Have a personal or library account? Click to login
Influence of the heat insulation layer on the thermally stressed condition of the facade wall Cover

Influence of the heat insulation layer on the thermally stressed condition of the facade wall

Open Access
|May 2022

References

  1. Abahri, K., Belarbi, R., Trabelsi, A., 2011. Contribution to analytical and numerical study of combined heat and moisture transfers in porous building materials, Building and environment. 46 (7), 1354–1360, DOI: 10.1016/j.buildenv.2010.12.02010.1016/j.buildenv.2010.12.020
  2. Alshboul, A.A., Alkurdi, N.Y., 2019. Enhancing the Strategies of Climate Responsive Architecture. The Study of Solar Accessibility for Buildings Standing on Sloped Sites. Modern Applied Science, 13 (1), 69-84, DOI: 10. 5539/mas.v13n1p6910.5539/mas.v13n1p69
  3. Aksamija, A., 2015., Design methods for sustainable, high-performance building facades. Advances in Building Energy Research, 10(2), 1-23, DOI: 10.5539/mas.v13n1p6910.5539/mas.v13n1p69
  4. Albatayneh, A., Alterman D., Page A., Moghtaderi B., 2018. The significance of building design for the climate. Environmental and Climate Technologies, 22, 165-178, DOI: 10.2478/rtuect-2018-001110.2478/rtuect-2018-0011
  5. Albatayneh, A., 2021. Optimising the parameters of a building envelope in the east mediterranean Saharan, cool climate zone. Buildings, 11, 43, DOI: 10.3390/buildings1102004310.3390/buildings11020043
  6. Alexandrovsky, S.V., 1966. Calculation of concrete and reinforced concrete structures for temperature and humidity effects. Stroyizdat, Moskow, Russian.
  7. Al-Sanea, S.A., Zedan, M.F., Al-Hussain, S.N., 2012. Effect of thermal mass on performance of insulated building walls and the concept of energy savings potential. Applied Energy, Elsevier Ltd, 89, 430-442.10.1016/j.apenergy.2011.08.009
  8. Arvind, R. 2016. Investigation of cracks in buildings. “Forensic Structural Engineering” a National conference in VIT Chennai, campus, 1.
  9. Aste, N., Leonforte, F., Manfren. M., Mazzon M., 2015. Thermal inertia and energy efficiency – parametric simulation assessment on a calibrated case study. Appl Energy, 145, 111-123, DOI: 10.1016/j.apenergy.2015.01.08410.1016/j.apenergy.2015.01.084
  10. Boley, B., Weiner, J., 2013. Theory of Thermal Stresses. Dover Publications, Incorporated, New York
  11. Barashkov, V.N., Smolina, I.Yu., Puteeva L.E., Pestsov, D.N., 2012. Foundations of the theory of elasticity. Publishing house of TGASU, Tomsk, Russian.
  12. Basok, B., Davydenko, B., Goncharuk, S., 2013. Different variants of thermorenovation of enclosing constructions of floor part in the existing office building and monitoring of heat losses during its protracted exploitation. Science and Innovations, 9(2), 18-21, Ukrainian, DOI: 10.15407/scin9.02.01810.15407/scin9.02.018
  13. Basok, B., Davydenko, B., Timoshchenko, A., Goncharuk, S., 2016. Temperature and humidity conditions of wall construction with layer of insulation in the winter period. Industrial Heat Engineering, 38(6), 38-46, Ukrainian, DOI: 10.31472/ihe.6.2016.0610.31472/ihe.6.2016.06
  14. Costanzo, G., Iacovella, S., Ruelens, F., Leurs, T., Claessens, B., 2016. Experimental analysis of data-driven control for a building heating system. Sustainable Energy, Grids and Networks, Elsevier, 6, 81–90, arXiv: 1507.0363810.1016/j.segan.2016.02.002
  15. Harkouss, F., Fardoun, F., Biwole, P.H., 2018. Passive design optimization of low energy buildings in different climates. Energy, Elsevier, 165(PA), 591-613, DOI: 10.1016/j.energy.2018.09.01910.1016/j.energy.2018.09.019
  16. Hemsath, T.L, Bandhosseini, K.A., 2015. Sensitivity analysis evaluating basic building geometry’s effect on energy use. Renewable Energy, 76, 526-38, DOI: 10.1016/j.renene.2014.11.04410.1016/j.renene.2014.11.044
  17. Isachenko, V.P., Osipova, V.A., Sukomel, A.S., 1975. Heat transfer, Energiya Moscow, Russian
  18. Kalema, T., Johannesson, G., Pylsy, P., Hagengran, P., 2008. Accuracy of energy analysis of buildings: a comparison of a monthly energy balance method and simulation methods in calculating the energy consumption and the effect of thermal mass. Journal of Building Physics, 32, 101-130, DOI: 10.1177/174425910809392010.1177/1744259108093920
  19. Kamal, M.A., 2020. Technological interventions in building facade system: energy efficiency and environmental sustainability, Architecture research, 10(2), 45-53, DOI: 10.5923/j.arch.20201002.01
  20. Kovalenko, A.D., 1970. Fundamentals of thermoelasticity. Naukova Dumka, Kiev, Ukraine
  21. Krichevskii, A.P., 1984. Calculation of reinforced concrete engineering structures for temperature effects, Stroyizdat, Moscow
  22. Kossecka, E., Kosny, J., 2002. Influence of insulation configuration on heating and cooling loads in a continuously used building. 2002, Energy and buildings, 34, 321-331, DOI:10.1016/S0378-7788(01)00121-910.1016/S0378-7788(01)00121-9
  23. Kylili, A., Fokaides, P.A., 2015. Numerical simulation of phase change materials for building applications: A review. Advances in building energy research, 11, 1-25, DOI: 10.1080/17512549.2015.111646510.1080/17512549.2015.1116465
  24. Kontoleon, K.J., Eumorfopoulou, E.A., 2008. The influence of wall orientation and exterior surface solar absorptivity on time lag and decrement factor in the Greek region. Renewable Energy, 33, 1652-1664, DOI: 10.1016/j.renene.2007.09.00810.1016/j.renene.2007.09.008
  25. Lechner, N., 2014. Heating, Cooling, Lighting: Sustainable Design Methods for Architects. John, Wiley & Sons, New York, United States
  26. Paruta, V., 2012. Theoretical premises for optimizing the formulation and technological parameters of plaster mortars for walls made of aerated concrete blocks. Civil Engineering Journal, 30-36, DOI: 10.5862/MCE.34.410.5862/MCE.34.4
  27. Reynders, G.T., 2013. Potential of structural thermal mass for demand-side management in dwellings. Building and environment, Elsevier Science, 64, 187-199, DOI: 10.1016/j.buildenv.2013.03.01010.1016/j.buildenv.2013.03.010
  28. Snegirev, A.I., Alkhimenko, A.I., 2008. Influence of the short circuit temperature during erection on stresses in load-bearing structures, Engineering and construction journal, Russian, 2, 8-16, https://engstroy.spbstu.ru/userfiles/files/2008/1(2)/01.pdf
  29. Tariku, F., Kumaran, K., Fazio, P., 2010. Integrated analysis of whole building heat, air and moisture transfer. International Journal of Heat and Mass Transfer, 53(15-16), 3111-3120, DOI: 10.1016/j.ijheatmasstransfer.2010.03.01610.1016/j.ijheatmasstransfer.2010.03.016
  30. Umnyakova, N.P., 2013. Durability of three-layer walls with brick cladding with a high level of thermal protection. Vestnik MGSU, Russian, 94-100.10.22227/1997-0935.2013.1.94-100
  31. Viot, H., Sempey, A., Pauly, M., Mora, L., 2015. Comparison of different methods for calculating thermal bridges: Application to wood-frame buildings. Building and environment, Elsevier Science, 93, 339-348, DOI 10.1016/j.buildenv.2015.07.01710.1016/j.buildenv.2015.07.017
  32. Zhang, Z.L., Wachenfeldt, B.J., 2009. Numerical study on the heat storing capacity of concrete walls with air cavities. Energy and Buildings, Elsevier, 41, 769-773, DOI: 10.1016/j.enbuild.2009.02.01210.1016/j.enbuild.2009.02.012
DOI: https://doi.org/10.30657/pea.2022.28.14 | Journal eISSN: 2353-7779 | Journal ISSN: 2353-5156
Language: English
Page range: 123 - 131
Submitted on: Sep 8, 2021
Accepted on: Dec 28, 2021
Published on: May 19, 2022
Published by: Quality and Production Managers Association
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Borys Basok, Borys Davydenko, Hanna Koshlak, Oksana Lysenko, published by Quality and Production Managers Association
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.