References
- Boyack, K., Glänzel, W., Gläser, J., Havemann, F., Scharnhorst, A., Thijs, B., van Eck, N. J., Velden, T., & Waltmann, L. (2017). Topic identification challenge. Scientometrics, 111, 1223– 1224.
- Boyack, K. W., & Klavans, R. (2014). Including cited non-source items in a large-scale map of science: What difference does it make? Journal of Informetrics, 8, 569–580. 10.1016/j. joi.2014.04.001
- Colavizza, G., Boyack, K. W., van Eck, N. J., & Waltman, L. (2018). The closer the better: Similarity of publication pairs at different cocitation levels. Journal of the Association for Information Science and Technology, 69, 600–609. 10.1002/asi.23981
- Glänzel, W., & Schubert, A. (2003). A new classification scheme of science fields and subfields designed for scientometric evaluation purposes. Scientometrics, 56, 357–367.
- Glänzel, W., & Thijs, B. (2011). Using core documents for the representation of clusters and topics. Scientometrics, 88, 297–309.
- Grover, A., & Leskovec, J. (2016). node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 855–864). ACM.
- Haunschild, R., Schier, H., Marx, W., & Bornman, L. (2018). Algorithmically generated subject categories based on citation relations: An empirical micro study using papers on overall water splitting. Journal of Informetrics, 12, 436–447. 10.1016/j.joi.2018.03.004
- Janssens, F., Glänzel, W., & De Moor, B. (2008). A hybrid mapping of information science. Scientometrics, 75, 607–631.
- JCR2017 (2018). 2017 journal impact factor, journal citation reports (clarivate analytics, 2018).
- Klavans, R., & Boyack, K. W. (2009). Toward a consensus map of science. Journal of the American Society for Information Science and Technology, 60, 455–476.
- Klavans, R., & Boyack, K. W. (2017). Which type of citation analysis generates the most accurate taxonomy of scientific and technical knowledge? Journal of the Association for Information Science and Technology, 68, 984–998.
- Leydesdorff, L. (2006). Can scientific journals be classified in terms of aggregated journal-journal citation relations using the journal citation reports? Journal of the American Society for Information Science and Technology, 57, 601–613.
- Leydesdorff, L., Bornmann, L., & Wagner, C. S. (2017). Generating clustered journal maps: An automated system for hierarchical classification. Scientometrics, 110, 1601–1614.
- Leydesdorff, L., Bornmann, L., & Wagner, C. S. (2017). Generating clustered journal maps: an automated system for hierarchical classification. Scientometrics, 110, 1601–1614. 10.1007/s11192-016-2226-5
- Leydesdorff, L., Wagner, C. S., & Bornmann, L. (2018). Betweenness and diversity in journal citation networks as measures of interdisciplinarity—a tribute to eugene garfield. Scientometrics, 114, 567–592.
- Maaten, L. v. d., & Hinton, G. (2008). Visualizing data using t-sne. Journal of Machine Learning Research, 9, 2579–2605.
- Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. In advances in neural information processing systems (pp. 3111–3119).
- Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.
- Rao, C. R. (1982). Diversity: its measurement, decomposition apportionment and analysis. Sankhy : The Indian Journal of Statistics, Series A, 44, 1–22.
- Schakel, A. M., & Wilson, B. J. (2015). Measuring word significance using distributed representations of words. arXiv preprint arXiv:1508.02297.
- Shen, Z., Yang, L., Pei, J., Li, M., Wu, C., Bao, J., Wei, T., Di, Z., Rousseau, R., & Wu, J. (2016). Interrelations among scientific fields and their relative influences revealed by an input—output analysis. Journal of Informetrics, 10, 82–97. https://doi.org/10.1016/j.joi.2015.11.002
- Sjogarde, P., & Ahlgren, P. (2018). Granularity of algorithmically constructed publication-level classifications of research publications: Identification of topics. Journal of Informetrics, 12, 133–152. 10.1016/j.joi.2017.12.006
- Stirling, A. (2007). A general framework for analysing diversity in science, technology and society. Journal of the Royal Society Interface, 4, 707–719.
- Vinh, N. X., Epps, J., & Bailey, J. (2010). Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance. Journal of Machine Learning Research, 11, 2837–2854.
- Waltman, L. (2016). A review of the literature on citation impact indicators. Journal of Informetrics, 10, 365 – 391. https://doi.org/10.1016/j.joi.2016.02.007
- Waltman, L., & Van Eck, N. J. (2012). A new methodology for constructing a publication-level classification system of science. Journal of the American Society for Information Science and Technology, 63, 2378–2392.
- Zhang, L., Rousseau, R., & Glanzel, W. (2016). Diversity of references as an indicator of the interdisciplinarity of journals: Taking similarity between subject fields into account. Journal of The Association for Information Science and Technology, 67, 1257–1265. 10.1002/asi.23487