Have a personal or library account? Click to login
Progress and Knowledge Transfer from Science to Technology in the Research Frontier of CRISPR Based on the LDA Model Cover

Progress and Knowledge Transfer from Science to Technology in the Research Frontier of CRISPR Based on the LDA Model

Open Access
|Feb 2022

References

  1. Arun, R., Suresh, V., Madhavan, C.E.V., & Murty, M.N. (2010). On Finding the Natural Number of Topics with Latent Dirichlet Allocation: Some Observations. In M.J. Zaki, J.X. Yu, B. Ravindran, & V. Pudi (Eds.), Advances in Knowledge Discovery and Data Mining, Pt I, Proceedings (Vol. 6118, pp. 391–402). Berlin: Springer-Verlag Berlin.
  2. Baltimore, D., Berg, P., Botchan, M., Carroll, D., Charo, R.A., Church, G., … Yamamoto, K.R. (2015). A prudent path forward for genomic engineering and germline gene modification. Science, 348(6230), 36–38. doi:10.1126/science.aab1028
  3. Blei, D.M., Ng, A.Y., & Jordan, M.I. (2003). Latent dirichlet allocation. Journal of Machine Learning Research, 3(4/5), 993–1022
  4. Blei, D.M. (2012). Probabilistic topic models. Communications of the Acm, 55(4), 77–84. doi:10.1145/2133806.2133826
  5. Blei, D.M., & Lafferty, J.D. (2006). Dynamic topic models. In Proceedings of the 23rd international conference on Machine learning (pp. 113–120).
  6. Blei, D.M., & Lafferty, J.D. (2007). A correlated topic model of science. Annals of Applied Statistics, 1(1), 17–35. doi:10.1214/07-aoas114
  7. Campbell, A., Cavalade, C., Haunold, C., Karanikic, P., & Piccaluga, A. (2020). Knowledge Transfer Metrics. Towards a European-wide set of harmonised indicators. EUR, 30218
  8. Doudna, J.A. (2020). The promise and challenge of therapeutic genome editing. Nature, 578(7794), 229–236. doi:10.1038/s41586-020-1978-5
  9. Doudna, J.A., & Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213), 1077–+. doi:10.1126/science.1258096
  10. Doudna, J.A., & Gersbach, C.A. (2015). Genome editing: The end of the beginning. Genome Biology, 16. doi:10.1186/s13059-015-0860-5
  11. Figuerola, C.G., Marco, F.J.G., & Pinto, M. (2017). Mapping the evolution of library and information science (1978–2014) using topic modeling on LISA. Scientometrics, 112(3), 1507–1535. doi:10.1007/s11192-017-2432-9
  12. Fukuzawa, N., & Ida, T. (2016). Science linkages between scientific articles and patents for leading scientists in the life and medical sciences field: The case of Japan. Scientometrics, 106(2), 629–644. doi:10.1007/s11192-015-1795-z
  13. Gittelman, M., & Kogut, B. (2003). Does good science lead to valuable knowledge? Biotechnology firms and the evolutionary logic of citation patterns. Management Science, 49(4), 366–382. doi:10.1287/mnsc.49.4.366.14420
  14. Griffiths, T.L., & Steyvers, M. (2004). Finding scientific topics. In Proceedings of the National Academy of Sciences of the United States of America, 101, 5228–5235. doi:10.1073/pnas.0307752101
  15. Gupta, P., & Gulati, P. (2021). Implementation and comparison of topic modeling techniques based on user reviews in e-commerce recommendations. Journal of Ambient Intelligence and Humanized Computing, 12(5), 5055–5070. doi:10.1007/s12652-020-01956-6
  16. Gurwitz, D. (2014). Gene drives raise dual-use concerns. Science, 345(6200), 1010–1010. doi:10.1126/science.345.6200.1010-b
  17. Han, X.Y. (2020). Evolution of research topics in LIS between 1996 and 2019: An analysis based on latent Dirichlet Allocation topic model. Scientometrics, 125(3), 2561–2595. doi:10.1007/s11192-020-03721-0
  18. Hsu, P.D., Lander, E.S., & Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157(6), 1262–1278. doi:10.1016/j.cell.2014.05.010
  19. Hoffman, M., Bach, F., & Blei, D. (2010). Online learning for latent dirichlet allocation. Advances in Neural Information Processing Systems, 23, 856–864.
  20. Hu, X., & Rousseau, R. (2018). A new approach to explore the knowledge transition path in the evolution of science & technology: From the biology of restriction enzymes to their application in biotechnology. Journal of Informetrics, 12(3), 842–857. doi:10.1016/j.joi.2018.07.004
  21. Jiang, T., Liu, X.P., Zhang, C., Yin, C.A.H., & Liu, H.Z. (2021). Overview of trends in global single cell research based on bibliometric analysis and LDA model (2009–2019). Journal of Data and Information Science, 6(2), 163–178. doi:10.2478/jdis-2021-0008
  22. Kim, H., & Kim, J.S. (2014). A guide to genome engineering with programmable nucleases. Nature Reviews Genetics, 15(5), 321–334. doi:10.1038/nrg3686
  23. Knott, G.J., & Doudna, J.A. (2018). CRISPR-Cas guides the future of genetic engineering. Science, 361(6405), 866–869. doi:10.1126/science.aat5011
  24. Kushkowski, J.D., Shrader, C.B., Anderson, M.H., & White, R.E. (2020). Information flows and topic modeling in corporate governance. Journal of Documentation, 76(6), 1313–1339. doi:10.1108/jd-10-2019-0207
  25. Lamba, M., & Madhusudhan, M. (2019). Mapping of topics in DESIDOC Journal of Library and Information Technology, India: A study. Scientometrics, 120(2), 477–505. doi:10.1007/s11192-019-03137-5
  26. Ledford, H. (2015). CRISPR, the disruptor. Nature, 522(7554), 20–24. doi:10.1038/522020a
  27. Li, D., Azoulay, P., & Sampat, B.N. (2017). The applied value of public investments in biomedical research. Science, 356(6333), 78–81. doi:10.1126/science.aal0010
  28. Lo, S.C.S. (2010). Scientific linkage of science research and technology development: A case of genetic engineering research. Scientometrics, 82(1), 109–120. doi:10.1007/s11192-009-0036-8
  29. McMillan, G.S., Narin, F., & Deeds, D.L. (2000). An analysis of the critical role of public science in innovation: The case of biotechnology. Research Policy, 29(1), 1–8. doi:10.1016/s0048-7333(99)00030-x
  30. Mendes, F.M.L., Castor, K., Monteiro, R., Mota, F.B., & Rocha, L.F.M. (2019). Mapping the lab-on-a-chip patent landscape through bibliometric techniques. World Patent Information, 58. doi:10.1016/j.wpi.2019.101904
  31. Miyata, Y., Ishita, E., Yang, F., Yamamoto, M., Iwase, A., & Kurata, K. (2020). Knowledge structure transition in library and information science: Topic modeling and visualization. Scientometrics, 125(1), 665–687. doi:10.1007/s11192-020-03657-5
  32. Newman, D.J., & Block, S. (2006). Probabilistic topic decomposition of an eighteenth-century American newspaper. Journal of the American Society for Information Science and Technology, 57(6), 753–767. doi:10.1002/asi.20342
  33. Pickar-Oliver, A., & Gersbach, C.A. (2019). The next generation of CRISPR-Cas technologies and applications. Nature Reviews Molecular Cell Biology, 20(8), 490–507. doi:10.1038/s41580-019-0131-5
  34. Qin, J.H., Wang, J.J., & Ye, F.Y. (2019). A metric approach to hot topics in biomedicine via keyword co-occurrence. Journal of Data and Information Science, 4(4), 13–25. doi:10.2478/jdis-2019-0018
  35. Roder, M., Both, A., Hinneburg, A., & Assoc Comp, M. (2015). Exploring the space of topic coherence measures. New York: Assoc Computing Machinery.
  36. Shan B. & Li F. (2010). A survey of topic evolution based on LDA (in Chinese). Journal of Chinese Information Processing, 24(06), 43–49+68
  37. Sievert, C., & Shirley, K. (2014). LDAvis: A method for visualizing and interpreting topics. In Proceedings of the workshop on interactive language learning, visualization, and interfaces (pp. 63–70).
  38. Sugimoto, C.R., Li, D.F., Russell, T.G., Finlay, S.C., & Ding, Y. (2011). The shifting sands of disciplinary development: Analyzing north american library and information science dissertations using Latent Dirichlet Allocation. Journal of the American Society for Information Science and Technology, 62(1), 185–204. doi:10.1002/asi.21435
  39. Suominen, A., & Toivanen, H. (2016). Map of science with topic modeling: Comparison of unsupervised learning and human-assigned subject classification. Journal of the Association for Information Science and Technology, 67(10), 2464–2476. doi:10.1002/asi.23596
  40. Tijssen, R.J.W. (2010). Discarding the ‘basic science/applied science’ dichotomy: A knowledge utilization triangle classification system of research journals. Journal of the American Society for Information Science and Technology, 61(9), 1842–1852. doi:10.1002/asi.21366
  41. Tijssen, R.J.W., Buter, R.K., & van Leeuwen, T.N. (2000). Technological relevance of science: An assessment of citation linkages between patents and research papers. Scientometrics, 47(2), 389–412. Retrieved from ://WOS:000089449100014
  42. Wang, J.J., & Ye, F.Y. (2021). Probing into the interactions between papers and patents of new CRISPR/CAS9 technology: A citation comparison. Journal of Informetrics, 15(4), 12. doi:10.1016/j.joi.2021.101189
  43. Wang, X., & McCallum, A. (2006). Topics over time: A non-markov continuous-time model of topical trends. In Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 424–433).
  44. WIPO. (2019). International patent classification (version 2019). Available at http://www.wipo.int/classifications/ipc
  45. van Raan, A.F.J. (2017a). Patent citations analysis and its value in research evaluation: A review and a new approach to map technology-relevant research. Journal of Data and Information Science, 2(1), 13–50. doi:10.1515/jdis-2017-0002
  46. van Raan, A.F.J. (2017b). Sleeping beauties cited in patents: Is there also a dormitory of inventions? Scientometrics, 110(3), 1123–1156. doi:10.1007/s11192-016-2215-8
  47. Yau, C.K., Porter, A., Newman, N., & Suominen, A. (2014). Clustering scientific documents with topic modeling. Scientometrics, 100(3), 767–786. doi:10.1007/s11192-014-1321-8
  48. Zhou, H.C., Zheng, D.J., Li, Y.M., & Shen, J.W. (2019). User-opinion mining for mobile library apps in China: Exploring user improvement needs. Library Hi Tech, 37(3), 325–337. doi:10.1108/lht-05-2018-0066
  49. Zhou, W.Y., Yuan, Y.J., Zhang, Y.Q., & Chen, D. (2021). A decade of CRISPR gene editing in China and beyond: A scientometric landscape. Crispr Journal, 4(3), 313–320. doi:10.1089/crispr.2020.0148
  50. Zhu, H.C., Li, C., & Gao, C.X. (2020). Applications of CRISPR-Cas in agriculture and plant biotechnology. Nature Reviews Molecular Cell Biology, 21(11), 661–677. doi:10.1038/s41580-020-00288-9
DOI: https://doi.org/10.2478/jdis-2022-0004 | Journal eISSN: 2543-683X | Journal ISSN: 2096-157X
Language: English
Page range: 1 - 19
Submitted on: Oct 20, 2021
Accepted on: Dec 31, 2021
Published on: Feb 3, 2022
Published by: Chinese Academy of Sciences, National Science Library
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Yushuang Lyu, Muqi Yin, Fangjie Xi, Xiaojun Hu, published by Chinese Academy of Sciences, National Science Library
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.