Box, G.E.P., Wilson, K. B., 1951. On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society. Series B, 13(1), 1-45.10.1111/j.2517-6161.1951.tb00067.x
Chohan, J.S., Singh, R., 2017. Pre and post processing techniques to improve surface characteristics of FDM parts: a state of art review and future applications. Rapid Prototyping Journal, 23(3), 495-513, DOI: 10.1108/RPJ-05-2015-005910.1108/RPJ-05-2015-0059
Dewey, M.P., Ulutan D., 2017. Development of laser polishing as an auxiliary post-process to improve surface quality in fused deposition modeling parts. Additive Manufacturing, 2, DOI: 10.1115/MSEC2017-302410.1115/MSEC2017-3024
Kim, M.K., Lee, I.H., Kim, H.C., 2018. Effect of fabrication parameters on surface roughness of FDM parts. International Journal of Precision Engineering and Manufacturing, 19(1), 137–142, DOI: 10.1007/s12541-018-0016-010.1007/s12541-018-0016-0
Li, Y., Linke, B. S., Voet, H., Falk, B., Schmitt, R., Lam, M., 2017. Cost, sustainability and surface roughness quality – A comprehensive analysis of products made with personal 3D printers. CIRP Journal of Manufacturing Science and Technology, 16, 1-11, DOI: 10.1016/j.cirpj.2016.10.00110.1016/j.cirpj.2016.10.001
Medellin-Castillo, H.I., Zaragoza-Siqueiros, J., 2019. Design and manufacturing strategies for fused deposition modelling in additive manufacturing: a review. Chinese Journal of Mechanical Engineering, 32(53), DOI: 10.1186/s10033-019-0368-010.1186/s10033-019-0368-0
Peng, A., Xiao, X., Yue, R., 2014. Process parameter optimisation for fused deposition modeling using response surface methodology combined with fuzzy inference system. International Journal of Advanced Manufacturing Technology, 73 (1-4), 87-100, DOI: 10.1007/s00170-014-5796-510.1007/s00170-014-5796-5
Pérez, M., Medina-Sánchez, G., García-Collado, A., Gupta, M., Carou, D., 2018. Surface quality enhancement of fused deposition modeling (FDM) printed samples based on the selection of critical printing parameters. Materials, 11(8), 1382, DOI: 10.3390/ma1108138210.3390/ma11081382612005030096826
Rahmati, S., Vahabli, E., 2015. Evaluation of analytical modeling for improvement of surface roughness of FDM test part using measurement results. International Journal of Advanced Manufacturing Technology, 79(5–8), 823–829, DOI: 10.1007/s00170-015-6879-710.1007/s00170-015-6879-7
Shirmohammadi, M., Goushchi, S.J., Keshtiban, P.M., 2021. Optimization of 3D printing process parameters to minimize surface roughness with hybrid artificial neural network model and particle swarm algorithm. Progress in Additive Manufacturing, 6, 199-215, DOI: 10.1007/s40964-021-00166-610.1007/s40964-021-00166-6
Singh, R., Singh, S., Singh, I. P., Fabbrocino, F., Fraternali, F., 2017. Investigation for surface finish improvement of FDM parts by vapor smoothing process. Composites Part B, 111, 228-234, DOI: 10.1016/j.compositesb.2016.11.06210.1016/j.compositesb.2016.11.062
Taufik, M., Jain, P., 2016. A study of build edge profile for prediction of surface roughness in fused deposition modelling. Journal of Manufacturing Science and Engineering, 138(6), DOI: 10.1115/1.403219310.1115/1.4032193
Vahabli, E., Rahmati, S., 2016. Application of an RBF neural network for FDM parts’ surface roughness prediction for enhancing surface quality. International Journal of Precision Engineering and Manufacturing, 17, 1589–1603, DOI: 10.1007/s12541-016-0185-710.1007/s12541-016-0185-7
Wu, D., Wei, Y., Terpenny, J., 2018. Predictive modeling of surface roughness in fused deposition modeling using data fusion. International Journal of Production Research, 57(3), 3992-4006, DOI: 10.1080/00207543.2018.150505810.1080/00207543.2018.1505058
Yodo, N., Dey, A., 2021. Multi-objective optimization for FDM process parameters with evolutionary algorithms. Fused Deposition Modeling Based 3D Printing (Editors: Dave, H. K., Davim, J. P.), Springer International Publishing, Basel, Switzerland.10.1007/978-3-030-68024-4_22