Abahri, K., Belarbi, R., Trabelsi, A., 2011. Contribution to analytical and numerical study of combined heat and moisture transfers in porous building materials, Building and environment. 46 (7), 1354–1360, DOI: 10.1016/j.buildenv.2010.12.02010.1016/j.buildenv.2010.12.020
Alshboul, A.A., Alkurdi, N.Y., 2019. Enhancing the Strategies of Climate Responsive Architecture. The Study of Solar Accessibility for Buildings Standing on Sloped Sites. Modern Applied Science, 13 (1), 69-84, DOI: 10. 5539/mas.v13n1p6910.5539/mas.v13n1p69
Aksamija, A., 2015., Design methods for sustainable, high-performance building facades. Advances in Building Energy Research, 10(2), 1-23, DOI: 10.5539/mas.v13n1p6910.5539/mas.v13n1p69
Albatayneh, A., Alterman D., Page A., Moghtaderi B., 2018. The significance of building design for the climate. Environmental and Climate Technologies, 22, 165-178, DOI: 10.2478/rtuect-2018-001110.2478/rtuect-2018-0011
Alexandrovsky, S.V., 1966. Calculation of concrete and reinforced concrete structures for temperature and humidity effects. Stroyizdat, Moskow, Russian.
Al-Sanea, S.A., Zedan, M.F., Al-Hussain, S.N., 2012. Effect of thermal mass on performance of insulated building walls and the concept of energy savings potential. Applied Energy, Elsevier Ltd, 89, 430-442.10.1016/j.apenergy.2011.08.009
Aste, N., Leonforte, F., Manfren. M., Mazzon M., 2015. Thermal inertia and energy efficiency – parametric simulation assessment on a calibrated case study. Appl Energy, 145, 111-123, DOI: 10.1016/j.apenergy.2015.01.08410.1016/j.apenergy.2015.01.084
Barashkov, V.N., Smolina, I.Yu., Puteeva L.E., Pestsov, D.N., 2012. Foundations of the theory of elasticity. Publishing house of TGASU, Tomsk, Russian.
Basok, B., Davydenko, B., Goncharuk, S., 2013. Different variants of thermorenovation of enclosing constructions of floor part in the existing office building and monitoring of heat losses during its protracted exploitation. Science and Innovations, 9(2), 18-21, Ukrainian, DOI: 10.15407/scin9.02.01810.15407/scin9.02.018
Basok, B., Davydenko, B., Timoshchenko, A., Goncharuk, S., 2016. Temperature and humidity conditions of wall construction with layer of insulation in the winter period. Industrial Heat Engineering, 38(6), 38-46, Ukrainian, DOI: 10.31472/ihe.6.2016.0610.31472/ihe.6.2016.06
Kalema, T., Johannesson, G., Pylsy, P., Hagengran, P., 2008. Accuracy of energy analysis of buildings: a comparison of a monthly energy balance method and simulation methods in calculating the energy consumption and the effect of thermal mass. Journal of Building Physics, 32, 101-130, DOI: 10.1177/174425910809392010.1177/1744259108093920
Kamal, M.A., 2020. Technological interventions in building facade system: energy efficiency and environmental sustainability, Architecture research, 10(2), 45-53, DOI: 10.5923/j.arch.20201002.01
Kossecka, E., Kosny, J., 2002. Influence of insulation configuration on heating and cooling loads in a continuously used building. 2002, Energy and buildings, 34, 321-331, DOI:10.1016/S0378-7788(01)00121-910.1016/S0378-7788(01)00121-9
Kontoleon, K.J., Eumorfopoulou, E.A., 2008. The influence of wall orientation and exterior surface solar absorptivity on time lag and decrement factor in the Greek region. Renewable Energy, 33, 1652-1664, DOI: 10.1016/j.renene.2007.09.00810.1016/j.renene.2007.09.008
Paruta, V., 2012. Theoretical premises for optimizing the formulation and technological parameters of plaster mortars for walls made of aerated concrete blocks. Civil Engineering Journal, 30-36, DOI: 10.5862/MCE.34.410.5862/MCE.34.4
Snegirev, A.I., Alkhimenko, A.I., 2008. Influence of the short circuit temperature during erection on stresses in load-bearing structures, Engineering and construction journal, Russian, 2, 8-16, https://engstroy.spbstu.ru/userfiles/files/2008/1(2)/01.pdf
Umnyakova, N.P., 2013. Durability of three-layer walls with brick cladding with a high level of thermal protection. Vestnik MGSU, Russian, 94-100.10.22227/1997-0935.2013.1.94-100
Viot, H., Sempey, A., Pauly, M., Mora, L., 2015. Comparison of different methods for calculating thermal bridges: Application to wood-frame buildings. Building and environment, Elsevier Science, 93, 339-348, DOI 10.1016/j.buildenv.2015.07.01710.1016/j.buildenv.2015.07.017