Have a personal or library account? Click to login
Amyloids, common proteins among microorganisms Cover

References

  1. Aimanianda V., Bayry J., Bozza S., Kniemeyer O., Perruccio K., Elluru S.R., Clavaud C., Paris S., Brakhage A.A., Kaveri S.V., Romani L., Latgé J.P.: Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature, 460, 11171121 (2009)10.1038/nature0826419713928
  2. Alteri Ch.J., Xicohténcatl-Cortes J., Hess S., Caballero-Olín G., Girón J.A., Friedman R.L.: Mycobacterium tuberculosis produces pili during human infection. Proc. Natl. Acad. Sci. USA, 104, 5145–5150 (2007)10.1073/pnas.0602304104181783517360408
  3. Aoki W., Kitahara N., Miura N., Morisaka H., Kuroda K., Ueda M.: Profiling of adhesive properties of the agglutinin-like sequence (ALS) protein family, a virulent attribute of Candida albicans. FEMS Immunol. Med. Microbiol. 65, 121–124 (2012)
  4. Barak J.D., Gorski L., Naraghi-Aran P., Charkowski A.O.: Salmonella enterica virulence genes are required for bacterial attachment to plant tissue. Appl. Environ. Microbiol. 71, 5685–5691 (2005)
  5. Barnhart M.M., Chapman M.R.: Curli biogenesis and function. Annu. Rev. Microbiol. 60, 131–147 (2006)10.1146/annurev.micro.60.080805.142106283848116704339
  6. Bian Z., Brauner A., Li Y., Normark S.: Expression of and cytokine activation by Escherichia coli curli fibers in human sepsis. J. Infect. Dis. 181, 602–612 (2000)
  7. Bokranz W., Wang X., Tschäpe H., Römling U.: Expression of cellulose and curli fimbriae by Escherichia coli isolated from the gastrointestinal tract. J. Med. Microbiol. 54, 11711182 (2005)
  8. Bordeau V., Felden B.: Curli synthesis and biofilm formation in enteric bacteria are controlled by a dynamic small RNA module made up of a pseudoknot assisted by an RNA chaperone. Nucleic Acids Res. 42, 4682–4696 (2014)10.1093/nar/gku098398566924489123
  9. Branda S.S., Chu F., Kearns D.B., Losick R., Kolter R.: A major protein component of the Bacillus subtilis biofilm matrix. Mol. Microbiol. 59, 1229–1238 (2006).
  10. Cegelski L., Pinkner J.S., Hammer N.D., Cusumano C.K., Hung C.S., Chorell E., Åberg V., Walker J.N., Seed P.C., Almqvist F., Chapman M.R., Hultgren S.J.: Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nature Chem. Biology, 5, 913–919 (2009)
  11. Cheng N., He R., Tian J., Ye P.P., Ye R.D.: Cutting edge: TLR2 is a functional receptor for acute-phase serum amyloid A. J. Immunol. 181, 22–26 (2008)10.4049/jimmunol.181.1.22246445418566366
  12. Chirwa N.T., Herrington M.B.: CsgD, a regulator of curli and cellulose synthesis, also regulates serine hydroxymethyltrans-ferase synthesis in Escherichia coli K-12. Microbiology, 149, 525–535 (2003)10.1099/mic.0.25841-012624214
  13. Chiti F., Dobson C.M.: Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366 (2006)
  14. Cohen A.S., Calkins E.: Electron microscopic observations on a fibrous component in amyloid of diverse origins. Nature, 183, 1202–1203 (1959)10.1038/1831202a013657054
  15. Collinson S.K., Emödy L., Trust T.J., Kay W.W.: Thin aggregative fimbriae from diarrheagenic Escherichia coli. J. Bacteriol. 174, 4490–4495 (1992)10.1128/jb.174.13.4490-4495.19922062361624441
  16. de Jong W., Wösten H.A., Dijkhuizen L., Claessen D.: Attachment of Streptomyces coelicolor is mediated by amyloidal fimbriae that are anchored to the cell surface via cellulose. Mol. Microbiol. 73, 1128–1140 (2009)
  17. DeMarco M.L., Daggett V.: From conversion to aggregation: protofibril formation of the prion protein. Proc. Natl. Acad. Sci. USA, 101, 2293–2298 (2004)10.1073/pnas.030717810135694414983003
  18. Dobson C.M.: Protein misfolding, evolution and disease. Trends Biochem. Sci. 24, 329–332 (1999)
  19. Dueholm M.S., Petersen S.V., Sønderkær M., Larsen P., Christiansen G., Hein K.L., Enghild J.J., Nielsen J.L., Nielsen K.L., Nielsen P.H., Otzen D.E.: Functional amyloid in Pseudomonas. Mol. Microbiol. 77, 10091020 (2010)
  20. Dueholm M.S., Søndergaard M.T., Nilsson M., Christiansen G., Stensballe A., Overgaard M.T., Givskov M., Tolker-Nielsen T., Otzen D.E., Nielsen P.H.: Expression of Fap amyloids in Pseudomonas aeruginosa, P. fluorescens and P. putida results in aggregation and increased biofilm formation. Microbiology, 2, 365382 (2013)10.1002/mbo3.81368475323504942
  21. Ekkers D.M., Claessen D., Galli F., Stamhuis E.: Surface modification using interfacial assembly of the Streptomyces chaplin proteins. Appl. Microbiol. Biotechnol. 98, 4491–4501 (2014)
  22. Evans M.L., Chorell E., Taylor J.D., Åden J., Götheson A., Li F., Koch M., Sefer L., Matthews S.J., Wittung-Stafshede P., Almqvist F., Chapman M.R.: The bacterial curli system possesses a potent and selective inhibitor of amyloid formation. Mol. Cell. 57, 445–455 (2015)
  23. Flärdh K., Buttner M.J.: Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat. Rev. Microbiol. 7, 3649 (2009)10.1038/nrmicro196819079351
  24. Fowler D.M., Koulov A.V., Alory-Jost C., Marks M.S., Balch W.E., Kelly J.W.: Functional amyloid formation within mammalian tissue. PLoS Biol. 4, e6 (2006)10.1371/journal.pbio.0040006128803916300414
  25. Garcia-Sherman M.C., Lundberg T., Sobonya R.E., Lipke P.N., Klotz S.A.: A unique biofilm in human deep mycoses: fungal amyloid is bound by host serum amyloid P component. NPJ Biofilms Microbiomes, 1. pii, 15009 (2015)10.1038/npjbiofilms.2015.9456399626366292
  26. Garcia-Sherman M.C., Lysak N., Filonenko A., Richards H., Sobonya R.E., Klotz S.A., Lipke P.N.: Peptide detection of fungal functional amyloids in infected tissue. PLoS One, 21, e86067 (2014)10.1371/journal.pone.0086067389764024465872
  27. Gebbink M.F., Claessen D., Bouma B., Dijkuhuizen L., Wosten H.A.: Amyloids-a functional coat for microorganisms. Nat. Rev. 3, 333–341 (2005)
  28. Gerstel U., Römling U.: Oxygen tension and nutrient starvation are major signals that regulate agfD promoter activity and expression of the multicellular morphotype in Salmonella Typhimurium. Environ. Microbiol. 3, 638–648 (2001)10.1046/j.1462-2920.2001.00235.x11722544
  29. Glabe C.G.: Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiol. Aging. 27, 570–575 (2006)
  30. Go N.: The consistency principle in protein structure and pathways of folding. Adv. Biophys. 18, 149–164 (1984)
  31. Goldwater P.N., Bettelheim K.A.: Curliated Escherichia coli, soluble curlin and the sudden infant death syndrome (SIDS). J. Med. Microbiol. 51, 10091012 (2002)
  32. Gophna U., Barlev M., Seijffers R., Oelschlager T.A., Hacker J., Ron E.Z.: Curli fibers mediate internalization of Escherichia coli by eukaryotic cells. Infect. Immun. 69, 26592665 (2001)
  33. Hammar M., Bian Z., Normark S.: Nucleator-dependent intercellular assembly of adhesive curli organelles in Escherichia coli. Proc. Natl. Acad. Sci. USA, 93, 65626566 (1996)10.1073/pnas.93.13.6562390648692856
  34. Herbst F.A., Søndergaard M.T., Kjeldal H., Stensballe A., Nielsen P.H., Dueholm M.S.: Major proteomic changes associated with amyloid-induced biofilm formation in Pseudomonas aeruginosa PAO1. J. Proteome. Res. 14, 720–781 (2015).
  35. Herczenik E., Gebbink M.F.: Molecular and cellular aspects of protein misfolding and disease. FASEB J. 22, 2115–2133 (2008)10.1096/fj.07-09967118303094
  36. Hetz C., Bono M.R., Barros L.F., Lagos R.: Microcin E492, a channel-forming bacteriocin from Klebsiella pneumoniae, induces apoptosis in some human cell lines. Proc. Natl. Acad. Sci. USA, 99, 2696–2701 (2002)10.1073/pnas.05270969912241011880624
  37. Hinson G., Knutton S., Lpm-Po-Tang M.K., McNeish A.S., Williams P.H.: Adherence to human colonocytes of an Escherichia coli strain isolated from severe infantile enteritis: molecular and ultrastructural studies of a fibrillar adhesin. Infect. Immun. 55, 393–402 (1987)10.1128/iai.55.2.393-402.19872603402879795
  38. Hufnagel D.A., Tükel C., Chapman M.R.: Disease to dirt: the biology of microbial amyloids. PLoS Pathog. 9, e1003740 (2013)10.1371/journal.ppat.1003740383671524278013
  39. Hung C., Marschall J., Burnham C.A., Byun A.S., Henderson J.P.: The bacterial amyloid curli is associated with urinary source bloodstream infection. PLoS One, 9, e86009 (2014)10.1371/journal.pone.0086009
  40. Johansson C., Nilsson T., Olsén A., Wick M.J.: The influence of curli, a MHC-I-binding bacterial surface structure, on macrophage-T cell interactions. FEMS Immunol. Med. Microbiol. 30, 21–29 (2001)
  41. Kai-Larsen Y., Lüthje P., Chromek M., Peters V., Wang X., Holm A., Kádas L., Hedlund K.O., Johansson J., Chapman M.R., Jacobson S.H., Römling U., Agerberth B., Brauner A.: Uropathogenic Escherichia coli modulates immune responses and its curli fimbriae interact with the antimicrobial peptide LL-37. PLoS Pathog. 6, e1001010 (2010)10.1371/journal.ppat.1001010
  42. Kaper J.B., Nataro J.P., Mobley H.L.: Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2, 12–40 (2004)
  43. Kikuchi T., Mizunoe Y., Takade A., Naito S., Yoshida S.: Curli fibers are required for development of biofilm architecture in Escherichia coli K-12 and enhance bacterial adherence to human uroepithelial cells. Microbiol. Immunol. 49, 875–884 (2005)
  44. Klein R.D., Hultgren S.J.: Chaos controlled: discovery of a powerful amyloid inhibitor. Mol. Cell. 57, 391–393 (2015)
  45. Klunk W.E., Jacob R.F., Mason R.P.: Quantifying amyloid by congo red spectral shift assay. Methods Enzymol. 309, 285–305 (1999)10.1016/S0076-6879(99)09021-7
  46. Kudinha T., Johnson J.R., Andrew S.D., Kong F., Anderson P., Gilbert G.L.: Genotypic and phenotypic characterization of Escherichia coli isolates from children with urinary tract infection and from healthy carriers. Pediatr. Infect. Dis. J. 32, 543–548 (2013)
  47. Lagos R., Wilkens M., Vergara C., Cecchi X., Monasterio O.: Microcin E492 forms ion channels in phospholipid bilayer membrane. FEMS Lett. 321, 145–148 (1993)10.1016/0014-5793(93)80096-D
  48. Larsen P., Nielsen J.L., Dueholm M.S., Wetzel R., Otzen D., Nielsen P.H.: Amyloid adhesins are abundant in natural biofilms. Environ. Microbiol. 9, 30773090 (2007)
  49. Levine H.R.: Quantification of beta-sheet amyloid fibril structures with thioflavin T. Methods Enzymol. 309, 274–284 (1999)10.1016/S0076-6879(99)09020-5
  50. Liu S., Liu Y., Hao W., Wolf L., Kiliaan A.J., Penke B., Rübe C.E., Walter J., Heneka M.T., Hartmann T., Menger M.D., Fassbender K.: TLR2 is a primary receptor for Alzheimer’s amyloid β peptide to trigger neuroinflammatory activation. J. Immunol. 188, 10981107 (2012)10.4049/jimmunol.110112122198949
  51. Liu Z., Niu H., Wu S., Huang R.: CsgD regulatory network in a bacterial trait-altering biofilm formation. Emerg. Microbes Infect. DOI: 10.1038/emi.2014
  52. Macindoe I., Kwan A.H., Ren Q., Morris V.K., Yang W., Mackay J.P., Sunde M.: Self-assembly of functional, amphipathic amyloid monolayers by the fungal hydrophobin EAS. Proc. Natl. Acad. Sci. USA, 109, 804–811 (2012)10.1073/pnas.1114052109332566822308366
  53. Mansan-Almeida R., Pereira A.L., Giugliano L.G.: Diffusely adherent Escherichia coli strains isolated from children and adults constitute two different populations. BMC Microbiol. 13, 22 (2013)10.1186/1471-2180-13-22357746723374248
  54. Marcoleta A., Marín M., Mercado G., Valpuesta J.M., Monasterio O., Lagos R.: Microcin e492 amyloid formation is retarded by posttranslational modification. J. Bacteriol. 195, 3995–4004 (2013)10.1128/JB.00564-13375459123836864
  55. McCrate O.A., Zhou X., Cegelski L., Curcumin as an Amyloid-indicator Dye in E. coli. Chem. Commun. (Camb). 49, 4193– 4195 (2013)10.1039/c2cc37792f363363923287899
  56. Moore R.A., Hayes S.F., Fischer E.R., Priola S.A.: Amyloid formation via supramolecular peptide assemblies. Biochemistry, 46, 7079–7087 (2007)10.1021/bi700247y
  57. Morris V.K., Ren Q., Macindoe I., Kwan A.H., Byrne N., Sunde M.: Recruitment of class I hydrophobins to the air:water interface initiates a multi-step process of functional amyloid formation. J. Biol. Chem. 286, 15955–15963 (2011)
  58. Naidoo N., Ramsugit S., Pillay M.: Mycobacterium tuberculosis pili (MTP), a putative biomarker for a tuberculosis diagnostic test. Tuberculosis, 94, 338–345 (2014)10.1016/j.tube.2014.03.004
  59. Nishimori J.H., Newman T.N., Oppong G.O., Rapsinski G.J., Yen J.H., Biesecker S.G., Wilson R.P., Butler B.P., Winter M.G., Tsolis R.M., Ganea D., Tükel Ç.: Microbial amyloids induce interleukin 17A (IL-17A) and IL-22 responses via Toll-like receptor 2 activation in the intestinal mucosa. Infect. Immun. 80, 43984408 (2012)10.1128/IAI.00911-12
  60. Nordstedt C., Näslund J., Tjernberg L.O., Karlström A.R., Thyberg J., Terenius L.: The Alzheimer A beta peptide develops protease resistance in association with its polymerization into fibrils. J. Biol. Chem. 269, 30773–30776 (1994)
  61. Norinder B.S., Köves B., Yadav M., Brauner A., Svanborg C.: Do Escherichia coli strains causing acute cystitis have a distinct virulence repertoire? Microb. Pathog. 52, 1016 (2012)
  62. Oh J., Kim J.G., Jeon E., Yoo C.H., Moon J.S., Rhee S., Hwang I.: Amyloidogenesis of type III-dependent harpins from plant pathogenic bacteria. J. Biol. Chem. 282, 13601–13609 (2007)
  63. Oli M.W., Otoo H.N., Crowley P.J., Heim K.P., Nascimento M.M., Ramsook C.B., Lipke P.N., Brady L.J.: Functional amyloid formation by Streptococcus mutans. Microbiology, 158, 2903–2916 (2012)10.1099/mic.0.060855-0
  64. Olsén A., Herwald H., Wikström M., Persson K., Mattsson E., Björck L.: Identification of two protein-binding and functional regions of curli, a surface organelle and virulence determinant of Escherichia coli. J. Biol. Chem. 277, 34568–34572 (2002)
  65. Olsén A., Herwald H., Wikstrum M., Persson K., Mattsson E., Bjorck L.: Identification of two protein-binding and functional regions of curli, a surface organelle and virulence determinant of Escherichia coli. J. Biol. Chem. 277, 3456834572 (2002).
  66. Olsén A., Jonsson A., Normark S.: Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli. Nature, 338, 652–655 (1989)10.1038/338652a0
  67. Olsén A., Wick M.J., Mörgelin M., Björck L.: Curli, fibrous surface proteins of Escherichia coli, interact with major histocompatibility complex class I molecules. Infect. Immun. 66, 944949 (1998)
  68. Oppong G.O., Rapsinski G.J., Tursi S.A., Biesecker S.G., Klein-Szanto A.J.P., Goulian M., McCauley C., Healy C., Wilson R.P., Tükel C.: Biofilm-associated bacterial amyloids dampen inflammation in the gut: oral treatment with curli fibres reduces the severity of hapten-induced colitis in mice. npj Biofilms and Microbiomes, DOI:10.1038/npjbiofilms.2015.1910.1038/npjbiofilms.2015.19
  69. Osherovich L.Z., Weissman J.S.: Multiple Gln/Asn-rich prion domains confer susceptibility to induction of the yeast [PSI(+)] prion. Cell, 106, 183–194 (2001)10.1016/S0092-8674(01)00440-8
  70. Otoo H.N., Lee K.G., Qiu W., Lipke P.N.: Candida albicans Als adhesins have conserved amyloid-forming sequences. Eukaryot. Cell. 7, 776–782 (2008)
  71. Pawar D.M., Rossman M.L., Chen J.Ł.: Role of curli fimbriae in mediating the cells of enterohaemorrhagic Escherichia coli to attach to abiotic surfaces. J. Appl. Microbiol. 99, 418425 (2005)
  72. Perutz M.F., Finch J.T., Berriman J., Lesk A.: Amyloid fibers are water-filled nanotubes. Proc. Natl. Acad. Sci. USA, 99, 55915595 (2002)10.1073/pnas.04268139912281411960014
  73. Ramsugit S., Guma S., Pillay B., Jain P., Larsen M.H., Danaviah S., Pillay M.: Pili contribute to biofilm formation in vitro in Mycobacterium tuberculosis. Antonie Van Leeuwenhoek, 104, 725–735 (2013)10.1007/s10482-013-9981-623907521
  74. Ramsugit S., Pillay B., Pillay M.: Evaluation of the role of Mycobacterium tuberculosis pili (MTP) as an adhesin, invasin, and cytokine inducer of epithelial cells. Braz. J. Infect. Dis. 20, 160– 165 (2016)
  75. Rapsinski G.J., Wynosky-Dolfi M.A., Oppong G.O., Tursi S.A., Wilson R.P., Brodsky I.E., Tükel Ç.: Toll-like receptor 2 and NLRP3 cooperate to recognize a functional bacterial amyloid, curli. Infect. Immun. 83, 693701 (2015)
  76. Romero D., Aguilar C., Losick R., Kolter R.: Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc. Natl. Acad. Sci. USA, 107, 2230–2234 (2010)10.1073/pnas.0910560107283667420080671
  77. Romero D., Vlamakis H., Losick R., Kolter R.: An accessory protein required for anchoring and assembly of amyloid fibers in B. subtilis biofilms. Mol. Microbiol. 80, 1155–1168 (2011)
  78. Romero D., Vlamakis H., Losick R., Kolter R.: Functional analysis of the accessory protein TapA in Bacillus subtilis amyloid fiber assembly. J. Bacteriol. 196, 1505–1513 (2014)10.1128/JB.01363-13399335824488317
  79. Römling U., Rohde M., Olsén A., Normark S., Reinköster J.: AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella Typhimurium regulates at least two independent pathways. Mol. Microbiol. 36, 10–23 (2000)
  80. Ryu J.H., Kim H., Frank J.F., Beuchat L.R.: Attachment and biofilm formation on stainless steel by Escherichia coli O157:H7 as affected by curli production. Lett. Appl. Microbiol. 39, 359362 (2004)
  81. Schwartz K., Ganesan M., Payne D.E., Solomon M.J., Boles B.R.: Extracellular DNA facilitates the formation of functional amyloids in Staphylococcus aureus biofilms. Mol. Microbiol. 99, 123–134 (2016)
  82. Schwartz K., Syed A.K., Stephenson R.E., Rickard A.H., Boles B.R.: Functional amyloids composed of phenol soluble modulins stabilize Staphylococcus aureus biofilms. PLoS Pathog. 8(6):e1002744 (2012)10.1371/journal.ppat.1002744336995122685403
  83. Shahnawaz M., Soto C.: Microcin amyloid fibrils A are reservoir of toxic oligomeric species. J. Biol. Chem. 287, 11665–11676 (2012)
  84. Sheppard D.C., Yeaman M.R., Welch W.H., Phan Q.T., Fu Y., Ibrahim A.S., Filler S.G., Zhang M., Waring A.J., Edwards J.E. Jr.: Functional and structural diversity in the Als protein family of Candida albicans. J. Biol. Chem. 279, 30480–30489 (2004)
  85. Sipe J.D., Cohen A.S.: Review: history of the amyloid fibril. J. Struct. Biol. 130, 88–98 (2000)
  86. Sitaras C., Naghavi M., Herrington M.B.: Sodium dodecyl sulfate-agarose gel electrophoresis for the detection and isolation of amyloid curli fibers. Anal. Biochem. 408, 328–331 (2011)
  87. Smith J.F., Knowles T.P., Dobson C.M., Macphee C.E., Welland M.E.: Characterization of the nanoscale properties of individual amyloid fibrils. Proc. Natl. Acad. Sci. USA, 103, 15806–15811 (2006)10.1073/pnas.0604035103163508417038504
  88. Sobieszczańska B.M., Dobrowolska M.: Synteza fimbrii curli przez szczepy Escherichia coli izolowane z przypadków biegunek dzieciecych. Med. Dośw. Mikrobiol. 56, 239–244 (2005)
  89. Stöver A.G., Driks A.: Secretion, localization, and antibacterial activity of TasA, a Bacillus subtilis spore-associated protein. J. Bacteriol. 181, 1664–1672 (1999)10.1128/JB.181.5.1664-1672.19999355910049401
  90. Syed A.K., Boles B.R.: Fold modulating function: bacterial toxins to functional amyloids. Front. Microbiol. 5, 401 (2014)10.3389/fmicb.2014.00401411803225136340
  91. Tükel C., Nishimori J.H., Wilson R.P., Winter M.G., Keestra A.M., van Putten J.P., Bäumler A.J.: Toll-like receptors 1 and 2 cooperatively mediate immune responses to curli, a common amyloid from enterobacterial biofilms. Cell. Microbiol. 12, 14951505 (2010)
  92. Tükel C., Raffatellu M., Humphries A.D., Wilson R.P., Andrews-Polymenis H.L., Gull T., Figueiredo F., Wong M.H., Michelsen K.S., Akçelik M., Adams L.G., Bäumler A.J.: CsgA is a pathogen-associated molecular pattern of Salmonella enterica serotype Typhimurium that is recognized by Toll-like receptor 2. Mol. Microbiol. 58, 289304 (2005)10.1111/j.1365-2958.2005.04825.x16164566
  93. Uhlich G.A., Keen J.E., Elder R.O.: Mutations in the csgD promoter associated with variations in curli expression in certain strains of Escherichia coli O157:H7. Appl. Environ. Microbiol. 67, 2367–2370 (2001)
  94. Vidal O., Longin R., Prigent-Combaret C., Dorel C., Hooreman M., Lejeune P.: Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression. J. Bacteriol. 180, 2442–2449 (1998)10.1128/JB.180.9.2442-2449.19981071879573197
  95. Wang X., Rochon M., Lamprokostopoulou A., Lünsdorf H., Nimtz M., Römling U.: Impact of biofilm matrix components on interaction of commensal Escherichia coli with the gastrointestinal cell line HT-29. Cell. Mol. Life Sci. 63, 23522363 (2006)
  96. Westwell-Roper C., Ehses J.A., Verchere B.C.: Activation of Toll-like receptor 2 by islet amyloid polypeptide: a trigger for islet inflammation in type 2 diabetes? Can. J. Diabetes, 36, S18 (2012)10.1016/j.jcjd.2012.07.076
  97. Zhou Y., Smith D.R., Hufnagel D.A., Chapman M.R.: Experimental manipulation of the microbial functional amyloid called curli. Methods Mol. Biol. 966, 53–75 (2013)
  98. Zogaj X., Bokranz W., Nimtz M., Romling U.: Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Infect Immun. 71, 4151–4158 (2003)10.1128/IAI.71.7.4151-4158.200316201612819107
DOI: https://doi.org/10.21307/PM-2017.56.1.077 | Journal eISSN: 2545-3149 | Journal ISSN: 0079-4252
Language: English, Polish
Page range: 77 - 87
Submitted on: Jun 1, 2016
Accepted on: Aug 1, 2016
Published on: May 21, 2019
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Barbara Katarzyna Pawłowska, Beata Magdalena Sobieszczańska, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.