Have a personal or library account? Click to login
A Use Case of Patent Classification Using Deep Learning with Transfer Learning Cover

A Use Case of Patent Classification Using Deep Learning with Transfer Learning

Open Access
|Aug 2022

References

  1. Abdelgawad, L., Kluegl, P., Genc, E., Falkner, S., & Hutter, F. (2020). Optimizing Neural Networks for Patent Classification. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). volume 11908 LNAI. doi:10.1007/978-3-030-46133-1{\_}41.
  2. Aristodemou, L., & Tietze, F. (2018). The state-of-the-art on Intellectual Property Analytics (IPA): A literature review on artificial intelligence, machine learning and deep learning methods for analysing intellectual property (IP) data. World Patent Information, 55, 37–51. doi:10.1016/J.WPI.2018.07.002.
  3. Bispo, T.D., Macedo, H.T., Santos, F.D.O., Da Silva, R.P., Matos, L.N., Prado, B.O., Da Silva, G.J., & Guimarães, A. (2019). Long short-term memory model for classification of english-PtBR cross-lingual hate speech. Journal of Computer Science, 15. doi:10.3844/jcssp.2019.1546.1571.
  4. Quinta de Castro, P.V., Félix Felipe da Silva, N., & da Silva Soares, A. (2018). Portuguese Named Entity Recognition Using LSTM-CRF. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). volume 11122 LNAI. doi:10.1007/978-3-319-99722-3{\_}9.
  5. De Castro, P.V.Q., Da Silva, N.F.F., & Da Silva Soares, A. (2019). Contextual representations and semi-supervised named entity recognition for Portuguese language. In CEUR Workshop Proceedings. volume 2421.
  6. Derieux, F., Bobeica, M., Pois, D., & Raysz, J.P. (2010). Combining semantics and statistics for patent classification. In CEUR Workshop Proceedings. volume 1176.
  7. Devlin, J., Chang, M.W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. In NAACL HLT 2019–2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies—Proceedings of the Conference. volume 1.
  8. Espacenet (2021). Espacenet Patent search. URL: https://lp.espacenet.com/?locale=pt_LP.
  9. Feldman, R., & Sanger, J. (2006). The Text Mining Handbook. doi:10.1017/cbo9780511546914.
  10. Gomez, J.C., & Moens, M.F. (2014). A survey of automated hierarchical classification of patents. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8830. doi:10.1007/978-3-319-12511-4.
  11. Gonçalves, T., Silva, C., Quaresma, P., & Vieira, R. (2006). Analysing part-of speech for Portuguese text classification. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). volume 3878 LNCS.
  12. Hu, J., Li, S.B., Hu, J.J., & Yang, G.C. (2018). A hierarchical feature extraction model for multi-label mechanical patent classification. Sustainability (Switzerland), 10. doi:10.3390/su10010219.
  13. Instituto Nacional da Propriedade Intelectual (2018). Código da Propriedade Industrial. URL: https://inpi.justica.gov.pt/Portals/6/PDF%20INPI/Legisla%C3%A7%C3%A3o%20e%20outros%20documentos/CPI%20-%202018.pdf?ver=2019-06-28-153157-733.
  14. IP5 (2019). IP5 Statistics Report 2018 Edition. URL: https://www.fiveipoffices.org/statistics/statisticsreports/2019edition
  15. Kowsari, K., Meimandi, K.J., Heidarysafa, M., Mendu, S., Barnes, L., & Brown, D. (2019). Text classification algorithms: A survey. doi:10.3390/info10040150.
  16. Krestel, R., Chikkamath, R., Hewel, C., & Risch, J. (2021). A survey on deep learning for patent analysis. World Patent Information, 65, 102035.
  17. Lai, K., & Wu, S.J. (2005). Using the patent co–citation approach to establish a new patent classification system. Information Processing and Management, 41(2), 313–330
  18. Lee, J.S., & Hsiang, J. (2020). Patent classification by fine-tuning BERT language model. World Patent Information, 61. doi:10.1016/j.wpi.2020.101965.
  19. Li, S.B., Hu, J., Cui, Y.X., & Hu, J.J. (2018). DeepPatent: patent classification with convolutional neural networks and word embedding. Scientometrics, 117. doi:10.1007/s11192-018-2905-5.
  20. Liddy, E.D. (2001). Natural Language Processing. In Encyclopedia of Library and Information Science. Encyclopedia of Library and Information Science.
  21. Manning, C.D., Raghavan, P., & Schutze, H. (2008). Introduction to Information Retrieval. doi:10.1017/cbo9780511809071.
  22. Pan, S.J., & Yang, Q. (2010). A survey on transfer learning. doi:10.1109/TKDE.2009.191.
  23. Peters, M.E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L. (2018). Deep contextualized word representations. In NAACL HLT 2018—2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies—Proceedings of the Conference. volume 1. doi:10.18653/v1/n18-1202.
  24. Risch, J., & Krestel, R. (2019). Domain-specific word embeddings for patent classification. Data Technologies and Applications, 53. doi:10.1108/DTA-01-2019-0002.
  25. Rodrigues, R.C., Rodrigues, J., de Castro, P.V.Q., da Silva, N.F.F., & Soares, A. (2020). Portuguese language models and word embeddings: Evaluating on semantic similarity tasks. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). volume 12037 LNAI. doi:10.1007/978-3-030-41505-1{\_}23.
  26. dos Santos, C., & Guimarães, V. (2015). Boosting Named Entity Recognition with Neural Character Embeddings. doi:10.18653/v1/w15-3904.
  27. Silva, C., & Ribeiro, B. (2010). Inductive Inference for Large Scale Text Classification: Kernel Approaches and Techniques. volume 255. doi:10.1007/978-3-642-04533-2.
  28. Souza, F., Nogueira, R., & Lotufo, R. (2019). Portuguese Named Entity Recognition using BERT-CRF. arXiv. URL: https://arxiv.org/abs/1909.10649v2.
  29. Trappey, A.J., Hsu, F C., Trappey, C.V., & Lin, C.I. (2006). Development of a patent document classification and search platform using a back-propagation network. Expert Systems with Applications, 31. doi:10.1016/j.eswa.2006.01.013.
  30. Trappey, A.J., Trappey, C.V., Chiang, T.A., & Huang, Y.H. (2013). Ontology-based neural network for patent knowledge management in design collaboration. International Journal of Production Research, 51. doi:10.1080/00207543.2012.701775.
  31. Trappey, A.J.C., Trappey, C.V., Wu, C.-Y., & Lin, C.-W. (2012). A patent quality analysis for innovative technology and product development. Advanced Engineering Informatics, 26, 26–34. doi:10.1016/j.aei.2011.06.005.
  32. Wagner Filho, J.A., Wilkens, R., Idiart, M., & Villavicencio, A. (2019). The BRWAC corpus: A new open resource for Brazilian Portuguese. In LREC 2018—11th International Conference on Language Resources and Evaluation.
  33. World Intellectual Property Organization (2008). WIPO Intellectual Property Handbook: Policy, Law and Use. doi:1.
  34. Wu, J.L., Chang, P.C., Tsao, C.C., & Fan, C.Y. (2016). A patent quality analysis and classification system using self-organizing maps with support vector machine. Applied Soft Computing Journal, 41. doi:10.1016/j.asoc.2016.01.020.
  35. Zhang, X.Y. (2014). Interactive patent classification based on multi-classifier fusion and active learning. Neurocomputing, 127. doi:10.1016/j.neucom.2013.08.013.
  36. Zhuang, F.Z., Qi, Z.Y., Duan, K.Y., Xi, D.B., Zhu, Y.C., Zhu, H.S., Xiong, H., & He, Q. (2021). A comprehensive survey on transfer learning, in Proceedings of the IEEE, 109(1), Jan. 2021. doi:10.1109/JPROC.2020.3004555.
DOI: https://doi.org/10.2478/jdis-2022-0015 | Journal eISSN: 2543-683X | Journal ISSN: 2096-157X
Language: English
Page range: 49 - 70
Submitted on: Mar 12, 2022
Accepted on: Jul 4, 2022
Published on: Aug 12, 2022
Published by: Chinese Academy of Sciences, National Science Library
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Roberto Henriques, Adria Ferreira, Mauro Castelli, published by Chinese Academy of Sciences, National Science Library
This work is licensed under the Creative Commons Attribution 4.0 License.