Have a personal or library account? Click to login
Investigation of defective reinforced concrete beams with obtained damage of compressed area of concrete Cover

Investigation of defective reinforced concrete beams with obtained damage of compressed area of concrete

Open Access
|Aug 2022

References

  1. Blikharskyi, Y.Z., Maksymenko, O.P., 2021. Evaluation of Strength and Deformability of Thermally Hardened Reinforcement. Materials Science, 56(6), 789-794, DOI: 10.1007/s11003-021-00496-4.
  2. Blikharskyy, Y., Kopiika, N., Selejdak, J., 2020. Non-uniform corrosion of steel rebar and its influence on reinforced concrete elementsreliability. Production Engineering Archives, 26(2), 62-72, DOI: 10.30657/pea.2020.26.14.
  3. Blikharskyy, Y., Selejdak, J., 2021. Influence of the percentage of reinforcement damage on the bearing-capacity of RC beams. Construction of Optimized Energy Potential (CoOPE), 10(1), 145-150, DOI: 10.17512/bozpe.2021.1.15.
  4. Blikharskyy, Y., Selejdak, J., Kopiika, N., 2021a. Corrosion Fatigue Damages of Rebars under Loading in Time. Materials, 14(12), 3416, DOI: 10.3390/ma14123416.823560334203076
  5. Blikharskyy, Y., Selejdak, J., Kopiika, N., 2021b. Specifics of corrosion processes in thermally strengthened rebar. Case Studies in Construction Materials, 15, e00646, DOI: 10.1016/j.cscm.2021.e00646.
  6. Blikharskyy, Z., Vegera, P., Vashkevych, R., Shnal, T., 2018. Fracture toughness of RC beams on the shear, strengthening by FRCM system. 12th International Conference Quality Production Improvement – QPI 2018 MATEC web of conferences, 183, 02009, DOI: 10.1051/matecconf/201818302009.
  7. Blikharskyy, Z.; Sobol, K.; Markiv, T.; Selejdak, J., 2021c. Properties of Concretes Incorporating Recycling Waste and Corrosion Susceptibility of Reinforcing Steel Bars. Materials, 14(10), 2638, DOI: 10.3390/ma14102638.815812834070028
  8. Chernieva, O., Plahotny, G., Babič, M., 2021. Methods of reinforcing for engineering restoration of architectural monuments. In: Proceedings of EcoComfort 2020. Lecture Notes in Civil Engineering series, (eds) Blikharskyy, Z., 100, Springer, Cham, 87-94, DOI: 10.1007/978-3-030-57340-9_11.
  9. Chow, J.K., Liu, K.F., Tan, P.S., Su, Z., Wu, J., Li, Z., Wang, Y.H., 2021. Automated defect inspection of concrete structures. Automation in Construction, 132, 103959, DOI: 10.1016/j.autcon.2021.103959.
  10. DBN V.2.6-98: 2009 Minregionstroy of Ukraine, 2009. Constructions of buildings and structures. Concrete and reinforced concrete constructions. Basic design provisions. (National Standard of Ukraine).
  11. Karpiuk, V., Somina, Y., Karpiuk, F., Karpiuk, I., 2021. Peculiar aspects of cracking in prestressed reinforced concrete T-beams. Acta Polytechnica, 61(5), 633-643, DOI: 10.14311/AP.2021.61.0633.
  12. Karpyuk, V.M., Kostyuk, A.I., Semina, Y.A., 2018. General Case of Nonlinear Deformation-Strength Model of Reinforced Concrete Structures, Strength of Materials, 50(3), 453-464, DOI: 10.1007/s11223-018-9990-9.
  13. Klymenko, E.V., Polianskyi, K.V., 2019. Experimental studies of the stress-strain state of damaged reinforced concrete beams, Bulletin of the Odessa State Academy of Civil Engineering and Architecture, 76, 24-30. DOI: 10.31650/2415-377X-2019-76-24-30.
  14. Klymenko, Y., Kos, Z., Grynyova, I., Maksiuta, O., 2020. Operation of Damaged H-Shaped Columns. In: Proceedings of EcoComfort 2020. Lecture Notes in Civil Engineering series, (eds) Blikharskyy, Z., 100, Springer, Cham, 192-201. DOI: 10.1007/978-3-030-57340-9_24
  15. Kobayashi, K., Kameda, Y., Itoh, A., Mizuno, E., 2007. An Experimental and Analytical Study on Post-peak Behavior of RC Beam with Internal Defect or Damage, Journal of applied mechanics, DOI: 10.2208/journalam.10.935
  16. Kopiika, N., Selejdak, J., Blikharskyy, Y., 2022. Specifics of physico-mechanical characteristics of thermally-hardened rebar, Production Engineering Archives, 28(1), 73-81, DOI: 10.30657/pea.2022.28.9
  17. Labocha, S., Paluszyński, J., 2021. Selected modeling problems of monopile foundations used in the energy industry, Construction of Optimized Energy Potential (CoOEP), 10(2), DOI: 10.17512/bozpe.2021.2.10.
  18. Lacroix, F., Noël, M., Moradi, F., Layssi, H., Tingson, T., 2021. Nondestructive Condition Assessment of Concrete Slabs with Artificial Defects Using Wireless Impact Echo, Journal of Performance of Constructed Facilities, 35(6), 04021072, https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29CF.1943-5509.0001651.10.1061/(ASCE)CF.1943-5509.0001651
  19. Li, X., Xiao, S., Gao, R., Harries, K. A., Wang, Z., Xu, Q., 2021. Effects of grout sleeve defects and their repair on the seismic performance of precast concrete frame structures, Engineering Structures, 242, 112619, DOI: 10.1016/j.engstruct.2021.112619.
  20. Lipiński, T., 2021. Investigation of corrosion rate of X55CrMo14 stainless steel at 65% nitrate acid at 348 K, Production Engineering Archives, 27(2), 108-111, DOI: 10.30657/pea.2021.27.13.
  21. Lobodanov, M., Vegera, P., Khmil, R., Blikharskyy, Z., 2021. Influence of damages in the compressed zone on bearing capacity of reinforced concrete beams. In: Proceedings of EcoComfort 2020. Lecture Notes in Civil Engineering series, (eds) Blikharskyy, Z., 100, Springer, Cham, 260-267, DOI: 10.1007/978-3-030-57340-9_32.
  22. Lobodanov, М., Vegera, P., Blikharskyy, Z., 2019. Influence analysis of the main types of defects and damages on bearing capacity in reinforced concrete elements and their research methods. Production Engineering Archives, 22(22), 24-19, DOI: 10.30657/pea.2019.22.05.
  23. Macek, W., Branco, R., Szala, M., Marciniak, Z., Ulewicz, R., Sczygiol, N., Kardasz, P., 2020. Profile and Areal Surface Parameters for Fatigue Fracture Characterisation, Materials.; 13(17), 3691, DOI: 10.3390/ma13173691750432832825494
  24. Naotunna, C.N., Samarakoon, S.S.M., Fosså, K.T. 2021. Experimental investigation of crack width variation along the concrete cover depth in reinforced concrete specimens with ribbed bars and smooth bars, Case Studies in Construction Materials, 15, e00593, DOI: 10.1016/j.cscm.2021.e00593.
  25. Ohara, Y., Kikuchi, K., Tsuji, T., Mihara, T. 2021. Development of Low-Frequency Phased Array for Imaging Defects in Concrete Structures, Sensors, 21(21), 7012, DOI: 10.3390/s21217012.858786734770316
  26. Özmen, H., Soyluk, K., Anil, Ö. 2021. Analysis of RC structures with different design mistakes under explosive based demolition, Structural Concrete, 22(3), 1462-1486, DOI: 10.1002/suco.201900367.
  27. Raczkiewicz, W., Koteš, P., Konečný, P., 2021. Influence of the Type of Cement and the Addition of an Air-Entraining Agent on the Effectiveness of Concrete Cover in the Protection of Reinforcement against Corrosion, Materials, 14(16), 4657, DOI: 10.3390/ma14164657.840068234443178
  28. Radek, N., Pietraszek, J., Bronček, J., Fabian, P., 2020 Properties of Steel Welded with CO2 Laser. In: Current Methods of Construction Design. Lecture Notes in Mechanical Engineering, (eds) Medvecký, Š., Hrček, S., Kohár, R., Brumerčík, F., Konstantová, V., Springer, Cham. DOI: 10.1007/978-3-030-33146-7_65.
  29. Semko, O., Gasenko, A., Garkava, O., Danisko, V.Yu., 2018. The influence of the construction of engineering structures on the development of damage to the load-bearing structures of buildings in the surrounding areas. Bridges and tunnels: theory, research, practice, (14), 49-56. DOI: 10.15802/bttrp2019/152875
  30. Vatulia, G.L., Smolyanyuk, N.V., Shevchenko, A.A., Orel Y.F., Kovalov M.O., 2020. Evaluation of the load-bearing capacity of variously shaped steel-concrete slabs under short term loading, IOP Conference Series: Materials Science and Engineering, 1002(1), 012007, DOI: 10.1088/1757-899X/1002/1/012007.
  31. Vegera, P., Vashkevych, R., Blikharskyy, Y., Khmil, R., 2021. Development methodology of determinating residual carrying capacity of reinforced concrete beams with damages tensile reinforcement which occurred during loading, Eastern-European Journal of Enterprise Technologies, 4(7), 112, DOI: 10.15587/1729-4061.2021.237954.
  32. Voskobiynyk, O.P., Kitaev, O.O., Makarenko, Y.V., Bugaenko, E.S., 2017. Vynnykov, Y., Voskobiinyk, O., Kharchenko, M., & Marchenko, V., 2017. Probabilistic analysis of deformed mode of engineering constructions’ soil-cement grounds. Transbud-2017 MATEC Web of Conferences 116, 02038, DOI: 10.1051/matecconf/201711602038.
DOI: https://doi.org/10.30657/pea.2022.28.27 | Journal eISSN: 2353-7779 | Journal ISSN: 2353-5156
Language: English
Page range: 225 - 232
Submitted on: Mar 14, 2022
Accepted on: Jun 8, 2022
Published on: Aug 5, 2022
Published by: Quality and Production Managers Association
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Zinoviy Blikharskyy, Maksym Lobodanov, Pavlo Vegera, published by Quality and Production Managers Association
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.