Have a personal or library account? Click to login
Exploring Echo Chambers in Twitter during Two Spanish Regional Elections: An Analysis of Community Interactions Cover

Exploring Echo Chambers in Twitter during Two Spanish Regional Elections: An Analysis of Community Interactions

Open Access
|May 2024

References

  1. Abilov, A., Hua, Y., Matatov, H., Amir, O., & Naaman, M. (2021). VoterFraud2020: a Multi-modal Dataset of Election Fraud Claims on Twitter. https://arxiv.org/abs/2101.08210
  2. Aragón, P., Kappler, K. E., Kaltenbrunner, A., Laniado, D., & Volkovich, Y. (2013). Communication dynamics in Twitter during political campaigns: The case of the 2011 Spanish National Election. Policy and Internet, 5(2), 183–206. https://doi.org/10.1002/1944-2866.POI327
  3. Bakshy, E., Messing, S., & Adamic, L. A. (2015). Exposure to ideologically diverse news and opinion on Facebook. Science, 348(6239), 1130–1132. http://education.biu.ac.il/files/education/shared/science-2015-bakshy-1130-2.pdf
  4. Balcells, J., & Padró-Solanet, A. (2020). Crossing lines in the Twitter debate on Catalonia’s independence. The International Journal of Press/Politics, 25(1), 28–52. https://doi.org/10.1177/1940161219858687
  5. Barberá, P., Jost, J. T., Nagler, J., Tucker, J.A., & Bonneau, R. (2015). Tweeting from left to right: is online political communication more than an echo chamber? Psychological Science, 26(10), 1531–1542. https://doi.org/10.1177/0956797615594620
  6. Batorski, D., & Grzywinska, I. (2018). Three dimensions of the public sphere on Facebook. Information Communication and Society, 21(3), 356–374. https://doi.org/10.1080/1369118X.2017.1281329
  7. Bird, S., Klein, E., & Loper, E. (2009). Natural language processing with Python: Analyzing text with the natural language toolkit. O’Reilly Media, Inc.
  8. Bradshaw, S., & Howard, P. N. (2019). The global disinformation disorder: 2019 global inventory of organised social media manipulation. Working Paper 2019.2. Project on Computational Propaganda.
  9. Buder, J., Rabl, L., Feiks, M., Badermann, M., & Zurstiege, G. (2021). Does negatively toned language use on social media lead to attitude polarization? Computers in Human Behavior, 116, 106663. https://doi.org/10.1016/j.chb.2020.106663
  10. Casañ, R. R., García-Vidal, E., Grimaldi, D., Carrasco-Farré, C., Vaquer-Estalrich, F., & Vila-Francés, J. (2022). Online polarization and cross-fertilization in multi-cleavage societies: The case of Spain. Social Network Analysis and Mining, 12, 79. https://doi.org/10.1007/s13278-022-00909-5
  11. Centro de Estudios Andaluces – Barómetro Preelectoral del Centro de Estudios Andaluces (May 2022). https://www.centrodeestudiosandaluces.es/encuestas/preelectoral-elecciones-autonomicas-2022
  12. Centro de Investigaciones Sociológicas – Barómetro del CIS (April 2021). https://www.cis.es/cis/export/sites/default/-Archivos/Marginales/3300_3319/3318/es3318mar.pdf
  13. Chen, Y., & Skiena, S. (2014). Building sentiment lexicons for all major languages. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers) (pp. 383–389). Association for Computational Linguistics.
  14. Esteve Del Valle, M., & Borge Bravo, R. (2018). Echo chambers in parliamentary Twitter networks the Catalan case. International Journal of Communication, 12, 1715–1735.
  15. Flaxman, S., Goel, S., & Rao, J. M. (2016). Filter bubbles, echo chambers, and online news consumption. Public Opinion Quarterly, 80(Specialissue1). https://doi.org/10.1093/poq/nfw00
  16. Garrett, K. R. (2009). Politically motivated reinforcement seeking: Reframing the selective exposure debate. Journal of Communication, 59(4), 676–699. https://doi.org/10.1111/j.1460-2466.2009.01452.x
  17. Guerrero-Solé, F. (2017). Community detection in political discussions on Twitter: An application of the retweet overlap network method to the Catalan process toward independence. Social Science Computer Review, 35(2), 244–261. https://doi.org/10.1177/0894439315617254
  18. Guess, A., Nagler, J., & Tucker, J. (2019). Less than you think: Prevalence and predictors of fake news dissemination on Facebook. Science Advances, 5, eaau4586.
  19. Hagberg, A., Schult, D., & Swart, P. (2008). Exploring network structure, dynamics, and function using NetworkX. In G. Varoquaux, T. Vaught, & J. Millman (Eds.), Proceedings of the 7th Python in Science Conference (SciPy2008) (pp. 11–15). Pasadena, CA, USA, August 2008.
  20. Hayat, T., & Samuel-Azran, T. (2017). “You too, second screeners?” second screeners’ echo chambers during the 2016 U.S. elections primaries. Journal of Broadcasting and Electronic Media, 61(2), 291–308. https://doi.org/10.1080/08838151.2017.1309417
  21. Jacomy, M., Venturini, T., Heymann, S., & Bastian, M. (2014). ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi Software. PLoS ONE, 9(6), e98679. https://doi.org/10.1371/journal.pone.0098679
  22. McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: Homophily in social networks. Annual Review of Sociology, 27(1), 415–444. https://doi.org/10.1146/annurev.soc.27.1.415
  23. Merry, M. (2015). Making friends and enemies on social media: The case of gun policy organizations. Iranian Journal of Information Processing Management, 30(2), 373–396. https://doi.org/10.1108/EL-01-2014-0022
  24. Morstatter, F., Pfeffer, J., Liu, H., & Carley, K.M. (2013). Is the sample good enough? Comparing data from Twitter’s streaming API with Twitter’s firehose. ArXiv, abs/1306.5204.
  25. Newman, N., Fletcher, R., Eddy, K., Robertson, C. T., & Nielsen, R. K. (2023). Reuters Institute Digital News Report 2023. Reuters Institute for the Study of Journalism. http://www.digitalnewsreport.org/
  26. Nickerson, R. S. (1998). Confirmation bias: A ubiquitous phenomenon in many guises. Review of General Psychology, 2(2), 175–220. https://doi.org/10.1037/1089-2680.2.2.175
  27. Nyhan, B., Settle, J., Thorson, E. et al. (2023). Like-minded sources on Facebook are prevalent but not polarizing. Nature 620, 137–144. https://doi.org/10.1038/s41586-023-06297-w
  28. Park, S. J., Park, J. Y., Lim, Y. S., & Park, H. W. (2016). Expanding the presidential debate by tweeting: The 2012 presidential election debate in South Korea. Telematics and Informatics, 33, 557–569. https://doi.org/10.1016/j.tele.2015.08.004
  29. Pastor-Galindo, J., Zago, M., Nespoli, P., López Bernal, S., Huertas, A., Pérez, M., Ruipérez-Valiente, J. A., Martinez Perez, G., & Gomez Marmol, F. (2020). Spotting political social bots in Twitter: A use case of the 2019 Spanish general election. IEEE Transactions on Network and Service Management, 17(4), 2156–2170. https://doi.org/10.1109/TNSM.2020.3031573
  30. Quattrociocchi, W., Scala, A., & Sunstein, C. R. (2016). Echo chambers on Facebook. https://doi.org/10.2139/ssrn.2795110
  31. Roesslein, J. (2020). Tweepy: Twitter for Python! Https://Github.Com/Tweepy/Tweepy.
  32. Ross Arguedas, A., Robertson, C., Fletcher, R., & Nielsen, R. (2022). Echo chambers, filter bubbles, and polarisation: A literature review. Reuters Institute for the Study of Journalism.
  33. Stella, M., Cristoforetti, M., & De Domenico, M. (2019). Influence of augmented humans in online interactions during voting events. PLoS One, 14. https://doi.org/10.1371/journal.pone.0214210
  34. Stroud, N. J. (2010). Polarization and partisan selective exposure. Journal of Communication, 60(3), 556–576. https://doi.org/10.1111/j.1460-2466.2010.01497.x
  35. Sunstein, C. R. (2017). #Republic: Divided democracy in the age of social media. Princeton University Press.
  36. Terren, L., & Borge, R. (2021). Echo chambers on social media: A systematic review of the literature. Review of Communication Research, 9, 99–118. https://doi.org/10.12840/ISSN.2255-4165.028
  37. Thorson, K., Cotter, K., Medeiros, M., & Pak, C. (2019). Algorithmic inference, political interest, and exposure to news and politics on Facebook. Information, Communication & Society, 24(2), 183–200. https://doi.org/10.1080/1369118x.2019.1642934
  38. Törnberg, P. (2018). Echo chambers and viral misinformation: Modeling fake news as complex contagion. PLoS One, 13(9), e0203958. https://doi.org/10.1371/journal.pone.0203958
  39. Tsai, W.-H. S., Tao, W., Chuan, C.-H., & Hong, C. (2020). Echo chambers and social mediators in public advocacy issue networks. Public Relations Review, 46(1), 101882, https://doi.org/10.1016/j.pubrev.2020.101882.
  40. Vaccari, C., Valeriani, A., Barberá, P., Jost, J. T., Nagler, J., & Tucker, J. A. (2016). Of echo chambers and contrarian clubs: Exposure to political disagreement among German and Italian users of Twitter. Social Media + Society, 2, 1–24. https://doi.org/10.1177/2056305116664221
  41. Williams, H. T. P., McMurray, J. R., Kurz, T., & Hugo Lambert, F. (2015). Network analysis reveals open forums and echo chambers in social media discussions of climate change. Global Environmental Change. https://doi.org/10.1016/j.gloenvcha.2015.03.006
DOI: https://doi.org/10.21307/connections-2019.033 | Journal eISSN: 2816-4245 | Journal ISSN: 0226-1766
Language: English
Page range: 77 - 112
Published on: May 18, 2024
Published by: International Network for Social Network Analysis (INSNA)
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Raul Broto Cervera, Cristina Pérez-Solà, Albert Batlle, published by International Network for Social Network Analysis (INSNA)
This work is licensed under the Creative Commons Attribution 4.0 License.