Ahmad, T., Chen, H., 2018. Potential of three variant machine-learning models for forecasting district level medium-term and long-term energy demand in smart grid environment. Energy, 160. DOI: 10.1016/j.energy.2018.07.08410.1016/j.energy.2018.07.084
Ali, S., Wu, K., Weston, K., Marinakis, D., 2016. A Machine Learning Approach to Meter Placement for Power Quality Estimation in Smart Grid. IEEE Transactions on Smart Grid, 7(3). DOI: 10.1109/TSG.2015.244283710.1109/TSG.2015.2442837
Awan, N., Khan, S., Rahmani, M.K.I., Tahir, M., Alam, N.M.D., Alturki, R., Ullah, I., 2021. Machine Learning-Enabled Power Scheduling in IoT-Based Smart Cities. Computers, Materials and Continua, 67(2). DOI: 10.32604/cmc.2021.01438610.32604/cmc.2021.014386
Danalakshmi, D., Prathiba, S., Ettappan, M., Krishna, D.M., 2021. Reparation of voltage disturbance using PR controller-based DVR in Modern power systems. Production Engineering Archives, 27(1). DOI: 10.30657/pea.2021.27.310.30657/pea.2021.27.3
De Santis, E., Rizzi, A., Sadeghian, A., 2018. A cluster-based dissimilarity learning approach for localized fault classification in Smart Grids. Swarm and Evolutionary Computation, 39. DOI: 10.1016/j.swevo.2017.10.00710.1016/j.swevo.2017.10.007
Deja, A., Kaup, M., Strulak-Wójcikiewicz, R., 2019. The concept of transport organization model in container logistics chains using inland waterway transport, Smart Innovation, Systems and Technologies, 2019, 155, 521-531.10.1007/978-981-13-9271-9_43
Dharmadhikari, S.C., Gampala, V., Rao, C.M., Khasim, S., Jain, S., Bhaskaran, R., 2021. A smart grid incorporated with ML and IoT for a secure management system. Microprocessors and Microsystems, 83. DOI: 10.1016/j.micpro.2021.10395410.1016/j.micpro.2021.103954
Haseeb, M., Kot, S., Iqbal Hussain, H., Kamarudin, F., 2021. The natural resources curse-economic growth hypotheses: Quantile–on–Quantile evidence from top Asian economies. Journal of Cleaner Production, 279. DOI: 10.1016/j.jclepro.2020.12359610.1016/j.jclepro.2020.123596
Jamil, F., Iqbal, N., Imran, Ahmad, S., Kim, D., 2021. Peer-to-Peer Energy Trading Mechanism Based on Blockchain and Machine Learning for Sustainable Electrical Power Supply in Smart Grid. IEEE Access, 9. DOI: 10.1109/ACCESS.2021.306045710.1109/ACCESS.2021.3060457
Mikita, M., Kolcun, M., Špes, M., Vojtek, M., Ivančák, M., 2017. Impact of electrical power load time management at sizing and cost of hybrid renewable power system. Polish Journal of Management Studies, 15(1). DOI: 10.17512/pjms.2017.15.1.1510.17512/pjms.2017.15.1.15
Mohamed, M.A., Eltamaly, A.M., Farh, H.M., Alolah, A.I., 2015. Energy management and renewable energy integration in smart grid system. International Conference on Smart Energy Grid Engineering, SEGE 2015. DOI: 10.1109/SEGE.2015.732462110.1109/SEGE.2015.7324621
Muralitharan, K., Sakthivel, R., Vishnuvarthan, R., 2018. Neural network based optimization approach for energy demand prediction in smart grid. Neurocomputing, 273. DOI: 10.1016/j.neucom.2017.08.01710.1016/j.neucom.2017.08.017
Nawaz, R., Akhtar, R., Shahid, M.A., Qureshi, I.M., Mahmood, M.H., 2021. Machine learning based false data injection in smart grid. International Journal of Electrical Power and Energy Systems, 130. DOI: 10.1016/j.ijepes.2021.10681910.1016/j.ijepes.2021.106819
Parvez, I., Aghili, M., Sarwat, A. I., Rahman, S., Alam, F., 2019. Online power quality disturbance detection by support vector machine in smart meter. Journal of Modern Power Systems and Clean Energy, 7(5). DOI: 10.1007/s40565-018-0488-z10.1007/s40565-018-0488-z
Perera, K.S., Aung, Z., Woon, W.L., 2014. Machine Learning Techniques for Supporting Renewable Energy Generation and Integration: A Survey. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8817. DOI: 10.1007/978-3-319-13290-7_710.1007/978-3-319-13290-7_7
Sabishchenko, O., Rębilas, R., Sczygiol, N., Urbański, M., 2020. Ukraine energy sector management using hybrid renewable energy systems. Energies, 13(7). DOI: 10.3390/en1307177610.3390/en13071776
Sharmila, P., Baskaran, J., Nayanatara, C., Maheswari, R., 2019. A hybrid technique of machine learning and data analytics for optimized distribution of renewable energy resources targeting smart energy management. Procedia Computer Science, 165. DOI: 10.1016/j.procs.2020.01.07610.1016/j.procs.2020.01.076
Smirnova, E., Szczepańska-Woszczyna, K., Yessetova, S., Samusenkov, V., Rogulin, R., 2021. Supplying energy to vulnerable segments of the population: Macro-financial risks and public welfare. Energies, 14(7). DOI: 10.3390/en1407183410.3390/en14071834
Taherian, H., Aghaebrahimi, M.R., Baringo, L., Goldani, S.R., 2021. Optimal dynamic pricing for an electricity retailer in the price-responsive environment of smart grid. International Journal of Electrical Power and Energy Systems, 130. DOI: 10.1016/j.ijepes.2021.10700410.1016/j.ijepes.2021.107004
Ullah, Z., Al-Turjman, F., Mostarda, L., Gagliardi, R., 2020. Applications of Artificial Intelligence and Machine learning in smart cities. In Computer Communications, 154. DOI: 10.1016/j.comcom.2020.02.06910.1016/j.comcom.2020.02.069
Ulewicz, R., Siwiec, D., Pacana, A., Tutak, M., Brodny, J., 2021. Multi-criteria method for the selection of renewable energy sources in the polish industrial sector, Energies, 14(9), 2386. DOI 10.3390/en1409238610.3390/en14092386
Ungureanu, S., Topa, V., Cziker, A., 2019. Industrial load forecasting using machine learning in the context of smart grid. 2019 54th International Universities Power Engineering Conference, UPEC 2019 - Proceedings. DOI: 10.1109/UPEC.2019.889354010.1109/UPEC.2019.8893540
van Kooten, G.C., 2013. Economic analysis of feed- in tariffs for generating electricity from renewable energy sources. In Handbook on Energy and Climate Change. DOI: 10.4337/9780857933690.0001710.4337/9780857933690.00017
Zekić-Sušac, M., Mitrović, S., Has, A., 2021. Machine learning based system for managing energy efficiency of public sector as an approach towards smart cities. International Journal of Information Management, 58. DOI: 10.1016/j.ijinfomgt.2020.10207410.1016/j.ijinfomgt.2020.102074
Zou, H., Tao, J., Elsayed, S.K., Elattar, E.E., Almalaq, A., Mohamed, M.A., 2021. Stochastic multi-carrier energy management in the smart islands using reinforcement learning and unscented transform. International Journal of Electrical Power and Energy Systems, 130. DOI: 10.1016/j.ijepes.2021.10698810.1016/j.ijepes.2021.106988