Have a personal or library account? Click to login
Prospects and opportunities for mussel Mytilus trossulus farming in the southern Baltic Sea (the Gulf of Gdańsk) Cover

Prospects and opportunities for mussel Mytilus trossulus farming in the southern Baltic Sea (the Gulf of Gdańsk)

Open Access
|Mar 2022

References

  1. Ahsan, D. A., & Roth, E. (2010). Farmers’ perceived risks and risk management strategies in an emerging mussel aquaculture industry in Denmark. Marine Resource Economics, 25, 309–323. https://doi.org/10.5950/0738-1360-25.3.309
  2. Árnason, J., Björnsdóttir, R., Larsen, B. K., Björnsson, B. T., Sundell, K., Hansen, A. C., Holen, E., Espe, M., Lindahl, O., & Kalsdóttir, S. (2015). Local fish feed ingredients for competitive and sustainable production of high-quality aquaculture feed. Nordic Innovation publication 2015:02. Nordic Innovation.
  3. Antsulevich, A. E., Maximovich, N. V., & Vuorinen, I. (1999). Population structure, growth and reproduction of the common mussel (Mytilus edulis L.) off the Island of Seili (SW Finland). Boreal Environment Research, 4, 367–375.
  4. Astorga España, M. S., Rodríguez Rodríguez, E. M., & Díaz Romero, C. (2007). Comparison of mineral and trace element concentrations in two mollusks from the Strait of Magellan (Chile). Journal of Food Composition and Analysis, 20, 273–279. https://doi.org/10.1016/j.jfca.2006.06.007
  5. Bayne, B. L., & Worrall, C. M. (1980). Growth and production of mussels Mytilus edulis from two populations. Marine Ecology Progress Series, 3, 317–328. https://doi.org/10.3354/meps003317
  6. Bielecka, L., Gaj, M., Mudrak, S., & Żmijewska, M. I. (2000). The seasonal and short-term variability of zooplankton taxonomic composition in the shallow coastal area of the Gulf of Gdańsk. Oceanological Studies, 29, 57–76.
  7. Bonardelli, J. C. (2013). Technical and practical requirements for Baltic mussel culture. Reports of Aquabest project 4/2013 ISBN 978-952-303-049-7
  8. Bonardelli, J. C., Kokaine, L., Ozolina, Z., Aigars, J., Purina, I., Persson, P., Persson, K., Hans Johnsson, H., & Minnhagen, S. (2019). Technical evaluation of submerged mussel farms in the Baltic Sea. Report of the Baltic Blue Growth project, WP3, GoA3.4. https://www.submariner-network.eu (access 10.05.2020).
  9. Brodzicki, T., Zaucha, J., & Kwiatkowski, J. (2013). Study on blue growth, maritime policy and EU strategy for the Baltic Sea Region. Country fiche Poland. Institute for Development Working Papers, Working Paper no. 003/2014 (011) ver.2. Sopot.
  10. Bucefalos project. (2015). https://webgate.ec.europa.eu/life (access 13.09.2021)
  11. Buck, B. H., Ebeling, M. W., & Michler-Cieluch, T. (2010). Mussel cultivation as a co-use in offshore wind farms: Potential and economic feasibility. Aquaculture Economics & Management, 14(4), 255–281. https://doi.org/10.1080/13657305.2010.526018
  12. Burkholder, J. M., & Shumway, S. E. (2011). Bivalve shellfish aquaculture and eutrophication. In S. E. Shumway (Ed.), Shellfish Aquaculture and the Environment (pp. 155–215). Wiley-Blackwell. https://doi.org/10.1002/9780470960967.ch7
  13. Byron, C., Link, J., Costa-Pierce, B., & Bengtson, D. (2011). Calculating ecological carrying capacity of shellfish aquaculture using mass-balance modeling: Narragansett Bay, Rhode Island. Ecological Modelling, 222, 1743–1755. https://doi.org/10.1016/j.ecolmodel.2011.03.010
  14. Carlsson, M. S., Holmer, M., & Petersen, J. K. (2009). Seasonal and spatial variations of benthic impacts of mussel longline farming in an eutrophic Danish Fjord, Limfjorden. Journal of Shellfish Research, 28(4), 791–801. https://doi.org/10.2983/035.028.0408
  15. Chi, C. F., Zhang, J. S., Wu, C. W., Xu, M. Y., & Wang, B. (2012). Analysis and evaluation of nutrition composition of mussel. Advanced Materials Research, 554–556, 1455–1458. https://doi.org/10.4028/www.scientific.net/AMR.554-556.1455
  16. Clausen, I., & Riisgård, H. U. (1996). Growth, filtration and respiration in the mussel Mytilus edulis: No regulation of the filter-pump to nutritional needs. Marine Ecology Progress Series, 141, 37–45. https://doi.org/10.3354/meps141037
  17. Cuena Barron, L., & Wołowicz, M. (1980). A preliminary outline of the Mytilus edulis population from the Gdańsk Bay. Zeszyty Naukowe Wydziału Biologii i Nauk o Ziemi. Oceanografia, 8, 127–140.
  18. de Grunt, L.S. (2019). Full-scale mussel farming to counteract eutrophication and create new Blue Growth opportunities: the Baltic Blue Growth project. EUCC’s magazine Coastal & Marine, special issue ‘Blue mussel farming for improving water quality in the Baltic Sea’, 28 (1): 18–19.
  19. Dziubińska, A., & Janas, U. (2007). Submerged objects–a nice place to live and develop. Succession of fouling communities in the Gulf of Gdańsk, Southern Baltic. Oceanological and Hydrobiological Studies, 36, 65–78. https://doi.org/10.2478/v10009-007-0026-1
  20. Dziubińska, A., & Szaniawska, A. (2010). Short-term study on early succession stages of fouling communities in the coastal zone of the Puck Bay (southern Baltic Sea). Oceanological and Hydrobiological Studies, 39, 3–16. https://doi.org/10.2478/v10009-010-0055-z
  21. Engman, T. (2009). Musselodling i miljöns tjänst – Ett pilotprojekt i åländska vatten. Report for Åland Government.
  22. FAO. (2016). The State of World Fisheries and Aquaculture 2016. Contributing to Food Security and Nutrition for All.
  23. FAO. (2020). The State of Food and Agriculture 2020. Overcoming water challenges in agriculture. Rome. https://doi.org/10.4060/cb1447en
  24. Gagnon, M. (2019). Self-organization and mechanical properties of mussel culture suspensions: A critical review. Aquacultural Engineering, 87, 102024. https://doi.org/10.1016/j.aquaeng.2019.102024
  25. Gallardi, D. (2014). Effects of bivalve aquaculture on the environment and their possible mitigation: A review. Fisheries and Aquaculture Journal, 5, 105. https://doi.org/10.4172/2150-3508.1000105
  26. Gil, F. M. (2009). Natura 2000 i akwakultura. Ministerstwo Środowiska. (in Polish)
  27. Gosling, E. (2004). Bivalve Molluscs. Biology, Ecology and Culture. Blackwell Publishing.
  28. Grant, J., Hatcher, A., Scott, D. B., Pocklington, P., Schafer, C. T., & Winters, G. V. (1995). A multidisciplinary approach to evaluating impacts of shellfish aquaculture on benthic communities. Estuaries, 18, 124–144. https://doi.org/10.2307/1352288
  29. Grasshoff, K. Kremling, K. & Ehrhardt, M. (1999). Methods of seawater analysis. Third, completely revised edition. Wiley-VCH, Weinheim-New York-Chichester-Brisbane-Singapore-Toronto.
  30. Gren, I.-M. (2019). The economic value of mussel farming for uncertain nutrient removal in the Baltic Sea. PLoS One, 14(6), e0218023. https://doi.org/10.1371/journal.pone.0218023 PMID: 31199831
  31. Gröndahl, F., Brandt, N., Karlsson, S. & Malmström, M.E. (2009). Sustainable use of Baltic Sea natural resources based on ecological engineering and biogas production. Ecosystems and Sustainable Development VII, 122, 153–161. https://doi.org/10.2495/ECO090151.
  32. Hadberg, N., Kautsky, N., Kumblad, L., & Wikströmi, S. A. (2018). Limitations of using blue mussel farms as a nutrient reduction measure in the Baltic Sea. Baltic Sea Center Report 2/2018. Stockholm University.
  33. Hargrave, B. T., Doucette, L. I., Cranford, P. J., Law, B. A., & Milligan, T. G. (2008). Influence of mussel aquaculture on sediment organic enrichment in a nutrient-rich coastal embayment. Marine Ecology Progress Series, 365, 137–149. https://doi.org/10.3354/meps07636
  34. HELCOM, (2018a). State of the Baltic Sea – Second HELCOM holistic assessment 2011–2016. Baltic Sea Environment Proceedings No. 155
  35. HELCOM, (2018b). Input of nutrients by the seven biggest rivers in the Baltic Sea region. Baltic Sea Environment Proceedings No.161
  36. HELCOM, (2018c). Status of coastal fish communities in the Baltic Sea during 2011–2016 – the third thematic assessment. Baltic Sea Environment Proceedings No. 161
  37. Ek Henning, H. & Åslund, M. (2012). Pilotmusselodlingar i Östergötlands skärgård – Kunskapsunderlag för storskaliga musselodlingar. Länsstyrelsen Östergötland, rapport 2012:8.
  38. Hylén, A., Taylor, D., Kononets, M., Lindegarth, M., Stedt, A., Bonaglia, S., & Bergström, P. (2021). In situ characterization of benthic fluxes and denitrification efficiency in a newly re-established mussel farm. The Science of the Total Environment, 782, 146853. https://doi.org/10.1016/j.scitotenv.2021.146853 PMID: 33848863
  39. Jansen, H., Strand, Ø., Strohmeier, T., Krogness, C., Verdegem, M., & Smaal, A. (2011). Seasonal variability in nutrient regeneration by mussel Mytilus edulis rope culture in oligotrophic systems. Marine Ecology Progress Series, 431, 137–149. https://doi.org/10.3354/meps09095
  40. Johns, T. G., & Hickman, R. W. (1985). A manual for mussel farming in semi-exposed coastal waters; with a report on the mussel research at Te Kaha, eastern Bay of Plenty, New Zealand, 1977–82. Fisheries Research Division Occasional Publication No. 50.
  41. Jönsson, L. (2009). Mussel meal in poultry diets–with focus on organic production. PhD thesis, Swedish University of Agricultural Sciences, Uppsala. 57 pp.
  42. Jović, M., Mandić, M., Šljivić-Ivanović, M., & Smičiklas, I. (2019). Recent trends in application of shell waste from mariculture. Studia Marina, 32(1), 47–62. https://doi.org/10.5281/zenodo.3274471
  43. Kaspar, H. F., Gillespie, P. A., Boyer, I. C., & MacKenzie, A. L. (1985). Effects of mussel aquaculture on the nitrogen cycle and benthic communities in Kenepuru Sound, Marlborough Sounds, New Zealand. Marine Biology, 85, 127–136. https://doi.org/10.1007/BF00397431
  44. Kautsky, N. (1982). Growth and size structure in a Baltic Mytilus edulis population. Marine Biology, 68, 117–133. https://doi.org/10.1007/BF00397599
  45. Kautsky, N., Johannesson, K., & Tedengren, M. (1990). Genotypic and phenotypic differences between Baltic and North Sea populations of Mytilus edulis evaluated through reciprocal transplantations. I. Growth and morphology. Marine Ecology Progress Series, 59, 203–210. https://doi.org/10.3354/meps059203
  46. Kotta, J., Futter, M., Kaasik, A., Liversage, K., Rätsep, M., Barboza, F. R., Bergström, L., Bergström, P., Bobsien, I., Díaz, E., Herkül, K., Jonsson, P. R., Korpinen, S., Kraufvelin, P., Krost, P., Lindahl, O., Lindegarth, M., Lyngsgaard, M. M., Mühl, M., Virtanen, E. (2020). Cleaning up seas using blue growth initiatives: Mussel farming for eutrophication control in the Baltic Sea. The Science of the Total Environment, 709, 136144. https://doi.org/10.1016/j.scitotenv.2019.136144 PMID: 31905569
  47. Kraufvelin, P., & Díaz, E. R. (2015). Sediment macrofauna communities at a small mussel farm in the northern Baltic proper. Boreal Environment Research, 20(3), 378–390.
  48. Kruk-Dowgiałło, L., & Szaniawska, A. (2008). Gulf of Gdańsk and Puck Bay. Part. II. B Eastern Baltic Coast. In U. Schiewer (Ed.), Ecology of Baltic Coastal Waters. Ecological Studies 197 (pp. 139–162). Springer-Verlag.
  49. Lees, D., Younger, A., & Doré, B. (2010). Depuration and relaying. In G. Rees, K. Pond, D. Kay, J. Bartram, & J. Santo Domingo (Eds.), Safe Management of Shellfish and Harvest Waters (pp. 145–181). IWA Publishing.
  50. Lindahl, O. (2011). Mussel farming as a tool for re-eutrophication of coastal waters: experiences from Sweden. In S. E. Shumway (Ed.), Shellfish Aquaculture and the Environment (pp. 213–275). Wiley-Blackwell., https://doi.org/10.1002/9780470960967.ch8
  51. Lindahl, O. (2012). Mussel farming as an environmental measure in the Baltic. Final report project 2181, Baltic Sea 2020 Foundation.
  52. Lindahl, O. (2013). Mussel meal production based on mussels from the Baltic Sea. Reports of Aquabest project 6/2013. Finnish Game and Fisheries Research Institute.
  53. Lindahl, O., & Kollberg, S. (2008). How mussels can improve coastal water quality. Bioscience Explained, 5(1), 1–14.
  54. Lindahl, O., & Kollberg, S. (2009). Can the EU agri-environmental aid program be extended into the coastal zone to combat eutrophication? Hydrobiologia, 629, 59–64. https://doi.org/10.1007/s10750-009-9771-3
  55. Lindahl, O., Hart, R., Hernroth, B., Kollberg, S., Loo, L.-O., Olrog, L., Rehnstam-Holm, A.-S., Svensson, J., Svensson, S., & Syversen, U. (2005). Improving marine water quality by mussel farming: A profitable solution for Swedish society. Ambio, 34(2), 131–138. https://doi.org/10.1579/0044-7447-34.2.131 PMID: 15865310
  56. Loo, L.-O., & Rosenberg, R. (1983). Mytilus edulis culture: Growth and production in western Sweden. Aquaculture (Amsterdam, Netherlands), 35, 137–150. https://doi.org/10.1016/0044-8486(83)90081-9
  57. Mazur-Marzec, H., Bertos-Fortis, M., Toruńska-Sitarz, A., Fidor, A., & Legrand, C. (2016). Chemical and genetic diversity of Nodularia spumigena from the Baltic Sea. Marine Drugs, 14(11), 209. https://doi.org/10.3390/md14110209 PMID: 27834904
  58. Mazzola, A., & Sarà, G. (2001). The effect of fish farming organic waste on food availability for bivalve molluscs (Gaeta Gulf, Central Tyrrhenian, MED): Stable carbon isotope analysis. Aquaculture (Amsterdam, Netherlands), 192, 361–379. https://doi.org/10.1016/S0044-8486(00)00463-4
  59. McKindsey, C. W., Archambault, P., Callier, M. D., & Olivier, F. (2011). Influence of suspended and off-bottom mussel culture on the sea bottom and benthic habitats: A review. Canadian Journal of Zoology, 89, 622–664. https://doi.org/10.1139/z11-037
  60. Minnhagen, S. (2017). Farming of blue mussels in the Baltic Sea. A review of pilot studies 2007–2016. www.balticbluegrowth.eu(access 13.09.2021)
  61. Moltke Lyngsgaard, M., Svensson, H., Carl, J., Dolmer, P., Wallach, T., & Lejbach, A. (2017). Substrate tests at Musholm 2016 - mussel growth in the western Baltic Sea. Report from Baltic Blue Growth project. https://www.submariner-network.eu (access 13.09.2021).
  62. Muminović, M. (2010). Domestic feed sources to farmed Arctic charr (Salvelinus alpinus). An investigation of nutritional implications and impact on the ecological footprint. MSc thesis. Norwegian University of Life Sciences, Ås, pp. 33.
  63. Morrisey, D. J., Cole, R. G., Davey, N. K., Handley, S. J., Bradley, A., Brown, S. N., & Madarasz, A. L. (2006). Abundance and diversity of fish on mussel farms in New Zealand. Aquaculture (Amsterdam, Netherlands), 252, 277–288. https://doi.org/10.1016/j.aquaculture.2005.06.047
  64. Nkemka, V. N., & Murto, M. (2013). Two-stage anaerobic dry digestion of blue mussel and reed. Renewable Energy, 50, 359–364. https://doi.org/10.1016/j.renene.2012.06.041
  65. Newell, R. I. E. (2004). Ecosystem influences of natural and cultivated populations of suspension feeding bivalve molluscs: A review. Journal of Shellfish Research, 23, 51–61.
  66. Nielsen, P., Cranford, P. J., Maar, M., & Petersen, J. K. (2016). Magnitude, spatial scale and optimization of ecosystem services from a nutrient extraction mussel farm in the eutrophic Skive Fjord, Denmark. Aquaculture Environment Interactions, 8, 311–329. https://doi.org/10.3354/aei00175
  67. Olofsson, E., Nord, M. & Kappling, M. (2014). Suitable localities for mussel farming in the County of Kalmar with regard to results from experimental farms in 2013. Reports of Aquabest project 19.
  68. Ozolina, Z., & Kokaine, L. (2019). Socioeconomic impact of mussel farming in coastal areas of Baltic Sea. Report of the Baltic Blue Growth project, WP3, GoA5.4. https://www.submariner-network.eu (access 01.05.2021).
  69. Petersen, J. K., Saurel, C., Nielsen, P., & Timmermann, K. (2016). The use of shellfish for eutrophication control. Aquaculture International, 24, 857–878. https://doi.org/10.1007/s10499-015-9953-0
  70. Przedrzymirska, J., Olenycz, M., Turski, J., Pardus, L., Lazić, M., Zatczak, M., Zaucha, J., Licznerska-Bereśniewicz, J., & Rakowska, I. (2018). Common methodological approach on addressing the mussel farms in maritime spatial plans (MSP), Report of the Baltic Blue Growth project, WP5, GoA5.1, https://www.submariner-network.eu (access 09.09.2021).
  71. Remiszewska-Skwarek, A., Fudala-Książek, S.& Łuczkiewicz, A. (2016). Wpływ ścieków przemysłowych na energochłonność i efektywność procesów technologicznych w komunalnej oczyszczalni ścieków. [in Polish]. Rocznik Ochrona Środowiska, 18, 110–121.
  72. Riisgård, H. U., Lüskow, F., Pleissner, D., Lundgreen, K., & López, M. Á. P. (2013). Effect of salinity on filtration rates of mussels Mytilus edulis with special emphasis on dwarfed mussels from the low-saline Central Baltic Sea. Helgoland Marine Research, 67, 591–598. https://doi.org/10.1007/s10152-013-0347-2
  73. Ritzenhofen, L., Buer, A. L., Gyraite, G., Dahlke, S., Klemmstein, A., & Schernewski, G. (2021). -Blue mussel (Mytilus spp.) cultivation in mesohaline eutrophied inner coastal waters: Mitigation potential, threats and cost effectiveness. PeerJ, 9, e11247. https://doi.org/10.7717/peerj.11247 PMID: 34055477
  74. Rurnohr, H., Brey, T., & Ankar, S. (1987). A compilation of biometric conversion factors for benthlc invertebrates of the Baltlc Sea. Baltic Marine Biology Publication No. 9, l-56.
  75. Sami Alias, I. (2014). Eksperymentalna hodowla omułka Mytilus trossulus w Zatoce Gdańskiej dla celów środowiskowych i przemysłowych. PhD thesis, Uniwersytet Gdański. Gdynia, pp. 102 (in Polish).
  76. Sanders, T., Schmittmann, L., Nascimento-Schulze, J. C., & Melzner, F. (2018). High calcification costs limit mussel growth at low salinity. Frontiers in Marine Science, 5, 352. https://doi.org/10.3389/fmars.2018.00352
  77. Schernewski, G., Stybel, N., & Neumann, T. (2012). Zebra mussel farming in the Szczecin (Oder) Lagoon: Water-quality objectives and cost-effectiveness. Ecology and Society, 17(2), 4. https://doi.org/10.5751/ES-04644-170204
  78. Schröder, T., Stank, J., Schernewski, G., & Krost, P. (2014). The impact of a mussel farm on water transparency in the Kiel Fjord. Ocean and Coastal Management, 101, 42–52. https://doi.org/10.1016/j.ocecoaman.2014.04.034
  79. Schultz-Zehden, A., & Matczak, M. (2013). The SUBMARINER Compendium. http://www.submariner-project.eu (access 20.03.2020).
  80. Schultz-Zehden, A., Steele, A., & Weiget, B. (2019). How to turn ecosystem payments to Baltic mussel farms into reality? www.balticbluegrowth.eu (access 20.03.2020).
  81. Shumway, S. E., Davis, C., Downey, R., Karney, R., Kraeuter, J. N., Rheault, R. N., & Wikfors, G. H. (2003). Shellfish aquaculture-in praise of sustainable economies and environments. World Aquaculture, 34, 15–17.
  82. Sokołowski, A. (2009). Tracing the flow of organic matter based upon dual stable isotope technique, and trophic transfer of trace metals in benthic food web of the Gulf of Gdańsk (the southern Baltic Sea). Wydawnictwo Uniwersytetu Gdańskiego, Sopot.
  83. Sokołowski, A., Ziółkowska, M. & Zgrundo, A. (2015). Habitat-related patterns of soft-bottom macrofaunal assemblages in a brackish, low-diversity system (southern Baltic Sea). Journal of Sea Research, 103, 93–102. https://doi.org/10.1016/j.seares.2015.06.017
  84. Sokołowski, A., Ziółkowska, M., Balazy, P., Kukliński, P., & Plichta, I. (2017a). Seasonal and multi-annual patterns of colonisation and growth of sessile benthic fauna on artificial substrates in the brackish low-diversity system of the Baltic Sea. Hydrobiologia, 790, 183–200. https://doi.org/10.1007/s10750-016-3043-9
  85. Sokołowski, A., Ziółkowska, M., Balazy, P., Plichta, I., Kukliński, P., & Mudrak-Cegiołka, S. (2017b). Recruitment pattern of benthic fauna on artificial substrates in brackish low-diversity system (the Baltic Sea). Hydrobiologia, 784, 125–141. https://doi.org/10.1007/s10750-016-2862-z
  86. Spångberg, J., Jönsson, H., & Tidåker, P. (2013). Bringing nutrients from sea to land – mussels as fertiliser from a life cycle perspective. Journal of Cleaner Production, 51, 234–244. https://doi.org/10.1016/j.jclepro.2013.01.011
  87. Stadmark, J., & Conley, D. J. (2011). Mussel farming as a nutrient reduction measure in the Baltic Sea: Consideration of nutrient biogeochemical cycles. Marine Pollution Bulletin, 62(7), 1385–1388. https://doi.org/10.1016/j.marpolbul.2011.05.001 PMID: 21620422
  88. Stenton-Dozey, J. M. E., Jackson, L. F., & Busby, A. J. (1999). Impact of mussel culture on microbenthic community structure in Saldahana Bay, South Africa. Marine Pollution Bulletin, 39, 357–366. https://doi.org/10.1016/S0025-326X(98)00180-5
  89. Suplicy, F. M. (2020). A review of the multiple benefits of mussel farming. Reviews in Aquaculture, 12, 204–223. https://doi.org/10.1111/raq.12313
  90. Tamelander, T., Spilling, K., & Winder, M. (2017). Organic matter export to the seafloor in the Baltic Sea: Drivers of change and future projections. Ambio, 46, 842–851. https://doi.org/10.1007/s13280-017-0930-x PMID: 28647909
  91. Taylor, D., Saurel, C., Nielsen, P., & Petersen, J. K. (2019). Production characteristics and optimization of mitigation mussel culture. Frontiers in Marine Science, 6, 698. https://doi.org/10.3389/fmars.2019.00698
  92. ten Brink, P., Lutchman, I., Bassi, S., Speck, S., Sheavly, S., Register, K., & Woolaway, C. (2009). Guidelines on the Use of Market-based Instruments to Address the Problem of Marine Litter. Institute for European Environmental Policy (IEEP). Brussels and Sheavly Consultants.
  93. Theede, H. (1963). Experimentelle Untersuchungen iiber die Filtrationsleistung der Miesmuschel Mytilus edulis L. Kieler Meeresforschung, 19, 20–21.
  94. Turski, J. (2017). Maritime Spatial Planning and the blue, zebra mussels. A case study for the Polish coastline based on the overview of existing examples from Canada and Australia. Bulletin of the Maritime Institute in Gdańsk, 32(1), 72–82. https://doi.org/10.5604/01.3001.0010.1081
  95. Wang, Z. H., Liang, J. L., & Zhang, S. Y. (2015). Comparison of pelagic and benthic fish assemblages in mussel farming habitat. Chinese Journal of Ecology, 34, 753–759.
  96. Wennström, M. & Engman, T. (2014). Underlag för ansöka n/delprojekt; lntergrerad fisk - och musselodling. The Baltic Blue Growth seed money project final report, appendix E13.
  97. Westerbom, M., Kilpi, M., & Mustonen, O. (2002). Blue mussels, Mytilus edulis, at the edge of the range: Population structure, growth and biomass along a salinity gradient in the north-eastern Baltic Sea. Marine Biology, 140, 991–999. https://doi.org/10.1007/s00227-001-0765-6
  98. Wilding, T. A., & Nickell, T. D. (2013). Changes in benthos associated with mussel (Mytilus edulis L.) farms on the west-coast of Scotland. PLoS One, 8, e68313. https://doi.org/10.1371/journal.pone.0068313 PMID: 23874583
  99. Wołowicz, M., Sokołowski, A., Bawazir, A. S., & Lasota, R. (2006). Effect of eutrophication on the distribution and ecophysiology of the mussel Mytilus trossulus (Bivalvia) in southern Baltic Sea (the Gulf of Gdańsk). Limnology and Oceanography, 51, 580–590. https://doi.org/10.4319/lo.2006.51.1_part_2.0580
  100. Wikström, S. A., Hedberg, N., Kautsky, N., Kumblad, L., Ehrnsten, E., Gustafsson, B., Humborg, C., Norkko, A., & Stadmark, J. (2020). Letter to editor regarding Kotta et al. 2020: Cleaning up seas using blue growth initiatives: Mussel farming for eutrophication control in the Baltic Sea. The Science of the Total Environment, 727, 138665. https://doi.org/10.1016/j.scitotenv.2020.138665 PMID: 32334226
  101. Vaquer-Sunyer, R., & Duarte, C. M. (2010). Sulfide exposure accelerates hypoxia-driven mortality. Limnology and Oceanography, 55, 1075–1082. https://doi.org/10.4319/lo.2010.55.3.1075
  102. Varennes, É., Hanssen, S. A., Bonardelli, J. C., & Guillemette, M. (2013). Sea duck predation in mussel farms: The best nets for excluding common eiders safely and efficiently. Aquaculture Environment Interactions, 4, 31–39. https://doi.org/10.3354/aei00072
  103. Vinther, H. F., Laursen, J. S., & Holmer, M. (2008). Negative effects of blue mussel (Mytilus edulis) presence in eelgrass (Zostera marina) beds in Flensborg fjord, Denmark. Estuarine, Coastal and Shelf Science, 77(1), 91–103. https://doi.org/10.1016/j.ecss.2007.09.007
DOI: https://doi.org/10.26881/oahs.2022.1.06 | Journal eISSN: 1897-3191 | Journal ISSN: 1730-413X
Language: English
Page range: 53 - 73
Submitted on: Jun 30, 2021
Accepted on: Nov 18, 2021
Published on: Mar 31, 2022
Published by: University of Gdańsk
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Adam Sokołowski, Rafał Lasota, Izabela Sami Alias, Joanna Piłczyńska, Maciej Wołowicz, published by University of Gdańsk
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.