Have a personal or library account? Click to login
Using Network Embedding to Obtain a Richer and More Stable Network Layout for a Large Scale Bibliometric Network Cover

Using Network Embedding to Obtain a Richer and More Stable Network Layout for a Large Scale Bibliometric Network

Open Access
|Dec 2020

References

  1. Bartol, T., Budimir, G., Juznic, P., & Stopar, K. (2016). Mapping and classification of agriculture in Web of Science: Other subject categories and research fields may benefit. Scientometrics, 109(2), 979–996.
  2. Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An open source software for exploring and manipulating networks. Third international AAAI conference on weblogs and social media.
  3. Bornmann, L., Leydesdorff, L., Walch-Solimena, C., & Ettl, C. (2011). Mapping excellence in the geography of science: An approach based on Scopus data. Journal of Informetrics, 5(4), 537–546.
  4. Boyack, K.W., & Klavans, R. (2014). Creation of a highly detailed, dynamic, global model and map of science. Journal of the Association for Information Science and Technology, 65(4), 670–685. doi: 10.1002/asi.22990, URL https://dx.doi.org/10.1002/asi.22990
  5. Boyack, K.W., Klavans, R., & Börner, K. (2005). Mapping the backbone of science. Scientometrics, 64(3), 351–374.
  6. Boyack, K.W., Newman, D., Duhon, R.J., Klavans, R., Patek, M., Biberstine, J.R., Schijvenaars, B., Skupin, A., Ma, N., & Börner, K. (2011). Clustering More than Two Million Biomedical Publications: Comparing the Accuracies of Nine Text-Based Similarity Approaches. PLoS ONE, 6(3), e18029–e18029. doi: 10.1371/journal.pone.0018029
  7. Boyack, K.W., Small, H., & Klavans, R. (2013). Improving the accuracy of co-citation clustering using full text. Journal of the American Society for Information Science and Technology, 64(9), 1759–1767. doi: 10.1002/asi.22896
  8. Chen, C.M. (1999). Visualising semantic spaces and author co-citation networks in digital libraries. Information Processing & Management, 35(3), 401–420.
  9. Chen, T. (2020). Essential Science Indicators highly cited paper co-citation relationships 2018.3. V1. DOI http://www.dx.doi.org/10.11922/sciencedb.00256, URL http://www.dx.doi.org/10.11922/sciencedb.00256
  10. Chen, T., Wang, H., & Wang, X. (2020). Detecting Funding Topics Evolutions with Visualization (in Chinese). Data Analysis and Knowledge Discovery, 4(2/3).
  11. van Eck, N.J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538.
  12. van Eck, N.J., Waltman, L., Noyons, E.C.M., & Buter, R.K. (2010). Automatic term identification for bibliometric mapping. Scientometrics, 82(3), 581–596.
  13. Gibson, H., Faith, J., & Vickers, P. (2013). A survey of two-dimensional graph layout techniques for information visualisation. Information Visualization, 12(3–4), 324–357.
  14. Grover, A., & Leskovec, J. (2016). Node2Vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, pp 855–864.
  15. Katsurai, M., & Ono, S. (2019). TrendNets: Mapping emerging research trends from dynamic co-word networks via sparse representation. Scientometrics, 121(3), 1583–1598.
  16. Kruskal, J.B. (1977). Multidimensional scaling and other methods for discovery structure. In: Enslein, K., Ralston, A., & Wilf, H. (eds) Statistical methods for digital computers, Wiley.
  17. Kullback, S., & Leibler, R.A. (1951). On Information and Sufficiency. The Annals of Mathematical Statistics, 22(1), 79–86. doi: 10.1214/aoms/1177729694
  18. Le, Q., & Mikolov, T. (2014). Distributed representations of sentences and documents. In Proceedings of the 31st International Conference on Machine Learning, pp 1188–1196.
  19. Li, P., Yang, G.L., & Wang, C.Q. (2019). Visual topical analysis of library and information science. Scientometrics, 121, 1753–1791.
  20. Li, W.T., Cerise, J.E., Yang, Y.N., & Han, H. (2017). Application of t-SNE to human genetic data. Journal of Bioinformatics and Computational Biology, 15(4), 1750017–1750017.
  21. Liu, S., Bremer, P.T., Thiagarajan, J.J., Srikumar, V., Wang, B., Livnat, Y., & Pascucci, V. (2018). Visual Exploration of Semantic Relationships in Neural Word Embeddings. IEEE Transactions on Visualization and Computer Graphics, 24(1), 553–562.
  22. Liu, Z. (1992). Visualizing the intellectual structure in urban studies: A journal co-citation analysis. Scientometrics, 62(3), 385–402.
  23. Maaten, L.V.D., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research, 9, 2579–2605.
  24. Martin, S., Brown, W.M., Klavans, R., & Boyack, K.W. (2011). OpenOrd: An open-source toolbox for large graph layout. International Society for Optics and Photonics, 7868, 786806–786806.
  25. Perozzi, B., Al-Rfou, R., & Skiena, S. (2014). Deepwalk: Online learning of social representations. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, pp 701–710.
  26. Pezzotti, N., Lelieveldt, B.P.F., van der Maaten, L., Hollt, T., Eisemann, E., & Vilanova, A. (2017). Approximated and User Steerable tSNE for Progressive Visual Analytics. IEEE Transactions on Visualization and Computer Graphics, 23(7), 1739–1752.
  27. Shen, Z.S., Chen, F.Y., Yang, L.Y., & Wu, J.S. (2019). Node2vec representation for clustering journals and as a possible measure of diversity. Journal of Data and Information Science, 4(2), 79–92.
  28. Small, H. (1999). Visualizing science by citation mapping. Journal of the American Society for Information Science, 50(9), 799–813.
  29. Small, H., & Griffith, B.C. (1974). The Structure of Scientific Literatures I: Identifying and Graphing Specialties. Science Studies, 4(1), 17–40.
  30. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., & Mei, Q. (2015). Line: Large-scale information network embedding. In: Proceedings of the 24th international conference on world wide web, WWW, pp 1067–1077.
  31. Wang, X., Han, T., Li, G., Chen, T., & Zhang, X. (2017). Mapping science structure 2017 (in Chinese). Science Press China.
  32. White, H.D. (2003). Pathfinder networks and author co-citation analysis: A remapping of paradigmatic information scientists. Journal of the American Society for Information Science, 54(5), 423–434.
  33. Zhai, T., & Di, L.Z. (2019). Information mining and visualization of highly cited papers on type-2 diabetes mellitus from ESI. CURRENT SCIENCE, 116(12), 1965.
  34. Zhou, Q., & Leydesdorff, L. (2016). The normalization of occurrence and Co-occurrence matrices in bibliometrics using Cosinesimilarities and Ochiaicoefficients. Journal of the Association for Information Science and Technology, 67(11), 2805–2814. doi: 10.1002/asi.23603
DOI: https://doi.org/10.2478/jdis-2021-0006 | Journal eISSN: 2543-683X | Journal ISSN: 2096-157X
Language: English
Page range: 154 - 177
Submitted on: Jul 1, 2020
Accepted on: Oct 20, 2020
Published on: Dec 8, 2020
Published by: Chinese Academy of Sciences, National Science Library
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Ting Chen, Guopeng Li, Qiping Deng, Xiaomei Wang, published by Chinese Academy of Sciences, National Science Library
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.