Aas, K., Jullum, M., Løland, A., 2021. Explaining individual predictions when features are dependent: More accurate approximations to Shapley values. Artificial Intelligence, 298, 103502. DOI: 10.1016/j.artint.2021.103502
An, S., Huang, Y., 2006. Rapid changes of soil properties following Caragana korshinski plantations in the hilly-gully Loess Plateau. Frontiers of Forestry in China, 1(4), 394–399. DOI: 10.1007/s11461-006-0043-3
Battini, D., Persona, A., Sgarbossa, F., 2014. A sustainable EOQ model: Theoretical formulation and applications. International Journal of Production Economics, 149, 145–153. DOI: 10.1016/j.ijpe.2013.06.026
Ben-Daya, M., Hassini, E., Bahroun, Z., 2019. Internet of things and supply chain management: a literature review. International Journal of Production Research, 57(15–16), 4719–4742. DOI: 10.1080/00207543. 2017.1402140
Benjaafar, S., Li, Y., Daskin, M., 2013. Carbon footprint and the management of supply chains: Insights from simple models. IEEE Transactions on Automation Science and Engineering, 10(1), 99–116. DOI: 10.1109/TASE. 2012.2203304
Botalb, A., Moinuddin, M., Al-Saggaf, U. M., Ali, S. S. A., 2018. Contrasting convolutional neural network (CNN) with multi-layer perceptron (MLP) for big data analysis., 2018 International Conference on Intelligent and Advanced System (ICIAS), 1–5. IEEE.
Cachon, G. P., Fisher, M., 2000. Supply chain inventory management and the value of shared information. Management Science, 46(8), 1032–1048. DOI: 10.1287/mnsc.46.8.1032.12029
Cachon, G. P., Lariviere, M. A., 2005. Supply chain coordination with revenue-sharing contracts: Strengths and limitations. Management Science, 51(1), 30–44. DOI: 10.1287/mnsc.1040.0215
Chen, L., Zhao, X., Tang, O., Price, L., Zhang, S., Zhu, W., 2017. Supply chain collaboration for sustainability: A literature review and future research agenda. International Journal of Production Economics, 194(March), 73–87. DOI: 10.1016/j.ijpe.2017.04.005
Costantino, F., Di Gravio, G., Shaban, A., Tronci, M., 2014. The impact of information sharing and inventory control coordination on supply chain performances. Computers and Industrial Engineering, 76, 292–306. DOI: 10.1016/j.cie.2014.08.006
Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., Lim, W. M., 2021. How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133(March), 285–296. DOI: 10.1016/j.jbusres.2021.04.070
Durach, C. F., Kembro, J., Wieland, A., 2017. A New Paradigm for Systematic Literature Reviews in Supply Chain Management. Journal of Supply Chain Management, 53(4), 67–85. DOI: 10.1111/jscm.12145
Durach, C. F., Wieland, A., Machuca, J. A. D., 2015. Antecedents and dimensions of supply chain robustness: A systematic literature review. International Journal of Physical Distribution and Logistics Management, 45, 118–137. DOI: 10.1108/IJPDLM-05-2013-0133
Elmaghraby, W., Keskinocak, P., 2003. Dynamic pricing in the presence of inventory considerations: Research overview, current practices, and future directions. Management Science, 49(10), 1287–1309. DOI: 10.1287/mnsc.49.10.1287.17315
Frohlich, M. T., Westbrook, R., 2001. Arcs of integration: An international study of supply chain strategies. Journal of Operations Management, 19(2), 185–200. DOI: 10.1016/S0272-6963(00)00055-3
Gardner Jr., E. S., 2006. Exponential smoothing: The state of the art-Part II. International Journal of Forecasting, 22(4), 637–666. DOI: 10.1016/j.ijforecast.2006.03.005
Gordon, V., Proth, J. M., Chu, C., 2002. A survey of the state-of-the-art of common due date assignment and scheduling research. European Journal of Operational Research, 139(1), 1–25. DOI: 10.1016/S0377-2217(01)00181-3
Grodzinski, N., Grodzinski, B., Davies, B. M., 2021. Can co-authorship networks be used to predict author research impact? A machine-learning based analysis within the field of degenerative cervical myelopathy research. Plos One, 16(9), e0256997. DOI: 10.1371/journal.pone.0256997
Guide, V. D. R., Srivastava, R., 1997. Repairable inventory theory: Models and applications. European Journal of Operational Research, 102(1), 1–20. DOI: 10.1016/S0377-2217(97)00155-0
Hiassat, A., Diabat, A., Rahwan, I., 2017. A genetic algorithm approach for location-inventory-routing problem with perishable products. Journal of Manufacturing Systems, 42, 93–103. DOI: DOI: 10.1016/j.jmsy. 2016.10.004
Hire, S., Sandbhor, S., 2020. Construction Labor Productivity Modeling and Use of Neural Networks: A Bibliometric Survey. Library Philosophy and Practice, 1–20.
Hou, Y., Zhang, J., Cheng, J., Ma, K., Ma, R. T. B., Chen, H., Yang, M.-C., 2019. Measuring and improving the use of graph information in graph neural networks. International Conference on Learning Representations.
Hua, G., Cheng, T. C. E., Wang, S., 2011a. Managing carbon footprints in inventory management. International Journal of Production Economics, 132(2), 178–185. DOI: 10.1016/j.ijpe.2011.03.024
Hua, G., Cheng, T. C. E., Wang, S., 2011b. Managing carbon footprints in inventory management. International Journal of Production Economics, 132(2), 178–185.
Krishna Bhargavi, Y., Murthy, Y. S. S. R., Srinivasa Rao, O., 2019. AEAO: Auto encoder with adam optimizer method for efficient document indexing of big data. International Journal of Recent Technology and Engineering, 8(3), 3933–3942. DOI: 10.35940/ijrte.C5141.098319
Liu, L., Tsai, W. T., Bhuiyan, M. Z. A., Yang, D., 2020. Automatic block-chain whitepapers analysis via heterogeneous graph neural network. Journal of Parallel and Distributed Computing, 145, 1–12. DOI: 10.1016/j.jpdc.2020.05.014
Lockett, A., & Wright, M., 2005. Resources, capabilities, risk capital and the creation of university spin-out companies. Research Policy, 34(7), 1043– 1057.
Lu, W., Huang, S., Yang, J., Bu, Y., Cheng, Q., Huang, Y., 2021. Detecting research topic trends by author-defined keyword frequency. Information Processing and Management, 58(4). DOI: 10.1016/j.ipm.2021.102594
Lundberg, S. M., Lee, S.-I., 2017. A unified approach to interpreting model predictions. Proceedings of the 31st International Conference on Neural Information Processing Systems, 4768–4777.
Mazur, M., Momeni, H..2018. Lean Production issues in the organization of the company - the first stage” Production Engineering Archives, vol.21, no.21,36-39. DOI: 10.30657/pea.2018.21.08
Mee, A., Homapour, E., Chiclana, F., Engel, O., 2021. Sentiment analysis using TF–IDF weighting of UK MPs’ tweets on Brexit[Formula presented]. Knowledge-Based Systems, 228, 107238. DOI: 10.1016/j.knosys. 2021.107238
Metters, R., 1997. Quantifying the bullwhip effect in supply chains. Journal of Operations Management, 15(2), 89–100. DOI: 10.1016/S0272-6963(96)00098-8
Patil, A., 2022. Word Significance Analysis in Documents for Information Retrieval by LSA and TF-IDF using Kubeflow BT - Expert Clouds and Applications (I. Jeena Jacob, F. M. Gonzalez-Longatt, S. Kolandapalayam Shanmugam, & I. Izonin, eds.). Singapore: Springer Singapore.
Popović, D., Vidović, M., Radivojević, G., 2012. Variable Neighborhood Search heuristic for the Inventory Routing Problem in fuel delivery. Expert Systems with Applications, 39(18), 13390–13398. DOI: 10.1016/j.eswa.2012.05.064
Rani, R., Lobiyal, D. K., 2021. A Weighted Word Embedding based approach for Extractive Text Summarization. Expert Systems with Applications, 186(September), 115867. DOI: 10.1016/j.eswa.2021.115867
Richey, R. G., Davis-Sramek, B., 2020. Supply Chain Management and Logistics: An Editorial Approach for a New Era. Journal of Business Logistics, 41(2), 90–93. DOI: 10.1111/jbl.12251
Soman, C. A., Van Donk, D. P., Gaalman, G., 2004. Combined make-to-order and make-to-stock in a food production system SOM-theme A: Primary processes within firms. Int. J. Production Economics, 90, 223–235. Retrieved from https://ac.els-cdn.com/S0925527302003766/1-s2.0-S0925527302003766-main.pdf?_tid=6feda083-4556-4d68-adeb-55f5900770b6&acdnat=1550064497_92e671d303d4c83d8b06938caa2a5030
Taleizadeh, A. A., Noori-Daryan, M., Cárdenas-Barrón, L. E., 2015. Joint optimization of price, replenishment frequency, replenishment cycle and production rate in vendor managed inventory system with deteriorating items. International Journal of Production Economics, 159, 285–295. DOI: 10.1016/j.ijpe.2014.09.009
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Polosukhin, I., 2017. Attention is all you need. Advances in Neural Information Processing Systems, 30.
Voltolini, R., Vasconcelos, K., Borsato, M., Peruzzini, M., 2018. Research and Analysis of Opportunities in Product Development Cost Estimation Through Expert Systems. Advances In Transdisciplinary Engineering, 7, 381–390.
Woo, Y. Bin, Moon, I., Kim, B. S., 2021. Production-Inventory control model for a supply chain network with economic production rates under no shortages allowed. Computers and Industrial Engineering, 160(October 2020), 107558. DOI: 10.1016/j.cie.2021.107558