References
- Baker, M. (2016). Stat-checking software stirs up psychology. Nature, 540(7631), 151–152.
- Bornmann, L., Mutz, R., & Daniel, H. D. (2010). A reliability-generalization study of journal peer reviews: A multilevel meta-analysis of inter-rater reliability and its determinants. PloS one, 5(12), e14331.
- Buriak, J. M., Hersam, M. C., & Kamat, P. V. (2023). Can ChatGPT and Other AI Bots Serve as Peer Reviewers? ACS Energy Letters, 9, 191–192.
- Cheng, S. W., Chang, C. W., Chang, W. J., Wang, H. W., Liang, C. S., Kishimoto, T., & Su, K. P. (2023). The now and future of ChatGPT and GPT in psychiatry. Psychiatry and Clinical Neurosciences, 77(11), 592–596.
- Feng, Y., Vanam, S., Cherukupally, M., Zheng, W., Qiu, M., & Chen, H. (2023, June). Investigating code generation performance of ChatGPT with crowdsourcing social data. In 2023 IEEE 47th Annual Computers, Software, and Applications Conference (COMPSAC) (pp. 876–885). IEEE.
- Flanagin, A., Kendall-Taylor, J., & Bibbins-Domingo, K. (2023). Guidance for authors, peer reviewers, and editors on use of AI, language models, and chatbots. JAMA. https://doi.org/10.1001/jama.2023.12500.
- Garcia, M. B. (2024). Using AI tools in writing peer review reports: should academic journals embrace the use of ChatGPT? Annals of biomedical engineering, 52, 139–140.
- Gov.uk (2023). Guidance: Exceptions to copyright. https://www.gov.uk/guidance/exceptions-to-copyright.
- Hosseini, M., & Horbach, S. P. (2023). Fighting reviewer fatigue or amplifying bias? Considerations and recommendations for use of ChatGPT and other Large Language Models in scholarly peer review. Research Integrity and Peer Review, 8(1), 4. https://doi.org/10.1186/s41073-023-00133-5.
- Huang, J., & Tan, M. (2023). The role of ChatGPT in scientific communication: writing better scientific review articles. American Journal of Cancer Research, 13(4), 1148.
- Johnson, D., Goodman, R., Patrinely, J., Stone, C., Zimmerman, E., Donald, R., … & Wheless, L. (2023). Assessing the accuracy and reliability of AI-generated medical responses: an evaluation of the Chat-GPT model. Research square. rs.3.rs-2566942. https://doi.org/10.21203/rs.3.rs-2566942/v1.
- Kocoń, J., Cichecki, I., Kaszyca, O., Kochanek, M., Szydło, D., Baran, J., & Kazienko, P. (2023). ChatGPT: Jack of all trades, master of none. Information Fusion, 101861.
- Langfeldt, L., Nedeva, M., Sörlin, S., & Thomas, D. A. (2020). Co-existing notions of research quality: A framework to study context-specific understandings of good research. Minerva, 58(1), 115–137.
- Liang, W., Zhang, Y., Cao, H., Wang, B., Ding, D., Yang, X., & Zou, J. (2023). Can large language models provide useful feedback on research papers? A large-scale empirical analysis. arXiv preprint arXiv:2310.01783
- Memon, A. R. (2020). Similarity and plagiarism in scholarly journal submissions: bringing clarity to the concept for authors, reviewers and editors. Journal of Korean medical science, 35(27), https://synapse.koreamed.org/articles/1146064.
- Mollaki, V. (2024). Death of a reviewer or death of peer review integrity? the challenges of using AI tools in peer reviewing and the need to go beyond publishing policies. Research Ethics, 17470161231224552.
- Nazir, A., & Wang, Z. (2023). A Comprehensive Survey of ChatGPT: Advancements, Applications, Prospects, and Challenges. Meta-radiology, 100022.
- OpenAI (2023). GPT-4 technical report. https://arxiv.org/abs/2303.08774
- Perkins, M., & Roe, J. (2024). Academic publisher guidelines on AI usage: A ChatGPT supported thematic analysis. F1000Research, 12, 1398.
- REF (2019a). Guidance on submissions (2019/01). https://archive.ref.ac.uk/publications-and-reports/guidance-on-submissions-201901/
- REF (2019b). Panel criteria and working methods (2019/02). https://archive.ref.ac.uk/publications-and-reports/panel-criteria-and-working-methods-201902/
- Sivertsen, G. (2017). Unique, but still best practice? The Research Excellence Framework (REF) from an international perspective. Palgrave Communications, 3(1), 1–6.
- Thelwall, M., Kousha, K., Wilson, P., Makita, M., Abdoli, M., Stuart, E., Levitt, J. & Cancellieri, M. (2023a). Predicting article quality scores with machine learning: The UK Research Excellence Framework. Quantitative Science Studies, 4(2), 547–573.
- Thelwall, M., Kousha, K., Stuart, E., Makita, M., Abdoli, M., Wilson, P. & Levitt, J. (2023b). Does the perceived quality of interdisciplinary research vary between fields? Journal of Documentation, 79(6), 1514–1531. https://doi.org/10.1108/JD-01-2023-0012
- Wei, X., Cui, X., Cheng, N., Wang, X., Zhang, X., Huang, S., & Han, W. (2023). Zero-shot information extraction via chatting with chatgpt. arXiv preprint arXiv:2302.10205.
- Wilsdon, J., Allen, L., Belfiore, E., Campbell, P., Curry, S., Hill, S., (2015). The metric tide. Report of the independent review of the role of metrics in research assessment and management.
- Wu, T., He, S., Liu, J., Sun, S., Liu, K., Han, Q. L., & Tang, Y. (2023). A brief overview of ChatGPT: The history, status quo and potential future development. IEEE/CAA Journal of Automatica Sinica, 10(5), 1122–1136.
- Zhao, X., & Zhang, Y. (2022). Reviewer assignment algorithms for peer review automation: A survey. Information Processing & Management, 59(5), 103028.