczowych obszarach działalności firm sektora MŚP [w:] J. Skalik (red.), Zmiana warunkiem sukcesu. Rozwój i zmiany w małych i średnich przedsiębiorstwach, Prace Naukowe UE we Wrocławiu nr 49, 484-492.
Moyaux, T., Chaib-draa, B., D’Amours, S., 2003. Multi-agent coordination based on tokens: reducion of the bullwhip effect in a forest supply chain. AAMAS’03 Proceedings of the Second International Joint Conference on Autonomous Agents and Multiagents Systems, Australia, 670-677.
Perera, H.N., Hurley, J., Fahimnia, B., Reisi, M., 2019. The human factor in supply chain forecasting: a systematic review. European Journal of Operational Research, 274, 574-600.
Prahalad, C.K., Hamel, G., 2006. The core competence of the corporation [w:] D. Hahn, B. Taylor (red.), Strategische Unternehmungsplanung — Strategische Unternehmungsführung. Springer, Berlin, Heidelberg.,
Przybyła, M., 1996. Struktury organizacyjne przedsiębiorstw [in:] R. Krupski, M. Przybyła (red.), Struktury organizacyjne przedsiębiorstw i ich ugrupowań, Zakład Narodowy im. Ossolińskich, Wrocław-Warszawa-Kraków, 9-50.
Qi, Y., Tang, M., Zhang, M., 2014. Mass customization in flat organization: the mediating role of supply chain planning and corporation coordination. Journal of Applied Research and Technology 12, 171-181.
Shen, B., Xu, X., Guo, S., 2019. The impacts of logistics services on short life cycle products in a global supply chain. Transportation Research Part E, 131, 153-167.
Skowron-Grabowska, B., 2011. Wpływ funkcjonowania operatorów logistycznych na rozwój rynku usług w Polsce. Zeszyty Naukowe Uniwersytetu Szczecińskiego nr 685, 225-234.
Stevic, Z., Mulalic, E., Bozickovic, Z., Veskovic, S., Dalic, I., 2018. Economic analysis of the project of warehouse centralization in the paper production company. Serbian Journal of Management 13, 47-62.
Tan, H., Du, M., Jiang, M., Chu, Z., 2019. The Combined Distribution and Assignment Model: A New Solution Algorithm and Its Applications in Travel Demand Forecasting for Modern Urban Transportation. Sustainability, 11, 2167.
Tatham, P., Spens, K., 2016. Cracking the humanitarian logistic coordination challenge: lessons from the urban search and rescue community. Disasters, 40, 246-261.
Thakkar, J., Deshmukh, S.G., Gupta, A.D., Shankar, R., 2005. Selecion if third-party logistics (3PL): a hybrid approach using interpretiv structural modeling (ISM) and analytic network process (ANP). Supply Chain Forum an International Journal 6, 32-46.
Thakkar, J., Deshmukh, S.G., Gupta, A.D., Shankar, R., 2005. Selecion if third-party logistics (3PL): a hybrid approach using interpretiv structural modeling (ISM) and analytic network process (ANP). Supply Chain Forum an International Journal 6, 32-46.
Witkowski, J., Kiba-Janik, M., 2012. Rozwój europejskich centrów i klastrów logistycznych na podstawie doświdczeń hiszpańskich. Uniwersytet Szczeciński. Zeszyty Naukowe nr 719, 397-414.
Xie, X., Parlikad, A.K., Puri, R.S., 2019. A Neural Ordinary Differential Equations Based Approach for Demand Forecasting within Power Grid Digital Twins. IEEE International Conference
Zahin, S., Latif, H.H., Paul, S.K., Azeem, A., 2013. A comparative analysis of power demand forecasting with artificial intelligence and traditional approach. Int. J. Business Information Systems, 13, 359-380.
Zelkowski, J., Gontarczyk, M., Kijek, M., Owczarek, P., 2018. Analiza i ocena operatorów logistycznych w Polsce. Prace Naukowe Politechniki Warszawskiej – Transport, 120, 459-470.