Have a personal or library account? Click to login
The effect of changing graphitization temperature toward bio-graphite from Palm Kernel Shell Cover

The effect of changing graphitization temperature toward bio-graphite from Palm Kernel Shell

Open Access
|Jun 2021

References

  1. Albert, T., Mills Inc., 2006. An Introduction to Synthetic Graphite. Introduction to Synthetic Graphite, Available at: https://asbury.com/pdf/SyntheticGraphitePartI.pdf (Accessed: 17 January 2019).
  2. Banek, N.A. et al., 2018. Sustainable Conversion of Lignocellulose to High-Purity, Highly Crystalline Flake Potato Graphite, ACS Sustainable Chemistry and Engineering, 6(10), 13199-13207. DOI: 10.1021/acssuschemeng.8b02799.10.1021/acssuschemeng.8b02799
  3. Chehreh Chelgani, S. et al., 2016. A Review of Graphite Beneficiation Techniques, Mineral Processing and Extractive Metallurgy Review, 37(1), 58-68, DOI: 10.1080/08827508.2015.1115992.10.1080/08827508.2015.1115992
  4. Chen, C. et al., 2018. Catalytic graphitization of cellulose using nickel as catalyst, BioResources, 13(2), 3165-3176, DOI: 10.15376/biores.13.2.3165-3176.10.15376/biores.13.2.3165-3176
  5. Cioca, M. and Cioc, L.I., 2010. Decision Support Systems used in Disaster Management, Decision Support Systems, (January), DOI: 10.5772/39452.10.5772/39452
  6. Dalton, O.S., Mohamed, A.F., Chikere, A.O., 2017. Status Evaluation of Palm Oil Waste Management Sustainability in Malaysia, OIDA International Journal of Sustainable Development, 10(12), 41-48.
  7. Demir, M. et al., 2015. Graphitic Biocarbon from Metal-Catalyzed Hydrothermal Carbonization of Lignin, Industrial & Engineering Chemistry Research, 54(43), 10731-10739, DOI: 10.1021/acs.iecr.5b02614.10.1021/acs.iecr.5b02614
  8. Dungani, R. et al., 2018. Biomaterial from Oil Palm Waste: Properties, Characterization and Applications, Palm Oil, DOI: 10.5772/intechopen.76412.10.5772/intechopen.76412
  9. Fromm, O. et al., 2018. Carbons from biomass precursors as anode materials for lithium ion batteries: New insights into carbonization and graphitization behavior and into their correlation to electrochemical performance, Carbon, Elsevier Ltd, 128, 147-163, DOI: 10.1016/j.carbon.2017.11.065.10.1016/j.carbon.2017.11.065
  10. Gupta, A. et al., 2017. Effect of graphitization temperature on structure and electrical conductivity of poly-acrylonitrile based carbon fibers, Diamond and Related Materials, Elsevier, 78, 31-38, DOI: 10.1016/J.DIAMOND.2017.07.006.10.1016/j.diamond.2017.07.006
  11. Gutiérrez-Pardo, A. et al., 2015. Effect of catalytic graphitization on the electrochemical behavior of wood derived carbons for use in supercapacitors, Journal of Power Sources, 278, 18-26, DOI: 10.1016/j.jpowsour.2014.12.030.10.1016/j.jpowsour.2014.12.030
  12. Hoekstra, J. et al., 2015. Base metal catalyzed graphitization of cellulose: A combined Raman spectroscopy, temperature-dependent X-ray diffraction and high-resolution transmission electron microscopy study, Journal of Physical Chemistry C, 119(19), 10653-10661, DOI: 10.1021/acs.jpcc.5b00477.10.1021/acs.jpcc.5b00477
  13. Hoekstra, J. et al., 2016. The effect of iron catalyzed graphitization on the textural properties of carbonized cellulose: Magnetically separable graphitic carbon bodies for catalysis and remediation, Carbon, Elsevier Ltd, 107, 248-260, DOI: 10.1016/j.carbon.2016.05.065.10.1016/j.carbon.2016.05.065
  14. Hou, L. et al., 2019. Hierarchically porous and heteroatom self-doped graphitic biomass carbon for supercapacitors, Journal of Colloid and Interface Science, Elsevier Inc., 540, 88-96, DOI: 10.1016/j.jcis.2018.12.029.10.1016/j.jcis.2018.12.02930634062
  15. Ishchuk, S., Sozanskyy, L., Pukała, R., 2020. Optimisation of the relationship between structural parameters of the processing industry as a way to increase its efficiency, Engineering Management in Production and Services, 12(2), 7-20, DOI: 10.2478/emj-2020-0008.10.2478/emj-2020-0008
  16. Jabarullah, N.H., 2016. The controversy of biofuel versus fossil fuel, International Journal of Advanced and Applied Sciences, 3(2), 11-14.
  17. Johnson, M.T., Faber, K.T., 2011, Catalytic graphitization of three-dimensional wood-derived porous scaffolds, Journal of Materials Research, 26(01), 18-25, DOI: 10.1557/jmr.2010.88.10.1557/jmr.2010.88
  18. Johnson, M.T.T., Faber, K.T.T., 2011. Catalytic graphitization of three-dimensional wood-derived porous scaffolds, Journal of Materials Research, 26(01), 18-25, DOI: 10.1557/jmr.2010.88.10.1557/jmr.2010.88
  19. Käärik, M. et al., 2008. The effect of graphitization catalyst on the structure and porosity of SiC derived carbons, Carbon, 46(12), 1579-1587, DOI: 10.1016/j.carbon.2008.07.003.10.1016/j.carbon.2008.07.003
  20. Kalyoncu, R.S., 2000. Graphite, U.S. Geological Survey Minerals Yearbook Vol. I, Metals & Minerals, 1076.
  21. Khokhlova, G.P. et al., 2015. Effect of heat treatment conditions on the catalytic graphitization of coal-tar pitch, Solid Fuel Chemistry, 49(2), 66-72, DOI: 10.3103/S0361521915020056.10.3103/S0361521915020056
  22. Kim, T., Lee, J., Lee, K.H., 2016. Full graphitization of amorphous carbon by microwave heating †, DOI: 10.1039/c6ra01989g.10.1039/C6RA01989G
  23. King, R.J., 2006. Minerals explained 43: Graphite, in Geology Today. Blackwell Publishing Inc., 71-77.10.1111/j.1365-2451.2006.00557.x
  24. Kučerová, M. et al., 2015. Eliminating waste in the production process using tools and methods of industrial engineering, Production Engineering Archives, 9, 30-34, DOI: 10.30657/pea.2015.09.08.10.30657/pea.2015.09.08
  25. Lim, Y. et al., 2017. Increase in graphitization and electrical conductivity of glassy carbon nanowires by rapid thermal annealing, Journal of Alloys and Compounds. Elsevier, 702, 465-471, DOI: 10.1016/J.JALLCOM.2017.01.098.10.1016/j.jallcom.2017.01.098
  26. Lisiecka, B. et al., 2018. Obtaining of biomorphic composites based on carbon materials, Production Engineering Archives, 19(19), 22-25, DOI: 10.30657/pea.2018.19.05.10.30657/pea.2018.19.05
  27. Liu, Y. et al., 2013. Highly porous graphitic materials prepared by catalytic graphitization, Carbon, 64, 132-140, DOI: 10.1016/j.carbon.2013.07.044.10.1016/j.carbon.2013.07.044
  28. Lovás, M. et al., 2011. The application of microwave energy in mineral processing - a review, Acta Montanistica Slovaca, 16(2), 137-148.
  29. Ma, Z. et al., 2017. Evolution of the chemical composition, functional group, pore structure and crystallographic structure of bio-char from palm kernel shell pyrolysis under different temperatures, Journal of Analytical and Applied Pyrolysis. Elsevier B.V., 127, 350-359, DOI: 10.1016/j.jaap.2017.07.015.10.1016/j.jaap.2017.07.015
  30. Made Joni, I. et al., 2018. Augmentation of graphite purity from mineral resources and enhancing % graphitization using microwave irradiation: XRD and Raman studies, Diamond and Related Materials, 88, 129-136, DOI: 10.1016/j.diamond.2018.07.009.10.1016/j.diamond.2018.07.009
  31. Major, I. et al., 2018. Graphitization of Miscanthus grass biocarbon enhanced by in situ generated FeCo nanoparticles, 20, 2269, DOI: 10.1039/c7gc03457a.10.1039/C7GC03457A
  32. McKee, D.W., 1973. Carbon and Graphite Science, Annual Review of Materials Science, 3(1), 195-231, DOI: 10.1146/annurev.ms.03.080173.001211.10.1146/annurev.ms.03.080173.001211
  33. Nettelroth, D. et al., 2016. Catalytic graphitization of ordered mesoporous carbon CMK-3 with iron oxide catalysts: Evaluation of different synthesis pathways, Physica Status Solidi (A) Applications and Materials Science, 213(6), 1395-1402, DOI: 10.1002/pssa.201532796.10.1002/pssa.201532796
  34. Pacana, A., Ulewicz, R., 2017. Research of determinations motiving to implement the environmental management system, Polish Journal of Management Studies, 16(1), 165-174, DOI: 10.17512/pjms.2017.16.1.14.10.17512/pjms.2017.16.1.14
  35. Paun, V.A. et al., 2016. Liposome loaded chitosan hydrogels, a promising way to reduce the burst effect in drug release a comparativ analysis, Materiale Plastice, 53(4), 590-593.
  36. Rada, E.C. et al., 2018. Circular economy and waste to energy, AIP Conference Proceedings, 1968, DOI: 10.1063/1.5039237.10.1063/1.5039237
  37. Rada, E.C., Cioca, L., 2017. Optimizing the Methodology of Characterization of Municipal Solid Waste in EU under a Circular Economy Perspective, Energy Procedia, 119, 72-85, DOI: 10.1016/j.egypro.2017.07.050.10.1016/j.egypro.2017.07.050
  38. Radzyminska-Lenarcik, E., Ulewicz, R., Ulewicz, M., 2018. Zinc recovery from model and waste solutions using polymer inclusion membranes (PIMs) with 1-octyl-4-methylimidazole, Desalination and Water Treatment, 102 (January 2008), 211-219, DOI: 10.5004/dwt.2018.21826.10.5004/dwt.2018.21826
  39. Samsul, A., Othman, R., Jabarullah, N.H., 2020. Preparation and synthesis of synthetic graphite from biomass waste : A review, 11(2), 881-894.
  40. Sevilla, M., Sanchís, C., Valdés-Soh, T., et al., 2007. Synthesis of graphitic carbon nanostructures from sawdust and their application as electrocatalyst supports, Journal of Physical Chemistry C, 111(27), 9749-9756, DOI: 10.1021/jp072246x.10.1021/jp072246x
  41. Sevilla, M., Sanchís, C., Valdés-Solís, T., et al., 2007. Synthesis of graphitic carbon nanostructures from sawdust and their application as electrocatalyst supports, Journal of Physical Chemistry C, 111(27), 9749-9756, DOI: 10.1021/jp072246x.10.1021/jp072246x
  42. Sevilla, M., Fuertes, A.B., 2010. Graphitic carbon nanostructures from cellulose, Chemical Physics Letters. Elsevier B.V., 490(1-3), 63-68, DOI: 10.1016/j.cplett.2010.03.011.10.1016/j.cplett.2010.03.011
  43. Shi, J. et al., 2016. Synthesis of graphene encapsulated Fe3C in carbon nanotubes from biomass and its catalysis application, Carbon. Elsevier Ltd, 99, 330-337, DOI: 10.1016/j.carbon.2015.12.049.10.1016/j.carbon.2015.12.049
  44. Slovaca, A.M., Cehl, M., 2016. New approach to the basic evaluation of raw material resources in market economy, Acta Montanistica Slovaca, 6(January), 42-55.
  45. Sultana, K.N. et al., 2019. Synthesis of Graphitic Mesoporous Carbon from Metal Impregnated Silica Template for Proton Exchange Membrane Fuel Cell Application, (1), 27-34, DOI: 10.1002/fuce.201800034.10.1002/fuce.201800034
  46. Thambiliyagodage, C.J. et al., 2018. Catalytic graphitization in nanocast carbon monoliths by iron, cobalt and nickel nanoparticles, Carbon. Elsevier Ltd, 134, 452-463, DOI: 10.1016/j.carbon.2018.04.002.10.1016/j.carbon.2018.04.002
  47. Thompson, E. et al., 2015. Iron-catalyzed graphitization of biomass, Green Chemistry, Royal Society of Chemistry, 17(1), 551-556, DOI: 10.1039/c4gc01673d.10.1039/C4GC01673D
  48. Vázquez-Santos, M.B. et al., 2012. Comparative XRD, Raman, and TEM study on graphitization of PBO-derived carbon fibers, Journal of Physical Chemistry C, 116(1), 257-268, DOI: 10.1021/jp2084499.10.1021/jp2084499
  49. Xia, J. et al., 2018. Three-dimensional porous graphene-like sheets synthesized from biocarbon via low-temperature graphitization for a supercapacitor, Green Chemistry, 20(3), 694-700, DOI: 10.1039/c7gc03426a.10.1039/C7GC03426A
DOI: https://doi.org/10.30657/pea.2021.27.16 | Journal eISSN: 2353-7779 | Journal ISSN: 2353-5156
Language: English
Page range: 124 - 129
Submitted on: Mar 4, 2021
Accepted on: Jun 14, 2021
Published on: Jun 12, 2021
Published by: Quality and Production Managers Association
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Rapidah Othman, Afiqah Samsul Kamal, N.H. Jabarullah, published by Quality and Production Managers Association
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.