Have a personal or library account? Click to login
Learning Context-based Embeddings for Knowledge Graph Completion Cover

Learning Context-based Embeddings for Knowledge Graph Completion

By: Fei Pu,  Zhongwei Zhang,  Yan Feng and  Bailin Yang  
Open Access
|Apr 2022

Figures & Tables

Testing the ability of inferring relation patterns on UMLS_

UMLS

SymmetryAntisymmetryInversionComposition
ComplEx-0.88060.86150.8732
Rotate-0.90650.90690.9141
HAKE-0.85580.86500.8723
LineaRE-0.94460.94410.9490
ContE-0.96440.96220.9645

Experimental results for Nations_

Nations

MRRHits@N

1310
TransE (Antoine et al., 2013)0.48130.21890.66670.9801
DistMult (Yang et al., 2015)0.71310.59700.77610.9776
ComplEx (Trouillon et al., 2016)0.66770.52740.74130.9776
ConvE (Dettmers et al., 2018)0.56160.34700.71550.9946
Rotate (Sun et al., 2019)0.71550.57960.79851.0
HAKE (Zhang et al., 2020)0.71570.59450.77860.9851
LineaRE (Peng & Zhang, 2020)0.81460.71140.88810.9975
ContE0.84120.75870.91791.0

Comparison of SOTA baselines and ContE model in terms of time complexity and number of parameters_

Models#ParametersTime Complexity
TransEO(ned + nrd)O(d)
NTNO(ned + nrd2k)O(d3)
ComplExO(ned + nrd)O(d)
TransRO(ned + nrdk)O(dk)
SimplEO(ned + nrd)O(d)
ContEO(ned + 2nrd)O(d)

Summary on datasets_

Dataset|E||R||training||validation||test|
FB15K-23714,541237272,11517,53520,466
UMLS135465,216652661
Nations14551,592199201
Countries_S127121,1112424
Countries_S227121,0632424
Countries_S327129852424

Experimental results for FB15K-237_

FB15K-237

MRRHits@N

1310
TransE (Antoine et al., 2013)0.2790.1980.3760.441
DistMult (Yang et al., 2015)0.2810.1990.3010.446
ComplEx (Trouillon et al., 2016)0.2780.1940.2970.45
ConvE (Dettmers et al., 2018)0.3120.2250.3410.497
ConvKB (Nguyen et al., 2018)0.2890.1980.3240.471
R-GCN (Schlichtkrull et al., 2018)0.1640.100.1810.30
SimplE (Seyed & David, 2018)0.1690.0950.1790.327
CapsE (Nguyen et al., 2019)0.150--0.356
Rotate (Sun et al., 2019)0.3380.2410.3750.533
ContE0.34450.24540.38230.5383

Experimental results for UMLS_

UMLS

MRRHits@N

1310
TransE (Antoine et al., 2013)0.79660.64520.94180.9841
DistMult (Yang et al., 2015)0.8680.821-0.967
ComplEx (Trouillon et al., 2016)0.87530.79420.95310.9713
ConvE (Dettmers et al., 2018)0.9570.932-0.994
NeuralLP (Yang, Zhang, & Cohen, 2017)0.7780.643-0.962
NTP-λ (Rocktaschel et al., 2017)0.9120.843-1.0
MINERVA (Das et al., 2018)0.8250.728-0.968
KGRRS+ComplEx (Lin et al., 2018)0.9290.887-0.985
KGRRS+ConvE (Lin et al., 2018)0.9400.902-0.992
Rotate (Sun et al., 2019)0.92740.87440.97880.9947
HAKE (Zhang et al., 2020)0.89280.83660.93870.9849
LineaRE (Peng & Zhang, 2020)0.95080.91450.98560.9992
ContE0.96770.95010.98111.0

Parameters and scoring functions in SOTA baselines and in ContE model_

ModelScoring function ψ(e1,r,e2)Parameters
TransE||νe1 + νrνe2||pνe1, νr, νe2 ∈ ℝd
ComplEx Re(<νe1,νr,ν¯e2>) {{ Re}} \left( { < {\nu _{{e_1}}},{\nu _r},{{\bar \nu }_{{e_2}}} > } \right) νe1, νr, νe2 ∈ ℂd
SimplE 12(<he1,νr,te2>+<he2,νr1,te1>) {1 \over 2}\left( { < {h_{{e_1}}},{\nu _r},{t_{{e_2}}} > + < {h_{{e_2}}},{\nu _{{r^{ - 1}}}},{t_{{e_1}}} > } \right) he1, νr, te2, he2, νr−1, te1 ∈ ℝd
ConvE g(vec(g(concat(v^e1,νr)*Ω))W)νe2 g\left( {vec\left( {g\left( {concat\left( {{{\hat v}_{{e_1}}},{\nu _r}} \right)*\Omega } \right)} \right)W} \right) \cdot {\nu _{{e_2}}} νe1, νr, νe2 ∈ ℝd
ConvKBconcat(g([νe1, νr, νe2] * Ω)) · wνe1, νr, νe2 ∈ ℂd
Rotate||νe1νrνe2||νe1, νe2, νr, ∈ Cd
HAKE||νe1mνrmνe2m||2 νe1m,νe2mRd,νrmR+d {\nu _{e{1_m}}},{\nu _{e{2_m}}} \in {R^d},{\nu _{{r_m}}} \in R_ + ^d
λ ||sin(νe1p + νrpνe2p)||1νe1p, rp, νe2p ∈ [0, 2π)d
ContE< fr + νe1, br + νe2 >νe1, νe2, fr, br, ∈ ℝd

Experimental results for Countries_S2 and Countries_S3_

Countries_S2Countries_S3


MRRHits@NMRRHits@N


13101310
TransE0.69970.500.93751.00.12060.000.08330.3542
DistMult0.78130.58331.01.00.24960.06250.3330.6250
ComplEx0.79340.60420.97921.00.27310.08330.39580.6667
Rotate0.69790.47920.95831.00.12990.000.08330.4792
HAKE0.66670.45830.83330.95830.24720.06250.33330.5417
LineaRE0.78730.64580.95830.97920.23930.06250.35420.5208
ContE0.83700.72920.95830.97920.46950.35420.50.625

Relation pattern modeling and inference abilities of baseline models_

ModelSymmetryAntisymmetryInversionComposition
TransE (Antoine et al., 2013)×
DistMult (Yang et al., 2015)×××
ComplEx (Trouillon et al., 2016)×
SimplE (Seyed & David, 2018)×
ConvE (Dettmers et al., 2018)
ConvKB (Nguyen et al., 2018)
RotatE (Sun et al., 2019)
HAKE (Zhang et al., 2020)
KGCR (Pu et al., 2020)×
LineaRE (Peng & Zhang, 2020)
ContE

Experimental results for Countries_S1_

Countries_S1

MRRHits@N

1310
TransE (Antoine et al., 2013)0.87850.77081.01.0
DistMult (Yang et al., 2015)0.90280.81251.01.0
ComplEx (Trouillon et al., 2016)0.97920.95831.01.0
Rotate (Sun et al., 2019)0.87500.77081.01.0
HAKE (Zhang et al., 2020)0.90450.83330.97921.0
LineaRE (Peng & Zhang, 2020)1.01.01.01.0
ContE1.01.01.01.0

Testing the ability of inferring relation patterns on Nations_

Nations

SymmetryAntisymmetryInversionComposition
ComplEx-0.64990.64870.6499
Rotate-0.68250.69700.6907
HAKE-0.69530.68350.6844
LineaRE-0.81890.82400.8333
ContE-0.82560.83260.8303
DOI: https://doi.org/10.2478/jdis-2022-0009 | Journal eISSN: 2543-683X | Journal ISSN: 2096-157X
Language: English
Page range: 84 - 106
Submitted on: Nov 3, 2021
Accepted on: Mar 10, 2022
Published on: Apr 25, 2022
Published by: Chinese Academy of Sciences, National Science Library
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Fei Pu, Zhongwei Zhang, Yan Feng, Bailin Yang, published by Chinese Academy of Sciences, National Science Library
This work is licensed under the Creative Commons Attribution 4.0 License.