Have a personal or library account? Click to login
Correlation Between Printing Parameters and Residual Stress in Additive Manufacturing: A Numerical Simulation Approach  Cover

Correlation Between Printing Parameters and Residual Stress in Additive Manufacturing: A Numerical Simulation Approach

By: Hussein AlzyodORCID and  Peter FiczereORCID  
Open Access
|Aug 2023

References

  1. Abdulhameed, O., Al-Ahmari, A., Ameen, W., Mian, S. H., 2019. Additive manufacturing: Challenges, trends, and applications. Advances in Mechanical Engineering, 11(2), 168781401882288. DOI: 10.1177/1687814018822880
  2. Ahangar, P., Cooke, M. E., Weber, M. H., Rosenzweig, D. H., 2019. Current Biomedical Applications of 3D Printing and Additive Manufacturing. Applied Sciences, 9(8), 1713. DOI: 10.3390/app9081713
  3. Alsardia, T., Lovas, -László, Ficzere, -Péter., 2021. Prototype For Fit Investigations. Design of Machines and Structures, 11(1), 5–15. DOI: 10.32972/dms.2021.001
  4. Alzyod, H., Ficzere, P., 2021a. Potential Applications Of Additive Manufacturing Technologies In The Vehicle Industry. Design of Machines and Structures, 11(2), 5–13.
  5. Alzyod, H., Ficzere, P., 2021b. Using Finite Element Analysis in the 3D Printing of Metals. Hungarian Journal of Industry and Chemistry, 49(2), 65–70. DOI: 10.33927/hjic-2021-24
  6. Alzyod, H., Ficzere, P., 2022. The Influence of the Layer Orientation on Ultimate Tensile Strength of 3D Printed Poly-lactic Acid. Jordan Journal of Mechanical and Industrial Engineering, 16(3), 361–367.
  7. Baich, L., Manogharan, G., Marie, H., 2015. Study of infill print design on production cost-time of 3D printed ABS parts. International Journal of Rapid Manufacturing, 5(3–4), 308–319. DOI: 10.1504/IJRAPIDM.2015.074809
  8. Bertevas, E., Férec, J., Khoo, B. C., Ausias, G., Phan-Thien, N., 2018. Smoothed particle hydrodynamics (SPH) modeling of fiber orientation in a 3D printing process. Physics of Fluids, 30(10), 103103. DOI: 10.1063/1.5047088
  9. Blakey-Milner, B., Gradl, P., Snedden, G., Brooks, M., Pitot, J., Lopez, E., Leary, M., Berto, F., du Plessis, A., 2021. Metal additive manufacturing in aerospace: A review. Materials Design, 209, 110008. DOI: 10.1016/j.matdes.2021.110008
  10. Casavola, C., Cazzato, A., Moramarco, V., Pappalettera, G., 2017. Residual stress measurement in Fused Deposition Modelling parts. Polymer Testing, 58, 249–255. DOI: 10.1016/j.polymertesting.2017.01.003
  11. Cattenone, A., Morganti, S., Alaimo, G., Auricchio, F., 2019. Finite Element Analysis of Additive Manufacturing Based on Fused Deposition Modeling: Distortions Prediction and Comparison With Experimental Data. Journal of Manufacturing Science and Engineering, 141(1). DOI: 10.1115/1.4041626
  12. Chen, R., He, W., Xie, H., Liu, S., 2021. Monitoring the strain and stress in FDM printed lamellae by using Fiber Bragg Grating sensors. Polymer Testing, 93, 106944. DOI: 10.1016/j.polymertesting.2020.106944
  13. Costa, S. F., Duarte, F. M., Covas, J. A., 2015. Thermal conditions affecting heat transfer in FDM/FFE: a contribution towards the numerical modelling of the process. Virtual and Physical Prototyping, 10(1), 35–46. DOI: 10.1080/17452759.2014.984042
  14. Cuan-Urquizo, E., Barocio, E., Tejada-Ortigoza, V., Pipes, R., Rodriguez, C., Roman-Flores, A., 2019. Characterization of the Mechanical Properties of FFF Structures and Materials: A Review on the Experimental, Computational and Theoretical Approaches. Materials, 12(6), 895. DOI: 10.3390/ma12060895
  15. Dasgupta, A., Dutta, P., 2022. A Comprehensive Review on 3D Printing Technology: Current Applications and Challenges. Jordan Journal of Mechanical and Industrial Engineering, 16(4), 529–542.
  16. Deng, X., Zeng, Z., Peng, B., Yan, S., Ke, W., 2018. Mechanical Properties Optimization of Poly-Ether-Ether-Ketone via Fused Deposition Modeling. Materials 2018, Vol. 11, Page 216, 11(2), 216. DOI: 10.3390/MA11020216
  17. Fatimatuzahraa, A. W., Farahaina, B., Yusoff, W. A. Y., 2011. The effect of employing different raster orientations on the mechanical properties and microstructure of Fused Deposition Modeling parts. 2011 IEEE Symposium on Business, Engineering and Industrial Applications (ISBEIA), 22–27. DOI: 10.1109/ISBEIA.2011.6088811
  18. Ferreira, R. T. L., Quelho de Macedo, R., 2017. Residual thermal stress in fused deposition modelling. Procceedings of the 24th ABCM International Congress of Mechanicl Engineering. DOI: 10.26678/ABCM.COBEM2017.COB17-0124
  19. Ficzere, P., 2022. The Impact of the Positioning of Parts on the Variable Production Costs in the Case of Additive Manufacturing. Periodica Polytechnica Transportation Engineering, 50(3), 304–308. DOI: 10.3311/PPtr.15827
  20. Ficzere, P., Borbas, L., Szebenyi, G., 2017. Reduction possibility of residual stresses from additive manufacturing by photostress method. Materials Today: Proceedings, 4(5), 5797–5802. DOI: 10.1016/j.matpr.2017.06.048
  21. Fodran, E., Koch, M., Menon, U., 1996. Mechanical and dimensional characteristics of fused deposition modeling build styles. In 1996 International Solid Freeform Fabrication Symposium.
  22. Gibson, I., Rosen, D., Stucker, B., 2015. Additive Manufacturing Technologies. Springer New York. DOI: 10.1007/978-1-4939-2113-3
  23. Hadny, A., Ayun, Q., Triyono, J., Pujiyanto, E., 2022. Optimization of Injection Molding Simulation of Bioabsorbable Bone Screw Using Taguchi Method and Particle Swarm Optimization. Jordan Journal of Mechanical and Industrial Engineering, 16(2), 319–325.
  24. Horváth, Á. M., Ficzere, P., 2015. Rapid prototyping in medical sciences. Production Engineering Archives, 8, 28–31. DOI: 10.30657/pea.2015.08.07
  25. Jackson, B., Fouladi, K., Eslami, B., 2022. Multi-Parameter Optimization of 3D Printing Condition for Enhanced Quality and Strength. Polymers, 14(8), 1586. DOI: 10.3390/polym14081586
  26. Kantaros, A., Karalekas, D., 2013. Fiber Bragg grating based investigation of residual strains in ABS parts fabricated by fused deposition modeling process. Materials & Design, 50, 44–50. DOI: 10.1016/j.matdes. 2013.02.067
  27. Kechagias, J., Chaidas, D., Vidakis, N., Salonitis, K., Vaxevanidis, N. M., 2022. Key parameters controlling surface quality and dimensional accuracy: a critical review of FFF process. Materials and Manufacturing Processes, 37(9), 963–984. DOI: 10.1080/10426914.2022.2032144
  28. Le-Bail, A., Maniglia, B. C., Le-Bail, P., 2020. Recent advances and future perspective in additive manufacturing of foods based on 3D printing. Current Opinion in Food Science, 35, 54–64. DOI: 10.1016/j.cofs. 2020.01.009
  29. Markiz, N., Horváth, E., Ficzere, P., 2020. Influence of printing direction on 3D printed ABS specimens. Production Engineering Archives, 26(3), 127–130. DOI: 10.30657/pea.2020.26.24
  30. Mohanavel, V., Ashraff Ali, K. S., Ranganathan, K., Allen Jeffrey, J., Ravikumar, M. M., Rajkumar, S., 2021. The roles and applications of additive manufacturing in the aerospace and automobile sector. Materials Today: Proceedings, 47, 405–409. DOI: 10.1016/j.matpr.2021.04.596
  31. Mousa, A. A., 2014. The Effects of Content and Surface Modification of Filler on the Mechanical Properties of Selective Laser Sintered Polyamide12 Composites. Jordan Journal of Mechanical and Industrial Engineering, 8, 265–274.
  32. Onwubolu, G. C., Rayegani, F., 2014. Characterization and Optimization of Mechanical Properties of ABS Parts Manufactured by the Fused Deposition Modelling Process. International Journal of Manufacturing Engineering, 2014, 1–13. DOI: 10.1155/2014/598531
  33. Popescu, D., Zapciu, A., Amza, C., Baciu, F., Marinescu, R., 2018. FDM process parameters influence over the mechanical properties of polymer specimens: A review. Polymer Testing, 69, 157–166. DOI: 10.1016/j.polymertesting.2018.05.020
  34. Safronov, V. A., Khmyrov, R. S., Kotoban, D. v., Gusarov, A. v., 2017. Distortions and Residual Stresses at Layer-by-Layer Additive Manufacturing by Fusion. Journal of Manufacturing Science and Engineering, 139(3). DOI: 10.1115/1.4034714
  35. Samy, A. A., Golbang, A., Harkin-Jones, E., Archer, E., Tormey, D., McIlhagger, A., 2021. Finite element analysis of residual stress and warp-age in a 3D printed semi-crystalline polymer: Effect of ambient temperature and nozzle speed. Journal of Manufacturing Processes, 70, 389–399. DOI: 10.1016/j.jmapro.2021.08.054
  36. Tlegenov, Y., Hong, G. S., Lu, W. F., 2018. Nozzle condition monitoring in 3D printing. Robotics and Computer-Integrated Manufacturing, 54, 45–55. DOI: 10.1016/j.rcim.2018.05.010
  37. Trško, L., Lago, J., Jambor, M., Nový, F., Bokůvka, O., Florková, Z., 2020. Microstructure and residual stress analysis of Strenx 700 MC welded joint. Production Engineering Archives, 26(2), 41–44. DOI: 10.30657/pea.2020.26.09
  38. Withers, P. J., Bhadeshia, H. K. D. H., 2001. Residual stress part 1 - Measurement techniques. Materials Science and Technology, 17(4), 355–365. DOI: 10.1179/026708301101509980
  39. Xia, H., Lu, J., Dabiri, S., Tryggvason, G., 2018. Fully resolved numerical simulations of fused deposition modeling. Part I: fluid flow. Rapid Prototyping Journal, 24(2), 463–476. DOI: 10.1108/RPJ-12-2016-0217/FULL/XML
  40. Xiaoyong, S., Liangcheng, C., Honglin, M., Peng, G., Zhanwei, B., Cheng, L., 2017. Experimental analysis of high temperature PEEK materials on 3D printing test. Proceedings - 9th International Conference on Measuring Technology and Mechatronics Automation, ICMTMA 2017, 13–16. DOI: 10.1109/ICMTMA.2017.0012
  41. Zhang, Y., Kevin Chou, Y., 2008. 3D FEA Simulations of Fused Deposition Modeling Process. Proceedings of the International Conference on Manufacturing Science and Engineering, 2006, 1121–1128. DOI: 10.1115/MSEC2006-21132
DOI: https://doi.org/10.30657/pea.2023.29.32 | Journal eISSN: 2353-7779 | Journal ISSN: 2353-5156
Language: English
Page range: 279 - 287
Submitted on: Apr 29, 2023
Accepted on: Jun 12, 2023
Published on: Aug 28, 2023
Published by: Quality and Production Managers Association
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Hussein Alzyod, Peter Ficzere, published by Quality and Production Managers Association
This work is licensed under the Creative Commons Attribution 4.0 License.