Have a personal or library account? Click to login
The Hfq protein – a novel view on the well-known riboregulator Cover

The Hfq protein – a novel view on the well-known riboregulator

Open Access
|May 2019

References

  1. Aiba H.: Mechanism of RNA silencing by Hfq-binding small RNAs. Curr. Opin. Microbiol. 10, 134–139 (2007)
  2. Arluison V., Folichon M., Marco S., Derreumaux P., Pellegrini O., Seguin J., Hajnsdorf E., Regnier P.: The C-terminal domain of Escherichia coli Hfq increases the stability of the hexamer. Eur. J. Biochem. 271, 1258–1265 (2004)
  3. Arluison V., Mura C., Guzmán M.R., Liquier J., Pellegrini O., Gingery M., Régnier P., Marco S.: Three-dimensional structures of fibrillar Sm proteins: Hfq and other Sm-like proteins. J. Mol. Biol. 356, 86–96 (2006)10.1016/j.jmb.2005.11.010
  4. Azam T.A., Ishihama A.: Twelve species of the nucleoid-associated protein from Escherichia coli. Sequence recognition specificity and DNA binding affinity. J. Biol. Chem. 274, 33105–33113 (1999)
  5. Bardill J.P., Zhao X., Hammer B.K.: The Vibrio cholerae quorum sensing response is mediated by Hfq-dependent sRNA/mRNA base pairing interactions. Mol. Microbiol. 80, 1381–1394 (2011)
  6. Bi E.F., Lutkenhaus J.: FtsZ ring structure associated with division in Escherichia coli. Nature, 354, 161–4 (1991)10.1038/354161a0
  7. Brennan R.G., Link T.M.: Hfq structure, function and ligand binding. Curr. Opin. Microbiol. 10, 125–133 (2007)
  8. Carmichael G.G., Weber K., Niveleau A., Wahba A.J.: The host factor required for RNA phage Q beta RNA replication in vitro. Intracellular location, quantitation, and purification by polyadenylate-cellulose chromatography. J. Biol. Chem. 250, 3607–3612 (1975)
  9. Cech G.M., Pakuła B., Kamrowska D., Wegrzyn G., Arluison V., Szalewska-Pałasz A.: Hfq protein deficiency in Escherichia coliaffects ColE1-like but not lambda plasmid DNA replication. Plasmid, 73, 10–15 (2014)10.1016/j.plasmid.2014.04.005
  10. Chao Y., Vogel J.: The role of Hfq in bacterial pathogens.: Curr. Opin. Microbiol. 13, 24–33 (2010)
  11. Dame R.T., Noom M.C., Wuite G.J.L.: Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation. Nature, 444, 387–390 (2006)10.1038/nature05283
  12. de Haseth P. L., Uhlenbeck O. C.: Interaction of Escherichia coli host factor protein with oligoriboadenylates. Biochemistry, 19, 6138–6146 (1980)10.1021/bi00567a029
  13. Diestra E., Cayrol B., Arluison V., Risco C.: Cellular electron microscopy imaging reveals the localization of the hfq protein close to the bacterial membrane. Plos One, 4, (2009)10.1371/journal.pone.0008301
  14. Fortas E., Piccirilli F., Malabirade A., Militello V., Trépout S., Marco S., Taghbalout A., Arluison V.: New insight into the structure and function of Hfq C-terminus. Biosci. Rep. 35, 1–9 (2015)
  15. Franze de Fernandez M.T., Hayward W.S., August J.T.: Bacterial proteins required for replication of phage Q ribonucleic acid. Pruification and properties of host factor I, a ribonucleic acid-binding protein. J. Biol. Chem. 247, 824–831 (1972)
  16. Geinguenaud F., Calandrini V., Teixeira J., Mayer C., Liquier J., Lavelle C., Arluison V.: Conformational transition of DNA bound to Hfq probed by infrared spectroscopy. Phys. Chem. 13, 1222–1229 (2011)
  17. Guillier M., Gottesman S., Storz G.: Modulating the outer membrane with small RNAs. Gene. Dev. 20, 2338–2348 (2006)
  18. Guisbert E., Rhodius V.A., Ahuja N., Witkin E., Gross C.A.: Hfq modulates the sigmaE-mediated envelope stress response and the sigma32-mediated cytoplasmic stress response in Escherichia coli. J. Bacteriol. 189, 1963–1973 (2007)10.1128/JB.01243-06
  19. Hermann H., Fabrizio P., Raker V.A., Foulaki K., Hornig H., Brahms H., Luhrmann R.: snRNP Sm proteins share two evolutionarily conserved sequence motifs which are involved in Sm protein-protein interactions. EMBO J. 14, 2076–2088 (1995)10.1002/j.1460-2075.1995.tb07199.x
  20. Holmqvist E., Wright P. R., Li L., Bischler T., Barquist L., Reinhardt R., Vogel J.: Global RNA recognition patterns of posttranscriptional regulators Hfq and CsrA revealed by UV crosslinking in vivo. EMBO J. 35(9), 991–1011. (2016)10.15252/embj.201593360
  21. Hori K., Yanazaki Y.: Nucleotide sequence specific interaction of host factor I with bacteriophage Q beta RNA. FEBS Lett. 43, 20–22 (1974)10.1016/0014-5793(74)81095-1
  22. Ikeda Y., Yagi M., Morita T., Aiba H.: Hfq binding at RhlB-recognition region of RNase E is crucial for the rapid degradation of target mRNAs mediated by sRNAs in Escherichia coli. Mol. Microbiol. 79, 419–432 (2011)10.1111/j.1365-2958.2010.07454.x21219461
  23. Jiang K., Zhang C., Guttula D., Liu F., van Kan J. A., Lavelle C., Kubiak K., Malabirade A., Lapp A., Arluison V., van der Maarel J.R.C.: Effects of Hfq on the conformation and compaction of DNA. Nucleic Acids Res. 43, 4332–4341 (2015)10.1093/nar/gkv268441717525824948
  24. Kajitani M., Kato A., Wada A., Inokuchi Y., Ishihama A.: Regulation of the Escherichia coli hfq gene encoding the host factor for phage Q beta. J. Bacteriol. 176, 531–534 (1994)10.1128/jb.176.2.531-534.19942050818288550
  25. Link T.M., Valentin-Hansen P., Brennan R.G.: Structure of Escherichia coli Hfq bound to polyriboadenylate RNA. Proc. Natl. Acad. Sci. USA, 106, 19292–19297 (2009)10.1073/pnas.0908744106277320019889981
  26. Lu F., Taghbalout A.: Membrane association via an amino-terminal amphipathic helix is required for the cellular organization and function of RNase II. J. Biol. Chem. 288, 7241–7251 (2013)
  27. 27.Melamed S., Peer A., Faigenbaum-Romm R., Gatt Y.E., Reiss N., Bar A., Margalit, H.: Global Mapping of Small RNA-Target Interactions in Bacteria. Molecular Cell, 63(5), 884–897 (2016)10.1016/j.molcel.2016.07.026514581227588604
  28. Mohanty B.K., Maples V.F., Kushner S.R.: The Sm-like protein Hfq regulates polyadenylation dependent mRNA decay in Escherichia coli. Mol. Microbiol. 54, 905–920 (2004)
  29. Moll I., Afonyushkin T., Vytvytska O., Kaberdin V. R., Blasi U.: Coincident Hfq binding and RNase E cleavage sites on mRNA and small regulatory RNAs. RNA, 9, 1308–1314 (2003)10.1261/rna.5850703128705214561880
  30. Muffler A., Fischer D., Hengge-Aronis R.: The RNA-binding protein HF-I, known as a host factor for phage Qbeta RNA replication, is essential for rpoS translation in Escherichia coli. Genes Dev. 10, 1143–1151 (1996)10.1101/gad.10.9.11438654929
  31. Mura C., Randolph P.S., Patterson J., Cozen A.E.: Archaeal and eukaryotic homologs of Hfq: A structural and evolutionary perspective on Sm function. RNA Biol. 10, 636–651 (2013)10.4161/rna.24538371037123579284
  32. Ohniwa R.L., Muchaku H., Saito S., Wada C., Morikawa K.: Atomic force microscopy analysis of the role of major DNA-binding proteins in organization of the nucleoid in Escherichia coli. Plos One, 8, e72954 (2013)10.1371/journal.pone.0072954374120123951337
  33. Olejniczak M.: Despite similar binding to the Hfq protein regulatory RNAs widely differ in their competition performance. Biochemistry50, 4427–4440 (2011)10.1021/bi102043f21510661
  34. Papenfort K., Vogel J.: Regulatory RNA in bacterial pathogens.: Cell Host Microbe, 8, 116–127 (2010)10.1016/j.chom.2010.06.00820638647
  35. Paull T.T., Haykinson M.J., Johnson R.C.: The nonspecific DNA-binding and -bending proteins HMG1 and HMG2 promote the assembly of complex nucleoprotein structures. Genes Dev. 7, 1521–1534 (1993)10.1101/gad.7.8.15218339930
  36. Ramos C.G., Sousa S.A., Grilo A.M., Feliciano J.R., Leitao J.H.: The second RNA chaperone, Hfq2, is also required for survival under stress and full virulence of Burkholderia cenocepacia J2315. J. Bacteriol. 193, 1515–1526 (2011)10.1128/JB.01375-10306766221278292
  37. Rice J.B., Vanderpool C.K.: The small RNA SgrS controls sugar-phosphate accumulation by regulating multiple PTS genes. Nucleic Acids Res. 39, 3806–3819 (2011)10.1093/nar/gkq1219308944521245045
  38. Ross J.A., Ellis M.J., Hossain S., Haniford D.B.: Hfq restructures RNA-IN and RNA-OUT and facilitates antisense pairing in the Tn10/IS10 system. RNA, 19, 670–684 (2013)10.1261/rna.037747.112367728223510801
  39. Ross J.A., Trussler R.S., Black M.D., McLellan C.R., Haniford D.B.: Tn5 transposition in Escherichia coli is repressed by Hfq and activated by over-expression of the small non-coding RNA SgrS. Mob. DNA, 5, 27 (2014)10.1186/s13100-014-0027-z426535225506402
  40. Santiago-Frangos A., Jeliazkov J.R., Gray J.J., Woodson S.A.: Acidic C-terminal domains autoregulate the RNA chaperone Hfq. eLife, 6, e27049 (2017)10.7554/eLife.27049560685028826489
  41. Sauer E., Schmidt S., Weichenrieder O.: Small RNA binding to the lateral surface of Hfq hexamers and structural rearrangements upon mRNA target recognition. Proc. Natl. Acad. Sci. USA, 109, 9396–9401 (2012)10.1073/pnas.1202521109338610422645344
  42. Schu D.J., Zhang A., Gottesman S., Storz G.: Alternative Hfq-sRNA interaction modes dictate alternative mRNA recognition. EMBO J. 34(20), 2557–2573 (2015)10.15252/embj.201591569460918626373314
  43. Senear A.W., Steitz J.A.: Site-specific interaction of Q beta host factor and ribosomal protein S1 with Q beta and R17 bacteriophage RNAs. J. Biol. Chem. 251, 1902–1912 (1976)
  44. Skoko D., Yan J., Johnson R.C., Marko J.F.: Low-force DNA condensation and discontinuous high-force decondensation reveal a loop-stabilizing function of the protein Fis. Phys. Rev. Lett. 95, 208101 (2005)10.1103/PhysRevLett.95.20810116384101
  45. Sonnenfield J.M., Burns C.M., Higgins C.F., Hinton J.C.: The nucleoid-associated protein StpA binds curved DNA, has a greater DNA-binding affinity than H-NS and is present in significant levels in hns mutants. Biochimie, 83, 243–249 (2001)10.1016/S0300-9084(01)01232-9
  46. Swinger K.K., Rice P.A.: IHF and HU: Flexible architects of bent DNA. Curr. Opin. Struct. Biol. 14, 28–35 (2004)
  47. Talukder A., Ishihama A.: Growth phase dependent changes in the structure and protein composition of nucleoid in Escherichia coli. Sci. China Life Sci. 58, 902–911 (2015)10.1007/s11427-015-4898-026208826
  48. Tsui H.C., Feng G., Winkler M.E.: Negative regulation of mutS and mutH repair gene expression by the Hfq and RpoS global regulators of Escherichia coli K-12. J. Bacteriol. 179, 7476–7487 (1997)10.1128/jb.179.23.7476-7487.19971797009393714
  49. Tsui H.C., Leung H.C., Winkler M.E.: Characterization of broadly pleiotropic phenotypes caused by an hfq insertion mutation in Escherichia coli K-12. Mol. Microbiol. 13, 35–49 (1994)
  50. Udekwu K.I., Darfeuille F., Vogel J., Reimegård J., Holmqvist E., Wagner E.G.H.: Hfq-dependent regulation of OmpA synthesis is mediated by an antisense RNA. Gene. Dev. 19, 2355–2366 (2005)
  51. Updegrove T.B., Correia J.J., Galletto R., Bujalowski W., Wartell R.M.: E. coli DNA associated with isolated Hfq interacts with Hfq’s distal surface and C-terminal domain. Biochim. Biophys. Acta, 1799, 588–596 (2010)
  52. Valentin-Hansen P., Eriksen M., Udesen C.: The bacterial Sm-like protein Hfq: A key player in RNA transactions. Mol. Microbiol. 51, 1525–1533 (2004)10.1111/j.1365-2958.2003.03935.x15009882
  53. Vassilieva I.M., Nikulin A.D., Blasi U., Moll I., Garber M.B.: Crystallization of Hfq protein: a bacterial gene-expression regulator. Acta Crystallogr. D. Biol. Crystallogr. 59, 1061–1063 (2003)10.1107/S090744490300692912777774
  54. Vassilieva I.M., Rouzanov M.V, Zelinskaya N.V, Moll I., Blasi U., Garber M.B.: Cloning, purification, and crystallization of a bacterial gene expression regulator – Hfq protein from Escherichia coli. Biochemistry, 67, 1293–1297 (2002)
  55. Vaughan S., Wickstead B., Gull K., Addinall S.G.: Molecular evolution of FtsZ protein sequences encoded within the genomes of archaea, bacteria, and eukaryota. J. Mol. Evol. 58, 19–29 (2004)
  56. Vecerek B., Beich-Frandsen M., Resch A., Blasi U.: Translational activation of rpoS mRNA by the non-coding RNA DsrA and Hfq does not require ribosome binding. Nucleic Acids Res. 38, 1284–1293 (2010)10.1093/nar/gkp1125283133119969548
  57. Vogel J., Luisi B.F.: Hfq and its constellation of RNA.: Nat. Rev. Microbiol. 9, 578–589 (2011)
  58. Vogt S.L., Raivio T.L.: Hfq reduces envelope stress by controlling expression of envelope-localized proteins and protein complexes in enteropathogenic Escherichia coli. Mol. Microbiol. 92, 681–697 (2014)
  59. Vytvytska O., Jakobsen J.S., Balcunaite G., Andersen J.S., Baccarini M., von Gabain A.: Host factor I, Hfq, binds to Escherichia coli ompA mRNA in a growth rate-dependent fashion and regulates its stability. Proc. Natl. Acad. Sci. USA, 95, 14118–14123 (1998)10.1073/pnas.95.24.14118243369826663
  60. Vytvytska O., Moll I., Kaberdin V.R., Von Gabain A., Bläsi U.: Hfq (HF1) stimulates ompA mRNA decay by interfering with ribosome binding. Gen. Dev. 14, 1109–1118 (2000)
  61. Zhang A., Altuvia S., Tiwari A., Argaman L., Hengge-Aronis R., Storz G.: The OxyS regulatory RNA represses rpoS translation and binds the Hfq (HF-I) protein. EMBO J. 17, 6061–6068 (1998)10.1093/emboj/17.20.606111709329774349
DOI: https://doi.org/10.21307/PM-2018.57.1.012 | Journal eISSN: 2545-3149 | Journal ISSN: 0079-4252
Language: English, Polish
Page range: 12 - 21
Submitted on: Aug 1, 2017
Accepted on: Nov 1, 2017
Published on: May 23, 2019
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Grzegorz M. Cech, Agnieszka Szalewska-Pałasz, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.