References
- Abramo, G. (2018). Revisiting the scientometric conceptualization of impact and its measurement. Journal of Informetrics, 12(3), 590–597. https://doi.org/10.1016/j.joi.2018.05.001
- Akbarzadeh, A., Johnson, P., & Singh, R. (2009). Examining potential benefits of combining a chimney with a salinity gradient solar pond for production of power in salt affected areas. Solar Energy, 83(8), 1345–1359. https://doi.org/10.1016/j.solener.2009.02.010
- Alcaraz, A., Montalà, M., Cortina, J.L., Akbarzadeh, A., Aladjem, C., Farran, A., & Valderrama, C. (2018). Design, construction, and operation of the first industrial salinity-gradient solar pond in Europe: An efficiency analysis perspective. Solar Energy, 164, 316–326. https://doi.org/10.1016/j.solener.2018.02.053
- Arroyo, A., Castro, P., Manana, M., Domingo, R., & Laso, A. (2018). CO2 footprint reduction and efficiency increase using the dynamic rate in overhead power lines connected to wind farms. Applied Thermal Engineering, 130, 1156–1162. https://doi.org/10.1016/j.applthermaleng.2017.11.095
- Ayyarao, T.S.L.V. (2019). Modified vector controlled DFIG wind energy system based on barrier function adaptive sliding mode control. Protection and Control of Modern Power Systems, 4(1), 1–8. https://doi.org/10.1186/s41601-019-0119-3
- Azhari, A.W., Sopian, K., Zaharim, A., & Al Ghoul, M. (2008). A new approach for predicting solar radiation in tropical environment using satellite images – Case study of Malaysia. WSEAS Transactions on Environment and Development, 4(4), 373–378.
- Baierle, I.C., Schaefer, J.L., Sellitto, M.A., Fava, L.P., Furtado, J.C., & Nara, E.O.B. (2020). Moona software for survey classification and evaluation of criteria to support decision-making for properties portfolio. International Journal of Strategic Property Management, 24(4), 226–236. https://doi.org/10.3846/ijspm.2020.12338
- Bakhtyar, B., Saadatian, O., Alghoul, M.A., Ibrahim, Y., & Sopian, K. (2015). Solar electricity market in Malaysia: A review of feed-in tariff policy. Environmental Progress and Sustainable Energy, 34(2), 600–606. https://doi.org/10.1002/ep.12023
- Bakhtyar, B., Sopian, K., Zaharim, A., Salleh, E., & Lim, C.H. (2013). Potentials and challenges in implementing feed-in tariff policy in Indonesia and the Philippines. Energy Policy, 60, 418–423. https://doi.org/10.1016/j.enpol.2013.05.034
- Battaglini, A., Komendantova, N., Brtnik, P., & Patt, A. (2012). Perception of barriers for expansion of electricity grids in the European Union. Energy Policy, 47, 254–259. https://doi.org/10.1016/j.enpol.2012.04.065
- Batty, M., & Gleeson, B. (2003). The geography of scientific citation + The Difference that Planning Makes. Environment and Planning A, 35, 761–770. https://doi.org/10.1068/a3505com
- Ben Jebli, M., Ben Youssef, S., & Apergis, N. (2019). The dynamic linkage between renewable energy, tourism, CO2 emissions, economic growth, foreign direct investment, and trade. Latin American Economic Review, 28, 2. https://doi.org/10.1186/s40503-019-0063-7
- Benchaabane, Y., Silva, R.E., Ibrahim, H., Ilinca, A., Chandra, A., & Rousse, D.R. (2019). Computer Model for Financial, Environmental and Risk Analysis of a Wind–Diesel Hybrid System with Compressed Air Energy Storage. Energies, 12(21), 4054. https://doi.org/10.3390/en12214054
- Bernad, F., Casas, S., Gibert, O., Akbarzadeh, A., Cortina, J.L., & Valderrama, C. (2013). Salinity gradient solar pond: Validation and simulation model. Solar Energy, 98(Part C), 366–374. https://doi.org/10.1016/j.solener.2013.10.004
- Biddinika, M.K., Diponegoro, A.M., Ali, R.M., Rosyadi, R.I., Tokimatsu, K., & Takahashi, F. (2017). Survey on readability of online information for upgrading understandability of biomass energy technology. Journal of Material Cycles and Waste Management, 19(3), 1069–1076. https://doi.org/10.1007/s10163-017-0596-2
- Börner, K., Chen, C., & Boyack, K.W. (2005). Visualizing knowledge domains. Annual Review of Information Science and Technology, 37(1), 179–255. https://doi.org/10.1002/aris.1440370106
- Börner, K., Klavans, R., Patek, M., Zoss, A.M., Biberstine, J.R., Light, R.P., Larivière, V., & Boyack, K.W. (2012). Design and update of a classification system: The ucsd map of science. PLoS ONE, 7(7), e39464. https://doi.org/10.1371/journal.pone.0039464
- Busuttil, A., Krajačić, G., & Duić, N. (2008). Energy scenarios for Malta. International Journal of Hydrogen Energy, 33(16), 4235–4246. https://doi.org/10.1016/j.ijhydene.2008.06.010
- Cabeza, L.F., Galindo, E., Prieto, C., Barreneche, C., & Inés Fernández, A. (2015). Key performance indicators in thermal energy storage: Survey and assessment. Renewable Energy, 83, 820–827. https://doi.org/10.1016/j.renene.2015.05.019
- Cabeza, L.F., Solé, A., Fontanet, X., Barreneche, C., Jové, A., Gallas, M., Prieto, C., & Fernández, A.I. (2017). Thermochemical energy storage by consecutive reactions for higher efficient concentrated solar power plants (CSP): Proof of concept. Applied Energy, 185(Part 1), 836–845. https://doi.org/10.1016/j.apenergy.2016.10.093
- Carrington, P., Scott, J., & Wasserman, S. (2005). Models and methods in social network analysis. Cambridge University Press. https://books.google.com.br/books?hl=pt-BR&lr=&id=4Ty5xP_KcpAC&oi=fnd&pg=PR9&dq=%22Models+and+methods+in+social+network+analysis%22&ots=9NJLv7tbJ3&sig=nBeqcDbBSs5PmezJX3DaVorpS00
- Chakraborty, S., Senjyu, T., Saber, A.Y., Yona, A., & Funabashi, T. (2009). Optimal thermal unit commitment integrated with renewable energy sources using advanced particle swarm optimization. IEEJ Transactions on Electrical and Electronic Engineering, 4(5), 609–617. https://doi.org/10.1002/tee.20453
- Chel, A., & Kaushik, G. (2018). Renewable energy technologies for sustainable development of energy efficient building. Alexandria Engineering Journal, 57(2), 655–669. https://doi.org/10.1016/j.aej.2017.02.027
- Chen, C., Li, Y., Song, J., Yang, Z., Kuang, Y., Hitz, E., Jia, C., Gong, A., Jiang, F., Zhu, J.Y., Yang, B., Xie, J., & Hu, L. (2017). Highly Flexible and Efficient Solar Steam Generation Device. Advanced Materials, 29(30), 1701756. https://doi.org/10.1002/adma.201701756
- Child, M., Ilonen, R., Vavilov, M., Kolehmainen, M., & Breyer, C. (2019). Scenarios for sustainable energy in Scotland. Wind Energy, 22(5), 666–684. https://doi.org/10.1002/we.2314
- Child, M., Nordling, A., & Breyer, C. (2017). Scenarios for a sustainable energy system in the Åland Islands in 2030. Energy Conversion and Management, 137, 49–60. https://doi.org/10.1016/j.enconman.2017.01.039
- Cobo, M.J., López-Herrera, A.G., Herrera-Viedma, E., & Herrera, F. (2011a). An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. Journal of Informetrics, 5(1), 146–166. https://doi.org/10.1016/j.joi.2010.10.002
- Cobo, M.J., López-Herrera, A.G., Herrera-Viedma, E., & Herrera, F. (2011b). Science mapping software tools: Review, analysis, and cooperative study among tools. Journal of the American Society for Information Science and Technology, 62(7), 1382–1402. https://doi.org/10.1002/asi.21525
- Cobo, M.J., Lõpez-Herrera, A.G., Herrera-Viedma, E., & Herrera, F. (2012). SciMAT: A new science mapping analysis software tool. Journal of the American Society for Information Science and Technology, 63(8), 1609–1630. https://doi.org/10.1002/asi.22688
- Cobo, M.J., Martínez, M.A., Gutiérrez-Salcedo, M., Fujita, H., & Herrera-Viedma, E. (2015). 25 years at Knowledge-Based Systems: A bibliometric analysis. Knowledge-Based Systems, 80, 3–13. https://doi.org/10.1016/j.knosys.2014.12.035
- Cook, D., & Holder, L. (2006). Mining graph data. John Wiley and Sons Inc. https://books.google.com.br/books?hl=pt-BR&lr=&id=bHGy0_H0g8QC&oi=fnd&pg=PR7&dq=cook+%22Mining+graph+data%22&ots=FtWbVNf0hQ&sig=H3zgSQPkN4YwbubpOy7kBjiKvTU
- Da Costa, M.B., Dos Santos, L.M.A.L., Schaefer, J.L., Baierle, I.C., & Nara, E.O.B. (2019). Industry 4.0 technologies basic network identification. Scientometrics, 121(2), 977–994. https://doi.org/10.1007/s11192-019-03216-7
- Daghigh, R., Ibrahim, A., Jin, G.L., Ruslan, M.H., & Sopian, K. (2011). Predicting the performance of amorphous and crystalline silicon based photovoltaic solar thermal collectors. Energy Conversion and Management, 52(3), 1741–1747. https://doi.org/10.1016/j.enconman.2010.10.039
- De Solla Price, D., & Gürsey, S. (1975). Studies in Scientometrics I Transience and Continuance in Scientific Authorship. Ciência Da Informação, 4(1).
- Dominković, D.F., Bačeković, I., Ćosić, B., Krajačić, G., Pukšec, T., Duić, N., & Markovska, N. (2016). Zero carbon energy system of South East Europe in 2050. Applied Energy, 184, 1517–1528. https://doi.org/10.1016/j.apenergy.2016.03.046
- Du, E., Zhang, N., Hodge, B.M., Kang, C., Kroposki, B., & Xia, Q. (2018). Economic justification of concentrating solar power in high renewable energy penetrated power systems. Applied Energy, 222, 649–661. https://doi.org/10.1016/j.apenergy.2018.03.161
- Du, E., Zhang, N., Hodge, B.M., Wang, Q., Lu, Z., Kang, C., Kroposki, B., & Xia, Q. (2019). Operation of a high renewable penetrated power system with CSP plants: A look-ahead stochastic unit commitment model. IEEE Transactions on Power Systems, 34(1), 140–151. https://doi.org/10.1109/TPWRS.2018.2866486
- Ducom, G., Gautier, M., Pietraccini, M., Tagutchou, J.P., Lebouil, D., & Gourdon, R. (2020). Comparative analyses of three olive mill solid residues from different countries and processes for energy recovery by gasification. Renewable Energy, 145, 180–189. https://doi.org/10.1016/j.renene.2019.05.116
- Fagiano, L., & Schnez, S. (2017). On the take-off of airborne wind energy systems based on rigid wings. Renewable Energy, 107, 473–488. https://doi.org/10.1016/j.renene.2017.02.023
- Fagiano, Lorenzo, Milanese, M., & Piga, D. (2010). High-altitude wind power generation. IEEE Transactions on Energy Conversion, 25(1), 168–180. https://doi.org/10.1109/TEC.2009.2032582
- Fayaz, H., Rahim, N.A., Hasanuzzaman, M., Nasrin, R., & Rivai, A. (2019). Numerical and experimental investigation of the effect of operating conditions on performance of PVT and PVT-PCM. Renewable Energy, 143, 827–841. https://doi.org/10.1016/j.renene.2019.05.041
- Garfield, E. (1994). Scientography: Mapping the tracks of science. Contents: Social & Behavioral Sciences, 7(45), 5–10.
- Garner, J., Porter, A.L., Leidolf, A., & Baker, M. (2020). Measuring and visualizing research collaboration and productivity. Journal of Data and Information Science, 3(1), 54–81. https://doi.org/10.2478/jdis-2018-0004
- Gibb, D., Johnson, M., Romaní, J., Gasia, J., Cabeza, L.F., & Seitz, A. (2018). Process integration of thermal energy storage systems – Evaluation methodology and case studies. Applied Energy, 230, 750–760. https://doi.org/10.1016/j.apenergy.2018.09.001
- Granovskii, M., Dincer, I., & Rosen, M.A. (2007). Exergetic life cycle assessment of hydrogen production from renewables. Journal of Power Sources, 167(2), 461–471. https://doi.org/10.1016/j.jpowsour.2007.02.031
- Guler, A.T., Waaijer, C.J.F., Mohammed, Y., & Palmblad, M. (2016). Automating bibliometric analyses using Taverna scientific workflows: A tutorial on integrating Web Services. Journal of Informetrics, 10(3), 830–841. https://doi.org/10.1016/j.joi.2016.05.002
- Hacatoglu, K., Dincer, I., & Rosen, M.A. (2011). Exergy analysis of a hybrid solar hydrogen system with activated carbon storage. International Journal of Hydrogen Energy, 36(5), 3273–3282. https://doi.org/10.1016/j.ijhydene.2010.12.034
- Hajibandeh, N., Shafie-khah, M., Osório, G.J., Aghaei, J., & Catalão, J.P.S. (2018). A heuristic multi-objective multi-criteria demand response planning in a system with high penetration of wind power generators. Applied Energy, 212, 721–732. https://doi.org/10.1016/j.apenergy.2017.12.076
- Hanel, M., & Escobar, R. (2013). Influence of solar energy resource assessment uncertainty in the levelized electricity cost of concentrated solar power plants in Chile. Renewable Energy, 49, 96–100. https://doi.org/10.1016/j.renene.2012.01.056
- Haseeb, M., Abidin, I.S.Z., Hye, Q.M.A., & Hartani, N.H. (2019). The impact of renewable energy on economic well-being of Malaysia: Fresh evidence from auto regressive distributed lag bound testing approach. International Journal of Energy Economics and Policy, 9(1), 269–275. https://doi.org/10.32479/ijeep.7229
- Hassan, A., Wahab, A., Qasim, M.A., Janjua, M.M., Ali, M.A., Ali, H.M., Jadoon, T.R., Ali, E., Raza, A., & Javaid, N. (2020). Thermal management and uniform temperature regulation of photovoltaic modules using hybrid phase change materials-nanofluids system. Renewable Energy, 145, 282–293. https://doi.org/10.1016/j.renene.2019.05.130
- Hodge, B.M., Brancucci Martinez-Anido, C., Wang, Q., Chartan, E., Florita, A., & Kiviluoma, J. (2018). The combined value of wind and solar power forecasting improvements and electricity storage. Applied Energy, 214, 1–15. https://doi.org/10.1016/j.apenergy.2017.12.120
- Hu, C., Chen, X., Dai, Q., Wang, M., Qu, L., & Dai, L. (2017). Earth-abundant carbon catalysts for renewable generation of clean energy from sunlight and water. Nano Energy, 41, 367–376. https://doi.org/10.1016/j.nanoen.2017.09.029
- IRENA. (2018). Renewable Energy and Jobs – Annual Review 2018. In /publications/2018/May/Renewable-Energy-and-Jobs-Annual-Review-2018. https://www.irena.org/publications/2018/May/Renewable-Energy-and-Jobs-Annual-Review-2018
- Jacob, R., Belusko, M., Inés Fernández, A., Cabeza, L.F., Saman, W., & Bruno, F. (2016). Embodied energy and cost of high temperature thermal energy storage systems for use with concentrated solar power plants. Applied Energy, 180, 586–597. https://doi.org/10.1016/j.apenergy.2016.08.027
- Khalid, F., Dincer, I., & Rosen, M.A. (2015). Energy and exergy analyses of a solar-biomass integrated cycle for multigeneration. Solar Energy, 112, 290–299. https://doi.org/10.1016/j.solener.2014.11.027
- Kipper, L.M., Furstenau, L.B., Hoppe, D., Frozza, R., & Iepsen, S. (2020). Scopus scientific mapping production in industry 4.0 (2011–2018): a bibliometric analysis. International Journal of Production Research, 58(6), 1605–1627. https://doi.org/10.1080/00207543.2019.1671625
- Komendantova, N., Patt, A., Barras, L., & Battaglini, A. (2012). Perception of risks in renewable energy projects: The case of concentrated solar power in North Africa. Energy Policy, 40(1), 103–109. https://doi.org/10.1016/j.enpol.2009.12.008
- Krajačić, G., Vujanović, M., Duić, N., Kılkış, Ş., Rosen, M.A., & Ahmad Al-Nimr, M. (2018). Integrated approach for sustainable development of energy, water and environment systems. Energy Conversion and Management, 159, 398–412. https://doi.org/10.1016/j.enconman.2017.12.016
- Kumar, R.S., & Kaliyaperumal, K. (2015). A scientometric analysis of mobile technology publications. Scientometrics, 105, 921–939. https://doi.org/10.1007/s11192-015-1710-7
- Leblanc, J., Andrews, J., & Akbarzadeh, A. (2010). Low-temperature solar-thermal multi-effect evaporation desalination systems. International Journal of Energy Research, 34(5), 393–403. https://doi.org/10.1002/er.1642
- Letcher, T.M. (2018). Why Solar Energy? In A Comprehensive Guide to Solar Energy Systems (pp. 3–16). Elsevier. https://doi.org/10.1016/b978-0-12-811479-7.00001-4
- Leydesdorff, L., & Persson, O. (2010). Mapping the geography of science: Distribution patterns and networks of relations among cities and institutes. Journal of the American Society for Information Science and Technology, 61(8), 1622–1634. https://doi.org/10.1002/asi.21347
- Light, R.P., Polley, D.E., & Börner, K. (2014). Open data and open code for big science of science studies. Scientometrics, 101, 1535–1551. https://doi.org/10.1007/s11192-014-1238-2
- Liu, X., Feng, X., & He, Y. (2019). Rapid discrimination of the categories of the biomass pellets using laser-induced breakdown spectroscopy. Renewable Energy, 143, 176–182. https://doi.org/10.1016/j.renene.2019.04.137
- Longo, M., Foiadelli, F., & Yaïci, W. (2019). Simulation and optimisation study of the integration of distributed generation and electric vehicles in smart residential district. International Journal of Energy and Environmental Engineering, 10(3), 271–285. https://doi.org/10.1007/s40095-019-0301-4
- Lopez-Rey, A., Campinez-Romero, S., Gil-Ortego, R., & Colmenar-Santos, A. (2019). Evaluation of supply–demand adaptation of photovoltaic–wind hybrid plants integrated into an urban environment. Energies, 12(9), 1780. https://doi.org/10.3390/en12091780
- Madrazo, A., González, A., Martínez, R., Domingo, R., Mañana, M., Arroyo, A., Castro, P.B., Silió, D., & Lecuna, R. (2015). Analysis of a real case of ampacity management in a 132 kV network integrating high rates of wind energy. Renewable Energy and Power Quality Journal, 1(13), 797–800. https://doi.org/10.24084/repqj13.513
- Madrazo, A., González, A., Martínez, R., Mañana, M., Hervás, E., Arroyo, A., Castro, P.B., & Silió, D. (2013). Increasing grid integration of wind energy by using ampacity techniques. Renewable Energy and Power Quality Journal, 1(11), 1121–1124. https://doi.org/10.24084/repqj11.549
- Maleki, A., Rosen, M.A., & Pourfayaz, F. (2017). Optimal operation of a grid-connected hybrid renewable energy system for residential applications. Sustainability (Switzerland), 9(8), 1314. https://doi.org/10.3390/su9081314
- Martí-Ballester, C.P. (2019). Do European renewable energy mutual funds foster the transition to a low-carbon economy? Renewable Energy, 143, 1299–1309. https://doi.org/10.1016/j.renene.2019.05.095
- Martínez, M.A., Cobo, M.J., Herrera, M., & Herrera-Viedma, E. (2015). Analyzing the Scientific Evolution of Social Work Using Science Mapping. Research on Social Work Practice, 25(2), 257–277. https://doi.org/10.1177/1049731514522101
- Mena, R., Escobar, R., Lorca, Negrete-Pincetic, M., & Olivares, D. (2019). The impact of concentrated solar power in electric power systems: A Chilean case study. Applied Energy, 235, 258–283. https://doi.org/10.1016/j.apenergy.2018.10.088
- Moeller, C., Meiss, J., Mueller, B., Hlusiak, M., Breyer, C., Kastner, M., & Twele, J. (2014). Transforming the electricity generation of the Berlin-Brandenburg region, Germany. Renewable Energy, 72, 39–50. https://doi.org/10.1016/j.renene.2014.06.042
- Nara, E.O.B., Schaefer, J.L., de Moraes, J., Tedesco, L.P.C., Furtado, J.C., & Baierle, I.C. (2019). Sourcing research papers on small- and medium-sized enterprises’ competitiveness: An approach based on authors’ networks. Revista Espanola de Documentacion Cientifica, 42(2), e230. https://doi.org/10.3989/redc.2019.2.1602
- Nazri, N.S., Fudholi, A., Ruslan, M.H., & Sopian, K. (2018). Mathematical Modeling of Photovoltaic Thermal-Thermoelectric (PVT-TE) Air Collector. International Journal of Power Electronics and Drive System (IJPEDS), 9(2), 795–802. https://doi.org/10.11591/ijpeds.v9.i2.pp795-802
- Newman, M.E.J. (2001a). Scientific collaboration networks. I. Network construction and fundamental results. Physical Review E – Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 64(1), 016131. https://doi.org/10.1103/PhysRevE.64.016131
- Newman, M.E.J. (2001b). Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Physical Review E – Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 64(1), 016132. https://doi.org/10.1103/PhysRevE.64.016132
- Orwig, K.D., Ahlstrom, M.L., Banunarayanan, V., Sharp, J., Wilczak, J.M., Freedman, J., Haupt, S.E., Cline, J., Bartholomy, O., Hamann, H.F., Hodge, B.M., Finley, C., Nakafuji, D., Peterson, J.L., Maggio, D., & Marquis, M. (2015). Recent trends in variable generation forecasting and its value to the power system. IEEE Transactions on Sustainable Energy, 6(3), 924–933. https://doi.org/10.1109/TSTE.2014.2366118
- Osório, G.J., Lujano-Rojas, J.M., Matias, J.C.O., & Catalão, J.P.S. (2015). A new scenario generation-based method to solve the unit commitment problem with high penetration of renewable energies. International Journal of Electrical Power and Energy Systems, 64, 1063–1072. https://doi.org/10.1016/j.ijepes.2014.09.010
- Othman, M.Y., Ibrahim, A., Jin, G.L., Ruslan, M.H., & Sopian, K. (2013). Photovoltaic-thermal (PV/T) technology – The future energy technology. Renewable Energy, 49, 171–174. https://doi.org/10.1016/j.renene.2012.01.038
- Oyedepo, S.O., Adaramola, M.S., & Paul, S.S. (2012). Analysis of wind speed data and wind energy potential in three selected locations in South-East Nigeria. International Journal of Energy and Environmental Engineering, 3(1), 1–11. https://doi.org/10.1186/2251-6832-3-7
- Parliament, E. (2009). Directiva 2009/28/CE do Parlamento Europeu e do Conselho. Jornal Oficial Da União Europeia, 47. https://eur-lex.europa.eu/legal-content/PT/TXT/PDF/?uri=CELEX:32009L0028&from=EN
- Peiró, G., Prieto, C., Gasia, J., Jové, A., Miró, L., & Cabeza, L.F. (2018). Two-tank molten salts thermal energy storage system for solar power plants at pilot plant scale: Lessons learnt and recommendations for its design, start-up and operation. Renewable Energy, 121, 236–248. https://doi.org/10.1016/j.renene.2018.01.026
- Pfeifer, A., Krajačić, G., Ljubas, D., & Duić, N. (2019). Increasing the integration of solar photovoltaics in energy mix on the road to low emissions energy system – Economic and environmental implications. Renewable Energy, 143, 1310–1317. https://doi.org/10.1016/j.renene.2019.05.080
- Poole, A.D., Barnett, A.M., Boes, E., Weinberg, C.J., Ogden, J.M., Carlson, D.E., ..., & Nitsch, J. (1993). Renewable Energy: Sources for fuels and electricity. Island Press. https://books.google.com.br/books?hl=pt-BR&lr=&id=40XtqVMRxOUC&oi=fnd&pg=PA1&dq=Grubb,+M.+J.,+%26+Meyer,+N.+I.+(1993).+Wind+resources.+Renewable+Energy:+Sources+for+Fuels+and+Electricity,+198.&ots=j0ItF__mPr&sig=DFzX4tTyS4dsxCY_iKyjDOnCRc8
- Rasat, M.S.M., Wahab, R., Mohamed, M., Iqbal Ahmad, M., Hazim Mohamad Amini, M., Mohd Nazri Wan Abdul Rahman, W., Khairul Azhar Abdul Razab, M., Ahmad Mohd Yunus, A., Kelantan, M., & Campus, J. (2016). Preliminary study on properties of small diameter wild leucaena leucocephala species as potential biomass energy sources. ARPN Journal of Engineering and Applied Sciences, 11(9). www.arpnjournals.com
- Ren, C., An, N., Wang, J., Li, L., Hu, B., & Shang, D. (2014). Optimal parameters selection for BP neural network based on particle swarm optimization: A case study of wind speed forecasting. Knowledge-Based Systems, 56, 226–239. https://doi.org/10.1016/j.knosys.2013.11.015
- Rezaie, B., Reddy, B.V., & Rosen, M.A. (2018). Exergy Assessment of a Solar-Assisted District Energy System. The Open Fuels & Energy Science Journal, 11, 30. https://doi.org/10.2174/1876973x01811010030
- Rodrigues, E.M.G., Osório, G.J., Godina, R., Bizuayehu, A.W., Lujano-Rojas, J.M., Matias, J.C.O., & Catalão, J.P.S. (2015). Modelling and sizing of NaS (sodium sulfur) battery energy storage system for extending wind power performance in Crete Island. Energy, 90 Part 2, 1606–1617. https://doi.org/10.1016/j.energy.2015.06.116
- Rosa, C.B., Rediske, G., Rigo, P.D., Wendt, J.F.M., Michels, L., & Siluk, J.C.M. (2018). Development of a computational tool for measuring organizational competitiveness in the photovoltaic power plants. Energies, 11(4). https://doi.org/10.3390/en11040867
- Roselli, C., Diglio, G., Sasso, M., & Tariello, F. (2019). A novel energy index to assess the impact of a solar PV-based ground source heat pump on the power grid. Renewable Energy, 143, 488–500. https://doi.org/10.1016/j.renene.2019.05.023
- Ruiz-Cabañas, F.J., Prieto, C., Madina, V., Fernández, A.I., & Cabeza, L.F. (2017). Materials selection for thermal energy storage systems in parabolic trough collector solar facilities using high chloride content nitrate salts. Solar Energy Materials and Solar Cells, 163, 134–147. https://doi.org/10.1016/j.solmat.2017.01.028
- Rukman, N.S.B., Fudholi, A., Taslim, I., Indrianti, M.A., Manyoe, I.N., Lestari, U., & Sopian, K. (2019). Energy and exergy efficiency of water-based photovoltaic thermal (PVT) systems: An overview. International Journal of Power Electronics and Drive Systems, 10(2), 987–994. https://doi.org/10.11591/ijpeds.v10.i2.pp987-994
- Sakamoto, R., Senjyu, T., Kaneko, T., Urasaki, N., Takagi, T., & Sugimoto, S. (2008). Output power leveling of wind turbine generator by pitch angle control using H⧜ control. Electrical Engineering in Japan (English Translation of Denki Gakkai Ronbunshi), 162(4), 17–24. https://doi.org/10.1002/eej.20657
- Salameh, Z., New York, L., & Diego, S. (2014). Renewable Energy System Design. Academic Press. http://elsevier.com/
- Sassmannshausen, S.P., & Volkmann, C. (2018). The Scientometrics of Social Entrepreneurship and Its Establishment as an Academic Field. Journal of Small Business Management, 56(2), 251–273. https://doi.org/10.1111/jsbm.12254
- Schaefer, J.L., Siluk, J.C.M., Carvalho, P.S. de, Renes Pinheiro, J., & Schneider, P.S. (2020). Management Challenges and Opportunities for Energy Cloud Development and Diffusion. Energies, 13(16), 4048. https://doi.org/10.3390/en13164048
- Sci2 Tool. (2019). A Tool for Science of Science Research and Practice. https://sci2.cns.iu.edu/user/index.php
- Senjyu, T., Sakamoto, R., Urasaki, N., Higa, H., Uezato, K., & Funabashi, T. (2006). Output power control of wind turbine generator by pitch angle control using minimum variance control. Electrical Engineering in Japan (English Translation of Denki Gakkai Ronbunshi), 154(2), 10–18. https://doi.org/10.1002/eej.20247
- Shahbaz, M., Solarin, S.A., Hammoudeh, S., & Shahzad, S.J.H. (2017). Bounds testing approach to analyzing the environment Kuznets curve hypothesis with structural beaks: The role of biomass energy consumption in the United States. Energy Economics, 68, 548–565. https://doi.org/10.1016/j.eneco.2017.10.004
- Sharizal Sirrajudin, M., Sukhairi Mat Rasat, M., Wahab, R., Hazim Mohamad Amini, M., Mohamed, M., Iqbal Ahmad, M., Moktar, J., Azhar Ibrahim, M., Kelantan, M., & Campus, J. (2016). Enhancing the Energy Properties of Fugel Pellets from Oil Palm Fronds of Agricultural Residues by Mixing with Glycerin. 11(9). www.arpnjournals.com
- Singh, B., Baharin, N.A., Remeli, M.F., Oberoi, A., Date, A., & Akbarzadeh, A. (2017). Experimental Analysis of Thermoelectric Heat Exchanger for Power Generation from Salinity Gradient Solar Pond Using Low-Grade Heat. Journal of Electronic Materials, 46, 2854–2859. https://doi.org/10.1007/s11664-016-5009-0
- Singh, R., Tundee, S., & Akbarzadeh, A. (2011). Electric power generation from solar pond using combined thermosyphon and thermoelectric modules. Solar Energy, 85(2), 371–378. https://doi.org/10.1016/j.solener.2010.11.012
- Sinha, A., Shahbaz, M., & Balsalobre, D. (2017). Exploring the relationship between energy usage segregation and environmental degradation in N-11 countries. Journal of Cleaner Production, 168, 1217–1229. https://doi.org/10.1016/j.jclepro.2017.09.071
- Skillicorn, D. (2007). Understanding complex datasets: Data mining with matrix decompositions. In Understanding Complex Datasets: Data Mining with Matrix Decompositions (1st Editio). https://doi.org/10.1201/9781584888338
- Small, H., & Garfield, E. (1985). The geography of science: Disciplinary and national mappings. Journal of Information Science, 11(4), 147–159. https://doi.org/10.1177/016555158501100402
- Soltani, R., Mohammadzadeh Keleshtery, P., Vahdati, M., Khoshgoftarmanesh, M.H., Rosen, M.A., & Amidpour, M. (2014). Multi-objective optimization of a solar-hybrid cogeneration cycle: Application to CGAM problem. Energy Conversion and Management, 81, 60–71. https://doi.org/10.1016/j.enconman.2014.02.013
- Stolarski, M.J., Szczukowski, S., Tworkowski, J., Krzyzaniak, M., Gulczyński, P., & Mleczek, M. (2013). Comparison of quality and production cost of briquettes made from agricultural and forest origin biomass. Renewable Energy, 57, 20–26. https://doi.org/10.1016/j.renene.2013.01.005
- Suarez, J.A., & Luengo, C.A. (2003). Coffee Husk Briquettes: A New Renewable Energy Source. Energy Sources, 25(10), 961–967. https://doi.org/10.1080/00908310303395
- Tarfaoui, M., Nachtane, M., & Boudounit, H. (2019). Finite Element Analysis of Composite Offshore Wind Turbine Blades Under Operating Conditions. Journal of Thermal Science and Engineering Applications, 12(1), 011001. https://doi.org/10.1115/1.4042123
- Tokimatsu, K., Konishi, S., Ishihara, K., Tezuka, T., Yasuoka, R., & Nishio, M. (2016). Role of innovative technologies under the global zero emissions scenarios. Applied Energy, 162, 1483–1493. https://doi.org/10.1016/j.apenergy.2015.02.051
- Valderrama, C., Gibert, O., Arcal, J., Solano, P., Akbarzadeh, A., Larrotcha, E., & Cortina, J.L. (2011). Solar energy storage by salinity gradient solar pond: Pilot plant construction and gradient control. Desalination, 279(1–3), 445–450. https://doi.org/10.1016/j.desal.2011.06.035
- Vazquez, M. de L., Waaub, J.P., & Ilinca, A. (2013). MCDA: Measuring robustness as a tool to address strategic wind farms issues. Green Energy and Technology, 129, 153–182. https://doi.org/10.1007/978-1-4471-5143-2_8
- Wang, J., Hu, J., Ma, K., & Zhang, Y. (2015). A self-adaptive hybrid approach for wind speed forecasting. Renewable Energy, 78, 374–385. https://doi.org/10.1016/j.renene.2014.12.074
- Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge University Press.
- Whiteman, A., Sohn, H., Esparrago, J., Arkhipova, I., & Elsayed, S. (2018). Renewable Capacity Statistics 2018. In /publications/2018/Mar/Renewable-Capacity-Statistics-2018. https://www.irena.org/publications/2018/Mar/Renewable-Capacity-Statistics-2018
- Wu, J. (2019). Infrastructure of Scientometrics: The Big and Network Picture. Journal of Data and Information Science, 4(4), 1–12. https://doi.org/10.2478/jdis-2019-0017
- Wuestman, M.L., Hoekman, J., & Frenken, K. (2019). The geography of scientific citations. Research Policy, 48(7), 1771–1780. https://doi.org/10.1016/j.respol.2019.04.004
- Xu, H., Wang, C., Dong, K., Luo, R., Yue, Z., & Pang, H. (2020). A study of methods to identify industry-university-research institution cooperation partners based on innovation Chain theory. Journal of Data and Information Science, 3(2), 38–61. https://doi.org/10.2478/jdis-2018-0008
- Yang, W., Wang, J., Lu, H., Niu, T., & Du, P. (2019). Hybrid wind energy forecasting and analysis system based on divide and conquer scheme: A case study in China. Journal of Cleaner Production, 222, 942–959. https://doi.org/10.1016/j.jclepro.2019.03.036
- Zhang, W., Kleiber, W., Florita, A.R., Hodge, B.M., & Mather, B. (2019). Modeling and simulation of high-frequency solar irradiance. IEEE Journal of Photovoltaics, 9(1), 124–131. https://doi.org/10.1109/JPHOTOV.2018.2879756
- Zhang, W., Maleki, A., Rosen, M.A., & Liu, J. (2018). Optimization with a simulated annealing algorithm of a hybrid system for renewable energy including battery and hydrogen storage. Energy, 163, 191–207. https://doi.org/10.1016/j.energy.2018.08.112