Have a personal or library account? Click to login
Extracting and Measuring Uncertain Biomedical Knowledge from Scientific Statements Cover

Extracting and Measuring Uncertain Biomedical Knowledge from Scientific Statements

By: Xin Guo,  Yuming Chen,  Jian Du and  Erdan Dong  
Open Access
|Apr 2022

References

  1. Bornmann, L., Wray, K.B., & Haunschild, R. (2020). Citation concept analysis (CCA): a new form of citation analysis revealing the usefulness of concepts for other researchers illustrated by exemplary case studies including classic books by Thomas S. Kuhn and Karl R. Popper. Scientometrics, 122(2), 1051–1074. doi:10.1007/s11192-019-03326-2
  2. Chen, C. (2020). A Glimpse of the First Eight Months of the COVID-19 Literature on Microsoft Academic Graph: Themes, Citation Contexts, and Uncertainties. Frontiers in Research Metrics and Analytics, 5, 607286–607286. doi:10.3389/frma.2020.607286
  3. Chen, C., Song, M., & Heo, G.E. (2018). A scalable and adaptive method for finding semantically equivalent cue words of uncertainty. Journal of Informetrics, 12(1), 158–180. doi:10.1016/j.joi.2017.12.004
  4. Chen, C., & Song, M. (2017). Visual Analytic Observatory of Scientific Knowledge. In: Representing Scientific Knowledge. Springer, Cham. doi:10.1007/978-3-319-62543-0_9
  5. Elkin, P.L., Carter, J.S., Nabar, M., Tuttle, M., Lincoln, M., & Brown, S.H. (2011). Drug knowledge expressed as computable semantic triples. Stud Health Technol Inform, 166, 38–47. doi:10.3233/978-1-60750-740-6-38
  6. Elsworth, B., & Gaunt, T.R. (2021). MELODI Presto: a fast and agile tool to explore semantic triples derived from biomedical literature. Bioinformatics, 37(4), 583–585. doi:10.1093/bioinformatics/btaa726
  7. Fabris, E., Kuhn, T., & Silvello, G. (2019). A Framework for Citing Nanopublications. In: Doucet, A., Isaac, A., Golub, K., Aalberg, T., Jatowt, A. (eds) Digital Libraries for Open Knowledge. TPDL 2019. Lecture Notes in Computer Science, vol 11799. Springer, Cham. doi:10.1007/978-3-030-30760-8_6
  8. Fabris, E., Kuhn, T., & Silvello, G. (2020). Nanocitation: Complete and Interoperable Citations of Nanopublications. In: Ceci, M., Ferilli, S., Poggi, A. (eds) Digital Libraries: The Era of Big Data and Data Science. IRCDL 2020. Communications in Computer and Information Science, vol 1177. Springer, Cham. doi:10.1007/978-3-030-39905-4_18
  9. Vol. 1177 CCIS. Communications in Computer and Information Science (pp. 182–187).
  10. Flynn, A.J., Friedman, C.P., Boisvert, P., Landis-Lewis, Z., & Lagoze, C. (2018). The Knowledge Object Reference Ontology (KORO): A formalism to support management and sharing of computable biomedical knowledge for learning health systems. Learn Health Syst, 2(2), e10054. doi:10.1002/lrh2.10054
  11. Fortunato, S., Bergstrom, C.T., Boerner, K., Evans, J.A., Helbing, D., Milojevic, S., . . . Barabasi, A.-L. (2018). Science of science. Science, 359(6379). doi:10.1126/science.aao0185
  12. Friedman, C.P., & Flynn, A.J. (2019). Computable knowledge: An imperative for Learning Health Systems. Learn Health Syst, 3(4), e10203. doi:10.1002/lrh2.10203
  13. Groth, P., Gibson, A., & Velterop, J. (2010). The anatomy of a nanopublication. Information Services and Use, 30(1–2), 51–56. doi:10.3233/ISU-2010-0613
  14. Guo, X., Chen, Y., Du, J., & Dong, E. (2022). 259067 Subject-Predicate-Object triples extracted from scientific documents regarding cardiovascular research in China during 2000–2020. V2. Science Data Bank. [2022-04-01]. doi:10.11922/sciencedb.01660
  15. Herrera-perez, D., Haslam, A., Crain, T., Gill, J., Livingston, C., Kaestner, V., . . . Prasad, V. (2019). A comprehensive review of randomized clinical trials in three medical journals reveals 396 medical reversals. ELIFE, 8. doi:10.7554/eLife.45183
  16. Kilicoglu, H., Rosemblat, G., Fiszman, M., & Shin, D. (2020). Broad-coverage biomedical relation extraction with SemRep. BMC Bioinformatics, 21(1), 188. doi:10.1186/s12859-020-3517-7
  17. Kilicoglu, H., Rosemblat, G., & Rindflesch, T.C. (2017). Assigning factuality values to semantic relations extracted from biomedical research literature. PLoS One, 12(7), e0179926. doi:10.1371/journal.pone.0179926
  18. Kilicoglu, H., Shin, D., Fiszman, M., Rosemblat, G., & Rindflesch, T.C. (2012). SemMedDB: a PubMed-scale repository of biomedical semantic predications. Bioinformatics, 28(23), 3158–3160. doi:10.1093/bioinformatics/bts591
  19. Li, X., Peng, S., & Du, J. (2021). Towards medical knowmetrics: representing and computing medical knowledge using semantic predications as the knowledge unit and the uncertainty as the knowledge context. Scientometrics, 1–27. doi:10.1007/s11192-021-03880-8
  20. Malec, S.A., & Boyce, R.D. (2020). Exploring Novel Computable Knowledge in Structured Drug Product Labels. AMIA Jt Summits Transl Sci Proc, 2020, 403–412.
  21. Mons, B. (2019). FAIR Science for Social Machines: Let's Share Metadata Knowlets in the Internet of FAIR Data and Services. Data Intelligence, 1(1), 22–42. doi:10.1162/dint_a_00002
  22. Mons, B., van Haagen, H., Chichester, C., t Hoen, P.-B., den Dunnen, J.T., van Ommen, G., . . . Schultes, E. (2011). The value of data. Nature Genetics, 43(4), 281–283. doi:10.1038/ng0411-281
  23. Murray, D., Lamers, W., Boyack, K., Lariviere, V., Sugimoto, C.R., van Eck, N.J., & Waltman, L. (2019). Measuring disagreement in science. Proceedings of the 17th International Conference on Scientometrics & Informetrics (ISSI 2019), Vol. II.
  24. Rindflesch, T.C., & Fiszman, M. (2003). The interaction of domain knowledge and linguistic structure in natural language processing: Interpreting hypernymic propositions in biomedical text. Journal of Biomedical Informatics, 36(6), 462–477. doi:10.1016/j.jbi.2003.11.003
  25. Simpkin, A.L., & Schwartzstein, R.M. (2016). Tolerating Uncertainty—The Next Medical Revolution? New England Journal of Medicine, 375(18), 1713–1715. doi:10.1056/NEJMp1606402
  26. Small, H. (2020). Past as prologue: Approaches to the study of confirmation in science. Quantitative Science Studies, 1(3), 1025–1040. doi:10.1162/qss_a_00063
  27. Szarvas, G., Vincze, V., Farkas, R., Mora, G., & Gurevych, I. (2012). Cross-genre and cross-domain detection of semantic uncertainty. Computational Linguistics, 38(2), 335–367. doi:10.1162/COLI_a_00098
  28. van der Bles, A.M., van der Linden, S., Freeman, A.L.J., Mitchell, J., Galvao, A.B., Zaval, L., & Spiegelhalter, D.J. (2019). Communicating uncertainty about facts, numbers and science. Royal Society Open Science, 6(5). doi:10.1098/rsos.181870
  29. Williams, A.J., Harland, L., Groth, P., Pettifer, S., Chichester, C., Willighagen, E.L., . . . Mons, B. (2012). Open PHACTS: Semantic interoperability for drug discovery. Drug Discovery Today, 17(21–22), 1188–1198. doi:10.1016/j.drudis.2012.05.016
  30. Wyatt, J., & Scott, P. (2020). Computable knowledge is the enemy of disease. BMJ Health Care Inform, 27(2). doi:10.1136/bmjhci-2020-100200
DOI: https://doi.org/10.2478/jdis-2022-0008 | Journal eISSN: 2543-683X | Journal ISSN: 2096-157X
Language: English
Page range: 6 - 30
Submitted on: Oct 25, 2021
Accepted on: Mar 5, 2022
Published on: Apr 25, 2022
Published by: Chinese Academy of Sciences, National Science Library
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Xin Guo, Yuming Chen, Jian Du, Erdan Dong, published by Chinese Academy of Sciences, National Science Library
This work is licensed under the Creative Commons Attribution 4.0 License.