References
- Blei, D. M., Ng, A. Y. & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3(Jan), 993-1022.
- Boutell, M. R., Luo, J. B., Shen, X. P. & Brown, C. M. (2004). Learning multi-label scene classification. Pattern Recognition, 37(9), 1757-1771. https://doi.org/10.1016/j.patcog.2004.03.009
- Chen, L., Xu, S., Zhu, L. J., Zhang, J., Lei, X. P. & Yang, G. C. (2020). A deep learning based method for extracting semantic information from patent documents. Scientometrics, 125(1), 289-312.
- Chen, L., Xu, S., Zhu, L J.., Zhang, J., Yang, G. C., & Xu, H. Y. (2022). A deep learning based method benefiting from characteristics of patents for semantic relation classification. Journal of Informetrics, 16(3), 101312.
- Chen, Q. Y., Allot, A., Leaman, R., Islamaj, R., Du, J. C., Fang, L., …, & Lu, Z. Y. (2022) Multilabel classification for biomedical literature: an overview of the BioCreative VII LitCovid track for COVID-19 literature topic annotation. Database, 2022, baac069.
- Clare, A. & King, R. D. (2001). Knowledge discovery in multi-label phenotype data. In: Proceedings of the 5th European Conference on Principles of Data Mining and Knowledge Discovery (pp. 42-53). Springer, Berlin, Heidelberg.
- Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K. & Harshman, R. (1990). Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41(6), 391-407.
- Dekel, O. & Shamir, O. (2010). Multiclass-multilabel classification with more classes than examples. In: Proceedings of the 13th International Conference on Artificial Intelligence and Statistics (pp. 137-144).
- Du, J. C., Chen, Q. Y., Peng, Y. F., Xiang, Y., Tao, C., & Lu, Z. Y. (2019). ML-Net: multi-label classification of biomedical texts with deep neural networks. Journal of the American Medical Informatics Association, 26(11), 1279-1285.
- Elisseeff, A. & Weston, J. (2001). A kernel method for multi-labelled classification. In: Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic (pp. 681–687).
- Freitas Rocha, V., Varejão, F. M., & Segatto, M. E. V. (2022). Ensemble of classifier chains and decision templates for multi-label classification. Knowledge and Information Systems, 1-21.
- Fürnkranz, J. & Hüllermeier, E. (2003). Pairwise preference learning and ranking. In: European Conference on Machine Learning (pp. 145-156). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39857-8_15
- Fürnkranz, J., Hüllermeier, E., Loza Mencía, E. & Brinker, K. (2008). Multilabel classification via calibrated label ranking. Machine Learning, 73(2), 133-153.
- Ghamrawi, N. & McCallum, A. (2005). Collective multi-label classification. In: Proceedings of the 14th ACM International Conference on Information and Knowledge Management (pp. 195-200).
- Godbole, S. & Sarawagi, S. (2004). Discriminative methods for multi-labeled classification. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining (pp. 22-30). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24775-3_5
- Haghighian Roudsari, A., Afshar, J., Lee, W., & Lee, S. (2022). PatentNet: multi-label classification of patent documents using deep learning based language understanding. Scientometrics, 1-25.
- Katakis, I., Tsoumakas, G. & Vlahavas, I. (2008). Multilabel text classification for automated tag suggestion. In: Proceedings of the ECML/PKDD 2008 Discovery Challenge (p. 5).
- Kim, Y. (2014). Convolutional neural networks for sentence classification. In: Proceedings of the 2014 Conference on Empiric in Natural Language Processing (pp. 1746–1751).
- Lai, S. W., Xu, L. H., Liu, K. & Zhao, J. (2015). Recurrent convolutional neural networks for text classification. In: Proceedings of the 29th AAAI Conference on Artificial Intelligence (pp. 2267–2273).
- Lewis, D. D., Yang, Y. M., Russell-Rose, T. & Li, F. (2004). Rcv1: A new benchmark collection for text categorization research. Journal of Machine Learning Research, 5(Apr), 361-397.
- Li, T. & Ogihara, M. (2003). Detecting emotion in music. In: Proceedings of the 4th International Conference on Music Information Retrieval.
- Liu, L. Q., Mu, F. N., Li, P. Y., Mu, X., Tang, J., Ai, X. S., … & Zhou, X. (2019). NeuralClassifier: an open-source neural hierarchical multi-label text classification toolkit. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations (pp. 87-92). https://doi.org/10.18653/v1/P19-3015
- Liu, P. F., Qiu, X. P. & Huang, X. J. (2016). Recurrent neural network for text classification with multi-task learning. In: Proceedings of the 25th International Joint Conference on Artificial Intelligence (pp. 2873–2879). https://doi.org/10.48550/arXiv.1605.05101
- Liu, T. Y., Yang, Y. M., Wan, H., Zeng, H. J., Chen, Z. & Ma, W. Y. (2005). Support vector machines classification with a very large-scale taxonomy. ACM SIGKDD Explorations Newsletter, 7(1), 36-43.
- Madjarov, G., Kocev, D., Gjorgjevikj, D. & Džeroski, S. (2012). An extensive experimental comparison of methods for multi-label learning. Pattern Recognition, 45(9), 3084-3104. https://doi.org/10.1016/j.patcog.2012.03.004.
- Pang, B. & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2(1–2), 1-135. http://dx.doi.org/10.1561/1500000011
- Pestian, J., Brew, C., Matykiewicz, P., Hovermale, D. J., Johnson, N., Cohen, K. B. & Duch, W. (2007). A shared task involving multi-label classification of clinical free text. In: Biological, Translational, and Clinical Language Processing (pp. 97-104).
- Read, J., Martino, L., Olmos, P. M. & Luengo, D. (2015). Scalable multi-output label prediction: From classifier chains to classifier trellises. Pattern Recognition, 48(6), 2096-2109. https:// doi.org/10.1016/j.patcog.2015.01.004
- Read, J., Pfahringer, B. & Holmes, G. (2008). Multi-label classification using ensembles of pruned sets. In: Proceedings of the 8th IEEE International Conference on Data Mining (pp. 995-1000). https://doi.org/10.1109/ICDM.2008.74
- Read, J., Pfahringer, B., Holmes, G. & Frank, E. (2011). Classifier chains for multi-label classification. Machine Learning, 85(3), 333-359.
- Read, J., Pfahringer, B., Holmes, G., & Frank, E. (2011). Classifier chains for multi-label classification. Machine learning, 85, 333-359.
- Roudsari, A. H., Afshar, J. Lee, W. & Lee S. (2022). PatentNet: multi-label classification of patent documents using deep learning base language understanding. Scientometrics, 127(1), 207-231. https://doi.org/10.1007/s11192-021-04179-4
- Rubin, T. N., Chambers, A., Smyth, P. & Steyvers, M. (2012). Statistical topic models for multilabel document classification. Machine Learning, 88(1), 157-208. https://doi.org/10.1007/s10994-011-5272-5
- Schapire, R. E. (1999). A brief introduction to boosting. In: Proceedings of the 16th International Joint Conference on Artificial Intelligence (pp. 1401-1406).
- Sechidis, K., Tsoumakas, G. & Vlahavas, I. (2011). On the stratification of multi-label data. In: Proceedings of the European Conference on Machine Learning and Principles and Practices of Knowledge Discovery in Database (pp. 145-158).
- Szymański, P. & Kajdanowicz, T. (2017). A scikit-based Python environment for performing multilabel classification. https://doi.org/10.48550/arXiv.1702.01460
- Szymański, P., Kajdanowicz, T. & Kersting, K. (2016). How is a data-driven approach better than random choice in label space division for multi-label classification? Entropy, 18(8), 282. https://doi.org/10.3390/e18080282
- Trohidis, K., Tsoumakas, G., Kalliris, G. & Vlahavas, I. (2011). Multi-label classification of music by emotion. EURASIP Journal on Audio, Speech, and Music Processing, 2011(1), 1-9. https:// doi.org/10.1186/1687-4722-2011-426793
- Tsoumakas, G. & Vlahavas, I. (2007). Random k-labelsets: An ensemble method for multilabel classification. In: Proceedings of the 18th European Conference on Machine Learning (pp. 406-417). https://doi.org/10.1007/978-3-540-74958-5_38
- Tsoumakas, G., Katakis, I. & Vlahavas, I. (2010). Random k-labelsets for multilabel classification. IEEE Transactions on Knowledge and Data Engineering, 23(7), 1079-1089. https://doi.org/10.1109/TKDE.2010.164
- Ueda, N. & Saito, K. (2002). Parametric mixture models for multi-labeled text. In: Proceedings of the 15th International Conference on Neural Information Processing Systems (pp. 737-744).
- Xu, S. & An, X. (2019). ML2S-SVM: multi-label least-squares support vector machine classifiers, The Electronic Library, 37(6), 1040-1058. https://doi.org/10.1108/EL-09-2019-0207
- Xu, S. (2018). Bayesian naïve Bayes classifiers to text classification. Journal of Information Science, 44(1), 48-59. https://doi.org/10.1177/0165551516677946
- Yang, Y. M., Zhang, J. & Kisiel, B. (2003). A scalability analysis of classifiers in text categorization. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 96-103).
- Yu, Z. L., Wang, Q., Fan, Y., Dai, H. J. & Qiu, M. K. (2015). An improved classifier chain algorithm for multi-label classification of big data analysis. In: Proceedings of the IEEE 12th International Conference on Embedded Software and Systems (pp. 1298-1301). https://doi.org/10.1109/ HPCC-CSS-ICESS.2015.240
- Zhang, M. L. & Zhou, Z. H. (2006). Multilabel neural networks with applications to functional genomics and text categorization. IEEE Transactions on Knowledge and Data Engineering, 18(10), 1338-1351. https://doi.org/10.1109/TKDE.2006.162
- Zhang, M. L. & Zhou, Z. H. (2007). ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognition, 40(7), 2038-2048. https://doi.org/10.1016/j.patcog.2006.12.019