Have a personal or library account? Click to login
Surface Roughness Reduction in A Fused Filament Fabrication (FFF) Process using Central Composite Design Method Cover

Surface Roughness Reduction in A Fused Filament Fabrication (FFF) Process using Central Composite Design Method

Open Access
|May 2022

References

  1. Ahn, D., Kweon, J.H., Kwon, S., Song, J., Lee, S., 2009. Representation of surface roughness in fused deposition modelling. Journal of Materials Processing Technology, 209(15–16), 5593-5600, DOI: 10.1016/j.jmatprotec.2009.05.01610.1016/j.jmatprotec.2009.05.016
  2. Armillotta, A., 2006. Assessment of surface quality on textured FDM prototypes. Rapid Prototyping Journal, 12(1), 35-41, DOI: 10.1108/1355254061063725510.1108/13552540610637255
  3. Box, G.E.P., Wilson, K. B., 1951. On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society. Series B, 13(1), 1-45.10.1111/j.2517-6161.1951.tb00067.x
  4. Chohan, J.S., Singh, R., 2017. Pre and post processing techniques to improve surface characteristics of FDM parts: a state of art review and future applications. Rapid Prototyping Journal, 23(3), 495-513, DOI: 10.1108/RPJ-05-2015-005910.1108/RPJ-05-2015-0059
  5. Dewey, M.P., Ulutan D., 2017. Development of laser polishing as an auxiliary post-process to improve surface quality in fused deposition modeling parts. Additive Manufacturing, 2, DOI: 10.1115/MSEC2017-302410.1115/MSEC2017-3024
  6. Gurrala, P.L., Regalla, S.P., 2014. Multi-objective optimisation of strength and volumetric shrinkage of FDM parts. Virtual and Physical Prototyping, 9(2), 127-138, DOI: 10.1080/17452759.2014.89885110.1080/17452759.2014.898851
  7. Kiefer, J., Wolfowitz, J., 1959. Optimum designs in regression problems. Annals of Mathematical Statistics, 30, 271–294.10.1214/aoms/1177706252
  8. Kim, M.K., Lee, I.H., Kim, H.C., 2018. Effect of fabrication parameters on surface roughness of FDM parts. International Journal of Precision Engineering and Manufacturing, 19(1), 137–142, DOI: 10.1007/s12541-018-0016-010.1007/s12541-018-0016-0
  9. Krolczyk, G., Raos, P., Legutko, S., 2014. Experimental Analysis of Surface Roughness and Surface Texture of Machined and Fused Deposition Modelled Parts. Tehnički vjesnik, 21(1).10.2478/mms-2014-0060
  10. Li, Y., Linke, B. S., Voet, H., Falk, B., Schmitt, R., Lam, M., 2017. Cost, sustainability and surface roughness quality – A comprehensive analysis of products made with personal 3D printers. CIRP Journal of Manufacturing Science and Technology, 16, 1-11, DOI: 10.1016/j.cirpj.2016.10.00110.1016/j.cirpj.2016.10.001
  11. Medellin-Castillo, H.I., Zaragoza-Siqueiros, J., 2019. Design and manufacturing strategies for fused deposition modelling in additive manufacturing: a review. Chinese Journal of Mechanical Engineering, 32(53), DOI: 10.1186/s10033-019-0368-010.1186/s10033-019-0368-0
  12. Mohamed, O.A., Masood, S.H., Bhowmik, J.L., 2016. Mathematical modeling and FDM process parameters optimisation using response surface methodology based on Q-optimal design. Applied Mathematical Modelling, 40(23-24), 10052-10073, DOI: 10.1016/j.apm.2016.06.05510.1016/j.apm.2016.06.055
  13. Pandey, P.M., Reddy, N.V., Dhande, S.G., 2003. Improvement of surface finish by staircase machining in fused deposition modelling. Journal of Materials Processing Technology, 132(1–3), 323-331, DOI: 10.1016/S0924-0136(02)00953-610.1016/S0924-0136(02)00953-6
  14. Pandey, P.M., Reddy, N.V., 2007. Virtual hybrid-FDM system to enhance surface finish. Virtual and Physical Prototyping, 1(2), 101-116, DOI: 10.1080/1745275060076390510.1080/17452750600763905
  15. Peng, A., Xiao, X., Yue, R., 2014. Process parameter optimisation for fused deposition modeling using response surface methodology combined with fuzzy inference system. International Journal of Advanced Manufacturing Technology, 73 (1-4), 87-100, DOI: 10.1007/s00170-014-5796-510.1007/s00170-014-5796-5
  16. Pérez, M., Medina-Sánchez, G., García-Collado, A., Gupta, M., Carou, D., 2018. Surface quality enhancement of fused deposition modeling (FDM) printed samples based on the selection of critical printing parameters. Materials, 11(8), 1382, DOI: 10.3390/ma1108138210.3390/ma11081382612005030096826
  17. Rahmati, S., Vahabli, E., 2015. Evaluation of analytical modeling for improvement of surface roughness of FDM test part using measurement results. International Journal of Advanced Manufacturing Technology, 79(5–8), 823–829, DOI: 10.1007/s00170-015-6879-710.1007/s00170-015-6879-7
  18. Shirmohammadi, M., Goushchi, S.J., Keshtiban, P.M., 2021. Optimization of 3D printing process parameters to minimize surface roughness with hybrid artificial neural network model and particle swarm algorithm. Progress in Additive Manufacturing, 6, 199-215, DOI: 10.1007/s40964-021-00166-610.1007/s40964-021-00166-6
  19. Singh, R., Singh, S., Singh, I. P., Fabbrocino, F., Fraternali, F., 2017. Investigation for surface finish improvement of FDM parts by vapor smoothing process. Composites Part B, 111, 228-234, DOI: 10.1016/j.compositesb.2016.11.06210.1016/j.compositesb.2016.11.062
  20. Taufik, M., Jain, P., 2016. A study of build edge profile for prediction of surface roughness in fused deposition modelling. Journal of Manufacturing Science and Engineering, 138(6), DOI: 10.1115/1.403219310.1115/1.4032193
  21. Tiwari, K., Kumar, S., 2018. Analysis of the factors affecting the dimensional accuracy of 3D printed products. Materials Today, 5(9), 18674-18680, DOI: 10.1016/j.matpr.2018.06.21310.1016/j.matpr.2018.06.213
  22. Turner, B., Gold, S., 2015. A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness. Rapid Prototyping Journal, 21(3), 250-261, DOI: 10.1108/RPJ-02-2013-001710.1108/RPJ-02-2013-0017
  23. Vahabli, E., Rahmati, S., 2016. Application of an RBF neural network for FDM parts’ surface roughness prediction for enhancing surface quality. International Journal of Precision Engineering and Manufacturing, 17, 1589–1603, DOI: 10.1007/s12541-016-0185-710.1007/s12541-016-0185-7
  24. Wu, D., Wei, Y., Terpenny, J., 2018. Predictive modeling of surface roughness in fused deposition modeling using data fusion. International Journal of Production Research, 57(3), 3992-4006, DOI: 10.1080/00207543.2018.150505810.1080/00207543.2018.1505058
  25. Yodo, N., Dey, A., 2021. Multi-objective optimization for FDM process parameters with evolutionary algorithms. Fused Deposition Modeling Based 3D Printing (Editors: Dave, H. K., Davim, J. P.), Springer International Publishing, Basel, Switzerland.10.1007/978-3-030-68024-4_22
DOI: https://doi.org/10.30657/pea.2022.28.18 | Journal eISSN: 2353-7779 | Journal ISSN: 2353-5156
Language: English
Page range: 157 - 163
Submitted on: Jul 15, 2021
Accepted on: Nov 27, 2021
Published on: May 19, 2022
Published by: Quality and Production Managers Association
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Karin Kandananond, published by Quality and Production Managers Association
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.