References
- Abdelgawad, L., Kluegl, P., Genc, E., Falkner, S., & Hutter, F. (2020). Optimizing Neural Networks for Patent Classification. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). volume 11908 LNAI. doi:10.1007/978-3-030-46133-1{\_}41.
- Aristodemou, L., & Tietze, F. (2018). The state-of-the-art on Intellectual Property Analytics (IPA): A literature review on artificial intelligence, machine learning and deep learning methods for analysing intellectual property (IP) data. World Patent Information, 55, 37–51. doi:10.1016/J.WPI.2018.07.002.
- Bispo, T.D., Macedo, H.T., Santos, F.D.O., Da Silva, R.P., Matos, L.N., Prado, B.O., Da Silva, G.J., & Guimarães, A. (2019). Long short-term memory model for classification of english-PtBR cross-lingual hate speech. Journal of Computer Science, 15. doi:10.3844/jcssp.2019.1546.1571.
- Quinta de Castro, P.V., Félix Felipe da Silva, N., & da Silva Soares, A. (2018). Portuguese Named Entity Recognition Using LSTM-CRF. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). volume 11122 LNAI. doi:10.1007/978-3-319-99722-3{\_}9.
- De Castro, P.V.Q., Da Silva, N.F.F., & Da Silva Soares, A. (2019). Contextual representations and semi-supervised named entity recognition for Portuguese language. In CEUR Workshop Proceedings. volume 2421.
- Derieux, F., Bobeica, M., Pois, D., & Raysz, J.P. (2010). Combining semantics and statistics for patent classification. In CEUR Workshop Proceedings. volume 1176.
- Devlin, J., Chang, M.W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. In NAACL HLT 2019–2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies—Proceedings of the Conference. volume 1.
- Espacenet (2021). Espacenet Patent search. URL: https://lp.espacenet.com/?locale=pt_LP.
- Feldman, R., & Sanger, J. (2006). The Text Mining Handbook. doi:10.1017/cbo9780511546914.
- Gomez, J.C., & Moens, M.F. (2014). A survey of automated hierarchical classification of patents. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8830. doi:10.1007/978-3-319-12511-4.
- Gonçalves, T., Silva, C., Quaresma, P., & Vieira, R. (2006). Analysing part-of speech for Portuguese text classification. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). volume 3878 LNCS.
- Hu, J., Li, S.B., Hu, J.J., & Yang, G.C. (2018). A hierarchical feature extraction model for multi-label mechanical patent classification. Sustainability (Switzerland), 10. doi:10.3390/su10010219.
- Instituto Nacional da Propriedade Intelectual (2018). Código da Propriedade Industrial. URL: https://inpi.justica.gov.pt/Portals/6/PDF%20INPI/Legisla%C3%A7%C3%A3o%20e%20outros%20documentos/CPI%20-%202018.pdf?ver=2019-06-28-153157-733.
- IP5 (2019). IP5 Statistics Report 2018 Edition. URL: https://www.fiveipoffices.org/statistics/statisticsreports/2019edition
- Kowsari, K., Meimandi, K.J., Heidarysafa, M., Mendu, S., Barnes, L., & Brown, D. (2019). Text classification algorithms: A survey. doi:10.3390/info10040150.
- Krestel, R., Chikkamath, R., Hewel, C., & Risch, J. (2021). A survey on deep learning for patent analysis. World Patent Information, 65, 102035.
- Lai, K., & Wu, S.J. (2005). Using the patent co–citation approach to establish a new patent classification system. Information Processing and Management, 41(2), 313–330
- Lee, J.S., & Hsiang, J. (2020). Patent classification by fine-tuning BERT language model. World Patent Information, 61. doi:10.1016/j.wpi.2020.101965.
- Li, S.B., Hu, J., Cui, Y.X., & Hu, J.J. (2018). DeepPatent: patent classification with convolutional neural networks and word embedding. Scientometrics, 117. doi:10.1007/s11192-018-2905-5.
- Liddy, E.D. (2001). Natural Language Processing. In Encyclopedia of Library and Information Science. Encyclopedia of Library and Information Science.
- Manning, C.D., Raghavan, P., & Schutze, H. (2008). Introduction to Information Retrieval. doi:10.1017/cbo9780511809071.
- Pan, S.J., & Yang, Q. (2010). A survey on transfer learning. doi:10.1109/TKDE.2009.191.
- Peters, M.E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L. (2018). Deep contextualized word representations. In NAACL HLT 2018—2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies—Proceedings of the Conference. volume 1. doi:10.18653/v1/n18-1202.
- Risch, J., & Krestel, R. (2019). Domain-specific word embeddings for patent classification. Data Technologies and Applications, 53. doi:10.1108/DTA-01-2019-0002.
- Rodrigues, R.C., Rodrigues, J., de Castro, P.V.Q., da Silva, N.F.F., & Soares, A. (2020). Portuguese language models and word embeddings: Evaluating on semantic similarity tasks. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). volume 12037 LNAI. doi:10.1007/978-3-030-41505-1{\_}23.
- dos Santos, C., & Guimarães, V. (2015). Boosting Named Entity Recognition with Neural Character Embeddings. doi:10.18653/v1/w15-3904.
- Silva, C., & Ribeiro, B. (2010). Inductive Inference for Large Scale Text Classification: Kernel Approaches and Techniques. volume 255. doi:10.1007/978-3-642-04533-2.
- Souza, F., Nogueira, R., & Lotufo, R. (2019). Portuguese Named Entity Recognition using BERT-CRF. arXiv. URL: https://arxiv.org/abs/1909.10649v2.
- Trappey, A.J., Hsu, F C., Trappey, C.V., & Lin, C.I. (2006). Development of a patent document classification and search platform using a back-propagation network. Expert Systems with Applications, 31. doi:10.1016/j.eswa.2006.01.013.
- Trappey, A.J., Trappey, C.V., Chiang, T.A., & Huang, Y.H. (2013). Ontology-based neural network for patent knowledge management in design collaboration. International Journal of Production Research, 51. doi:10.1080/00207543.2012.701775.
- Trappey, A.J.C., Trappey, C.V., Wu, C.-Y., & Lin, C.-W. (2012). A patent quality analysis for innovative technology and product development. Advanced Engineering Informatics, 26, 26–34. doi:10.1016/j.aei.2011.06.005.
- Wagner Filho, J.A., Wilkens, R., Idiart, M., & Villavicencio, A. (2019). The BRWAC corpus: A new open resource for Brazilian Portuguese. In LREC 2018—11th International Conference on Language Resources and Evaluation.
- World Intellectual Property Organization (2008). WIPO Intellectual Property Handbook: Policy, Law and Use. doi:1.
- Wu, J.L., Chang, P.C., Tsao, C.C., & Fan, C.Y. (2016). A patent quality analysis and classification system using self-organizing maps with support vector machine. Applied Soft Computing Journal, 41. doi:10.1016/j.asoc.2016.01.020.
- Zhang, X.Y. (2014). Interactive patent classification based on multi-classifier fusion and active learning. Neurocomputing, 127. doi:10.1016/j.neucom.2013.08.013.
- Zhuang, F.Z., Qi, Z.Y., Duan, K.Y., Xi, D.B., Zhu, Y.C., Zhu, H.S., Xiong, H., & He, Q. (2021). A comprehensive survey on transfer learning, in Proceedings of the IEEE, 109(1), Jan. 2021. doi:10.1109/JPROC.2020.3004555.