Have a personal or library account? Click to login
Shallot Price Forecasting Models: Comparison among Various Techniques Cover

Shallot Price Forecasting Models: Comparison among Various Techniques

Open Access
|Oct 2023

References

  1. Banerjee, T., Sinha, S., Choudhury, P., 2022. Long term and short term forecasting of horticultural produce based on the LSTM network model, Applied Intelligence, 34(6), 9117-9147, DOI: 10.1007/s10489-021-02845-x.
  2. Bhandari, H.N., Rimal, B., Pokhrel, N.R., Rimal, R., Dahal, K.R., Khatri, R.K., 2022. Predicting stock market index using LSTM, Machine Learning with Applications, 9, DOI: 10.1016/j.mlwa.2022.100320.
  3. Schlenker, Wolfram, Michael J. Roberts. 2009. Nonlinear temperature effects indicate severe damages to US crop yields under climate change, the National Academy of sciences, 106(37), 15594-15598, DOI: 10.1073/pnas.0906865106.
  4. Fan, D., Sun, H., Yao, J., Zhang, K., Yan, X., Sun, Z., 2021. Well production forecasting based on ARIMA-LSTM model considering manual operations, Energy, 220(C), DOI: 10.1016/j.energy.2020.119708.
  5. Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory, Neural computation, 9(8), 1735-1780, DOI: 10.1162/neco.1997.9.8.1735.
  6. Jaiswal, R., Jha, G.K., Kumar, R.R., Choudhary, K., 2022. Deep long short-term memory based model for agricultural price forecasting, Neural Computing and Applications, 34(8), 9117-9147, DOI: 10.1007/s00521-021-06621-3.
  7. Laosiritaworn, W.S., 2011. Supply chain forecasting model using computational intelligence techniques, Chiang Mai University Journal of Natural Sciences, 10(1), 19-28. Available: https://www.thaiscience.info/journals/Article/CMUJ/10887604.pdf [Accessed: 19 July 2022].
  8. Lewis, C.D., 1982. Industrial and business forecasting methods: A practical guide to exponential smoothing and curve fitting, Boston: Butterworth Scientific, London, UK.
  9. Mohanty, M.K., Thakurta, P.K.G., Kar, S., 2023. Agricultural commodity price prediction model: a machine learning framework, Neural Computing and Applications, 35, 15109–15128, DOI: 10.1007/s00521-023-08528-7.
  10. Ning, Y., Kazemi, H., Tahmasebi, P., 2022. A comparative machine learning study for time series oil production forecasting: ARIMA, LSTM, and Prophet, Computers & Geosciences, 164, DOI: 10.1016/j.cageo.2022.105126.
  11. Office of Agricultural Economics, 2020. Agricultural Price Index June 2020, (in Thai). Available: http://www.oae.go.th/ [Accessed: 19 July 2022].
  12. Palangkaset, 2019. Step-By-Step for Shallot Cultivation and Harvest, (in Thai). Available: https://www.palangkaset.com/ [Accessed: 30 August 2022].
  13. Phuruan, K., Kasemset C., 2022. Shallot Price Forecasting Model Using Hybrid ARIMA-LSTM Model, Data Science and Engineering (DSE) Record, 3(1).
  14. Poornima, S., Pushpalatha, M., 2019. Drought prediction based on SPI and SPEI with varying timescales using LSTM recurrent neural network, Soft Computing, 23(18), 8399-8412, DOI: 10.1007/s00500-019-04120-1.
  15. Purohit, S.K., Panigrahi, S., Sethy, P.K., Behera, S.K., 2021. Time series forecasting of price of agricultural products using hybrid methods, Applied Artificial Intelligence, 35(15), 1388-1406, DOI: 10.1080/08839514.2021.1981659.
  16. Sabu, K.M., Kumar, T.M., 2020. Predictive analytics in Agriculture: Forecasting prices of Arecanuts in Kerala, Procedia Computer Science, 171, 699-708, DOI: 10.1016/j.procs.2020.04.076.
  17. Thiruvengadam, S., Tan, J. S., Miller, K., 2020. Time Series, Hidden Variables and Spatio-Temporal Ordinality Networks, Advances in Applied Clifford Algebras, 30(3), 1-98, DOI: 10.1007/s00006-020-01061-z.
  18. Varun, R., Neema, N., Sahana, H. P., Sathvik, A., Muddasir, M, 2019. Agriculture commodity price forecasting using Ml techniques, International Journal of Innovative Technology and Exploring Engineering, 9(2S), 729,-732, DOI: 10.35940/ijitee.B1226.1292S19.
  19. Winters, P.R., 1960. Forecasting sales by exponentially weighted moving averages, Management science, 6(9), 324-342, DOI: 10.1287/mnsc.
DOI: https://doi.org/10.30657/pea.2023.29.40 | Journal eISSN: 2353-7779 | Journal ISSN: 2353-5156
Language: English
Page range: 348 - 355
Submitted on: Nov 13, 2022
Accepted on: Jul 4, 2023
Published on: Oct 28, 2023
Published by: Quality and Production Managers Association
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Chompoonoot Kasemset, Kanokrot Phuruan, Takron Opassuwan, published by Quality and Production Managers Association
This work is licensed under the Creative Commons Attribution 4.0 License.