Alzyod, H., Ficzere, P. 2023. Correlation Between Printing Parameters and Residual Stress in Additive Manufacturing: A Numerical Simulation Approach . Production Engineering Archives, 29(3), 279-287. DOI: 10.30657/pea.2023.29.32
ASTM E8 / E8M-16ae1, 2016. ASTM E8 / E8M-16ae1, Standard Test Methods for Tension Testing of Metallic Materials. ASTM International, West Conshohocken.
Bai, Y., Wierzbicki, T., 2008. A new model of metal plasticity and fracture with pressure and Lode dependence. International Journal of Plasticity 24, 1071–1096. DOI: 10.1016/j.ijplas.2007.09.004
Bao, Y., Wierzbicki, T., 2004. On fracture locus in the equivalent strain and stress triaxiality space. International Journal of Mechanical Sciences, 46, 81–98. DOI: 10.1016/j.ijmecsci.2004.02.006
Benhamena, A., Fatima, B., Foudil, K., Baltach,, Chaouch, M. 2023. Numerical analysis of fracture behavior of functionally graded materials using 3D-XFEM. Advances in Materials Science, 23(3), 33-46. DOI: 10.2478/adms-2023-0015
Bokůvka, O., Jambor, M., Trško, L., Nový, F., Lisiecka, B., 2018. Fatigue lifetime of 20MnV6 steel with holes manufactured by various methods. Production Engineering Archives 19, 3–5. DOI: 10.30657/pea. 2018.19.01
Bucchi, F., Frendo, F., Moreschini, C., 2022. Influence of the stress history and of the Lode angle on the determination of the ductile fracture locus for two steel alloys. Engineering Fracture Mechanics 274, 108759. DOI: 10.1016/j.engfracmech.2022.108759
Castillo, C., Fernandez, V., Lordan, O., 2021. A Markovian-based simulation model for the evolution of employees’ emotional states during an organizational change. Polish Journal of Management Studies, 23(1), 119-135. DOI: 10.17512/pjms.2021.23.1.08
Dzioba, I., Lipiec, S., 2019. Fracture Mechanisms of S355 Steel–Experimental Research, FEM Simulation and SEM Observation. Materials, 12, 3959. DOI: 10.3390/ma12233959
Fan, W., Yang, H., Taylor, A.C., 2023. Numerical analysis of fracture in interpenetrating phase composites based on crack phase field model, Composites Science and Technology, 232, 109873, DOI: 10.1016/j.compscitech.2022.109873.
Fonzo, A., Meleddu, A., Di Biagio, M., 2006. Crack propagation modeling and crack arrestor design for X120. International Pipeline Conference, 317-325. DOI: 10.1115/IPC2006-10319
Gumen, O., Ujma, A., Kruzhkova, M., 2021. Research into the process of spraying complex titanium and zirconium nitride on structural steel and reaction times relating to the final finish and quality obtained. BoZPE 10, 71–76. DOI: 10.17512/bozpe.2021.1.07
Jian, S., Hong, Z., Kui, X., 2004. Numerical simulation of dynamic cracks propagation in gas transmission pipeline. Oil and Gas Storage and Transportation, 23, 5–8.
Karkowski, M., Grondys, K., 2021. Performance Assessment of Balance Algorithm Based Motorway Car Park Occupancy Information System. Polish Journal of Management Studies, 24(2), 178-193. DOI: 10.17512/pjms.2021.24.2.11
Kosiń, M., Pawłowski, K., 2017. Numeryczna analiza złącza przegrody zewnętrznej wykonanej w technologii szkieletowej. BoZPE, 19, 111–120. DOI: 10.17512/bozpe.2017.1.16
Misawa, K., Imai, Y., Aihara, S., 2011. A New Model for Dynamic Crack Propagation and Arrest in Gas Pipelines. Presented at the 2010 8th International Pipeline Conference, American Society of Mechanical Engineers Digital Collection, 685–694. DOI: 10.1115/IPC2010-31475
Mitsuya, M., Motohashi, H., Oguchi, N., Aihara, S., 2013. Calculation of Dynamic Stress Intensity Factors for Pipes During Crack Propagation by Dynamic Finite Element Analysis. Journal of Pressure Vessel Technology, 136. DOI: 10.1115/1.4025617
Parlak, B.O., Yavasoglu, H.A., 2023. A Comprehensive Analysis of In-Line Inspection Tools and Technologies for Steel Oil and Gas Pipelines. Sustainability, 15(3):2783. DOI: 10.3390/su15032783
Perić, D., Neto, E.A. de S., 1999. A new computational model for Tresca plasticity at finite strains with an optimal parametrization in the principal space. Computer Methods in Applied Mechanics and Engineering, 171, 463–489. DOI: 10.1016/S0045-7825(98)00221-7
Piątkowski, J, Gajdzik, B, Mesjasz, A., 2020, Assessment of Material Durability of Steam Pipelines Based on Statistical Analysis of Strength Properties–Selected Models. Energies, 13(14), 3633. ttps://doi.org/10.3390/en13143633
PN-EN ISO 6892-1:2020-05, 2019. PN-EN ISO 6892-1:2020-05, Metallic materials – Tensile testing – Part 1: Method of test at room temperature. International Organization for Standardization, Geneva.
Sharma, V.B,, Singh, K., Gupta, R., Joshi, A., Dubey, R., Gupta, V., Bharadwaj, S., Zafar, M.I, Bajpai, S, Khan, M.A,, et al. 2021, Review of Structural Health Monitoring Techniques in Pipeline and Wind Turbine Industries. Applied System Innovation, 2021; 4(3), 59. DOI: 10.3390/asi4030059
Świt, G., Dzioba, I., Adamczak-Bugno, A., Krampikowska, A., 2022. Identification of the Fracture Process in Gas Pipeline Steel Based on the Analysis of AE Signals. Materials, 15, 2659. DOI: 10.3390/ma15072659
Zhao, M.-C., Yang, K., Shan, Y., 2002. The effects of thermo-mechanical control process on microstructures and mechanical properties of a commercial pipeline steel. Materials Science and Engineering, 335, 14–20. DOI: 10.1016/S0921-5093(01)01904-9