Have a personal or library account? Click to login
Assessment of inorganic nitrogen and phosphorus compounds removal efficiency from different types of wastewater using microalgae cultures Cover

Assessment of inorganic nitrogen and phosphorus compounds removal efficiency from different types of wastewater using microalgae cultures

Open Access
|Mar 2022

References

  1. Abdel-Raouf, N., Al-Homaidan, A. A., & Ibraheem, I. B. (2012). Microalgae and wastewater treatment. Saudi Journal of Biological Sciences, 19(3), 257–275. https://doi.org/10.1016/j.sjbs.2012.04.005 PMID:24936135
  2. Abou-Shanab, R. A. I., Ji, M.-K., Kim, H.-C., Paeng, K.-J., & Jeon, B.-H. (2013). Microalgal species growing on piggery wastewater as a valuable candidate for nutrient removal and biodiesel production. Journal of Environmental Management, 115, 257–264. https://doi.org/10.1016/j.jenvman.2012.11.022
  3. Acevedo, S., Pino, N. J. & Peñuela, G. A. (2017). Biomass production of Scenedesmus sp. and removal of nitrogen and phosphorus in domestic wastewater. Ingeniería Y Competitividad. 19 (1), 185–193.
  4. Arsan, O.M., Davydov, O.A., Dyachenko, T.M., Yevtushenko, N. Yu., Zhukinskiy, V. M., Kyrpenko, N. I., Klenus, V. H., Kipnis, L. S., Lynnyk, P. M., Konovets, I. M., Lyashenko, A. V., Olshnyk, H. M., Pashkova, O. V., Protasov, O. O., Sylaeva, A. A., Sytnyk, Yu. M., Stoika, Yu. O., Tymchenko, V. M., Shapoval, T. M., Shevchenko, P. H., Shcherbak, V. I., Yuryshynets, V. I., Yakushyn, V.M. (2006). Metody gidroekologichnykh doslidzhen poverkhnevykh vod. (Methods of hydroecological investigations of surface waters.). Logos Press.
  5. Aslan, S., & Kapdan, I. K. (2006). Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecological Engineering, 28(1), 64–70. https://doi.org/10.1016/j.ecoleng.2006.04.003
  6. Bhatnagar, A., Chinnasamy, S., Singh, M., & Das, K. C. (2011). Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Applied Energy, 88(10), 3425–3431. https://doi.org/10.1016/j.apenergy.2010.12.064
  7. Cai, T., Park, S. Y., & Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable & Sustainable Energy Reviews, 19, 360–369. https://doi.org/10.1016/j.rser.2012.11.030
  8. Dyhrman, S. T. (2016). Nutrients and their acquisition: Phosphorus physiology in microalgae. In M. A. Borowitzka, J. Beardall & J. Raven (Eds.), The Physiology of Microalgae (pp. 155–183). Springer International Publishing. https://doi.org/10.1007/978-3-319-24945-2
  9. Eladel, H., Esakkimuthu, S., & Abomohra, A. (2019). Dual role of microalgae in wastewater treatment and biodiesel production. In S. K. Gupta & F. Bux (Eds.), Application of microalgae in wastewater treatment (pp. 85–121). Springer. https://doi.org/10.1007/978-3-030-13909-4_5
  10. European Commission. (2016). Eighth report on the implementation status and the programmes for implementation (as required by Article 17) of Council Directive 91/271/EEC concerning urban waste water treatment. COM (2016) 105.
  11. Fernandes, T. V., Suárez-Muñoz, M., Trebuch, L. M., Verbraak, P. J., & Van de Waal, D. B. (2017). Toward an Ecologically Optimized N:P Recovery from Wastewater by Microalgae. Frontiers in Microbiology, 8, 1742. https://doi.org/10.3389/fmicb.2017.01742 PMID:28955317
  12. Grobbelaar, J. U. (2004). Algal Nutrition − Mineral Nutrition. In A. Richmond (Ed.), Handbook of Microalgal Culture: Biotechnology and Applied Phycology (pp. 97–115). Blackwell Publishing Ltd.
  13. Henze, M., Harremoës, P., Jansen, J. L. C., & Arvin, E. (2002). Wastewater treatment. Biological and chemical processes. Springer.
  14. Jeffrey, S., & Humphrey, F. H. (1975). New spectrophotometric equations for determining chlorophyll a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen, 167(2), 191–194. https://doi.org/10.1016/S0015-3796(17)30778-3
  15. Kong, Q. X., Li, L., Martinez, B., Chen, P., & Ruan, R. (2010). Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Applied Biochemistry and Biotechnology, 160(1), 9–18. https://doi.org/10.1007/s12010-009-8670-4 PMID:19507059
  16. Krzemińska, I., Pawlik-Skowrońska, B., Trzcińska, M., & Tys, J. (2014). Influence of photoperiods on the growth rate and biomass productivity of green microalgae. Bioprocess and Biosystems Engineering, 37(4), 735–741. https://doi.org/10.1007/s00449-013-1044-x PMID:24037038
  17. Lim, S. L., Chu, W. L., & Phang, S. M. (2010). Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresource Technology, 101(19), 7314–7322. https://doi.org/10.1016/j.biortech.2010.04.092 PMID:20547057
  18. Madkour, A. G., Rasheedy, S. H., Dar, M. A., Farahat, A. Z., & Mohamed, T. A. (2017). The differential efficiency of Chlorella vulgaris and Oscillatoria sp. to treat the municipal wastewater. Journal of Biology, Agriculture and Healthcare, 7(22), 83–94.
  19. Markou, G., Vandamme, D., & Muylaert, K. (2014). Microalgal and cyanobacterial cultivation: The supply of nutrients. Water Research, 65, 186–202. https://doi.org/10.1016/j.watres.2014.07.025 PMID:25113948
  20. Mau, L., Kant, J., Walker, R., Kuchendorf, C. M., Schrey, S. D., Roessner, U., & Watt, M. (2021). Wheat Can Access Phosphorus From Algal Biomass as Quickly and Continuously as From Mineral Fertilizer. Frontiers in Plant Science, 12, 631314. https://doi.org/10.3389/fpls.2021.631314 PMID:33584779
  21. Mohsenpour, S. F., Hennige, S., Willoughby, N., Adeloye, A., & Gutierrez, T. (2021). Integrating micro-algae into wastewater treatment: A review. The Science of the Total Environment, 752, 142168. https://doi.org/10.1016/j.scitotenv.2020.142168 PMID:33207512
  22. Moudříková, Š., Nedbal, L., Solovchenko, A., & Mojzeš, P. (2017). Raman microscopy shows that nitrogen-rich cellular inclusions in microalgae are microcrystalline guanine. Algal Research, 23, 216–222. https://doi.org/10.1016/j.algal.2017.02.009
  23. Nezbritskaya, I. N., Kureyshevich, A. V., Yarovoy, A. A., Potrokhov, A. S., & Zin’kovskiy, O. G. (2019). Peculiarities of the Influence of High Concentrations of Ammonium on the Functioning of Some Species of Cyanoprokaryota, Chlorophyta, and Euglenophyta. Hydrobiological Journal, 55(2), 69–82. https://doi.org/10.1615/HydrobJ.v55.i2.60
  24. Nezbritskaya, I. N., & Kureyshevich, A. V. (2015). Changes in the Content of Photosynthetic Pigments in Representatives of Chlorophyta and Cyanoprokaryota at a High Temperature. Hydrobiological Journal, 51(4), 46–56. https://doi.org/10.1615/HydrobJ.v51.i4.60
  25. Parsons, T. R., & Strickland, J. D. H. (1963). Discussion of spectrophotometric determination of marineplant pigments and carotinoids. Journal of Marine Research, 21(3), 155–163.
  26. Powell, N., Shilton, A., Pratt, S., & Chisti, Y. (2011). Luxury uptake of phosphorus by microalgae in full-scale waste stabilisation ponds. Water Science and Technology, 63(4), 704–709. https://doi.org/10.2166/wst.2011.116 PMID:21330717
  27. Rawat, I., Ranjith Kumar, R., Mutanda, T., & Bux, F. (2011). Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Applied Energy, 88(10), 3411–3424. https://doi.org/10.1016/j.apenergy.2010.11.025
  28. Razzak, S. A., Hossain, M. M., Lucky, R. A., Bassi, A. S., & de Lasa, H. (2013). Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—A review. Renew. Renewable & Sustainable Energy Reviews, 27, 622–653. https://doi.org/10.1016/j.rser.2013.05.063
  29. Renuka, N., Sood, A., Prasanna, R., & Ahluwalia, A. S. (2015). Phycoremediation of wastewaters: A synergistic approach using microalgae for bioremediation and biomass generation. International Journal of Environmental Science and Technology, 12, 1443–1460. https://doi.org/10.1007/s13762-014-0700-2
  30. Rowan, K. S. (1989). Photosynthetic Pigments of Algae. Cambridge University Press.
  31. SCOR-UNESCO. (1966). Determination of Photosynthetic Pigments. Monographs on Oceanographic Methodology 1. Paris: UNESCO.
  32. Shamanskyi, S. I., & Boichenko, S. V. (2018). Environment-Friendly Technology of Airport’s Sewerage. In T. Karakoç, C. Colpan, & Y. Şöhret (Eds.), Advances in Sustainable Aviation (pp. 161–175). Springer. https://doi.org/10.1007/978-3-319-67134-5_11
  33. Silva, N. F. P., Gonçalves, A. L., Moreira, F. C., Silva, T. F. C. V., Martins, F. G., Alvim-Ferraz, M. C. M., Boaventura, R. A. R., Vilar, V. J. P., & Pires, J. C. M. (2015). Towards sustainable microalgal biomass production by phycoremediation of a synthetic wastewater: A kinetic study. Algal Research, 11, 350–358. https://doi.org/10.1016/j.algal.2015.07.014
  34. Solovchenko, A. E., Lukyanov, A. A., Vasilieva, S. G., Savanina, Ya. V., Solovchenko, O. V., & Lobakova, E. S. (2013). Possibilities of Bioconversion of Agricultural Waste with the Use of Microalgae. Moscow University Biological Sciences Bulletin, 68(4), 206–215. https://doi.org/10.3103/S0096392514010118
  35. Su, Y. (2021). Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment. The Science of the Total Environment, 762, 144590. https://doi.org/10.1016/j.scitotenv.2020.144590 PMID:33360454
  36. Thomas, D., Minj, N., Mohan, N., & Rao, P. H. (2016). Cultivation of Microalgae in Domestic Wastewater for Biofuel Applications – An Upstream Approach. Journal of Algal Biomass Utilization, 7(1), 62–70.
  37. Zabochnicka-Świątek, M., Malinska, K., & Krzywonos, M. (2014). Removal of biogens from synthetic wastewater by microalgae. Environment Protection Engineering, 40(2), 87–104. https://doi.org/10.37190/epe140207
DOI: https://doi.org/10.26881/oahs.2022.1.05 | Journal eISSN: 1897-3191 | Journal ISSN: 1730-413X
Language: English
Page range: 45 - 52
Submitted on: Aug 13, 2021
Accepted on: Oct 11, 2021
Published on: Mar 31, 2022
Published by: University of Gdańsk
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Inna Nezbrytska, Sergii Shamanskyi, Lesia Pavliukh, Galina Kharchenko, published by University of Gdańsk
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.