Have a personal or library account? Click to login
Parametric optimization of process parameters for Electric discharge Machining of Tungsten carbide (93% WC and 7%Co) Cover

Parametric optimization of process parameters for Electric discharge Machining of Tungsten carbide (93% WC and 7%Co)

Open Access
|Dec 2020

Abstract

Nowadays there is a huge demand of High Strength Temperature Resistance (HSTR) alloys such as titanium, carbide, nimonics and ceramics in aerospace, defence and electronics. Among these alloys machining of tungsten carbide alloy is of interest, because of its numerous applications. Complex shapes of tungsten carbide are not generally made by traditional manufacturing process. To machine tungsten carbide with high accuracy, non-traditional machining process like Laser beam machining, Electron beam machining and Electrical discharge machining are a proper choice. In the present paper, the authors have machined Tungsten carbide (93% WC and 7%Co) with copper electrode. The machining is performed on EDM MODEL 500 X 300 ENC with VELVEX EDMVEL-2 as dielectric oil. The 17 experiments are carried out based on RSM (Box-Behnken) method. Further, in order to find the optimum combination grey relational approach is used. The results showed that pulse-on-time of 40μs, pulse-off-time of 2μs and current of 8A are optimum combination for machining of Tungsten carbide (93% WC and 7%Co). Lastly, the confirmation experiment has been conducted.

DOI: https://doi.org/10.30657/pea.2020.26.28 | Journal eISSN: 2353-7779 | Journal ISSN: 2353-5156
Language: English
Page range: 154 - 161
Submitted on: Oct 25, 2020
Accepted on: Nov 16, 2020
Published on: Dec 31, 2020
Published by: Quality and Production Managers Association
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Sharma Kumar Rajiv, published by Quality and Production Managers Association
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.