Have a personal or library account? Click to login
Application of the bacterial outer membrane vesicles in vaccine design Cover

Application of the bacterial outer membrane vesicles in vaccine design

Open Access
|May 2019

References

  1. Acevedo R., Fernández S., Zayas C., Acosta A., Sarmiento M.E., Ferro V.A.: Bacterial outer membrane vesicles and vaccine applications. Front. Immunol. 5, DOI: 10.3389/fimmu.2014.00121 (2014)10.3389/fimmu.2014.00121397002924715891
  2. Bai X., Findlow J., Borrow R.: Recombinant protein meningococcal serogroup B vaccine combined with outer membrane vesicles. Expert Opin. Biol. Ther. 11, 969–985 (2011)
  3. Baker J.L., Chen L., Rosenthal J.A., Putnam D., DeLisa M.P.: Microbial biosynthesis of designer outer membrane vesicles. Curr. Opin. Biotechnol. 29, 76–84 (2014)
  4. Bartolini E., Ianni E., Frigimelica E., Petracca R.: Recombinant outer membrane vesicles carrying Chlamydia muridarum HtrA induce antibodies that neutralize chlamydial infection in vitro. J. Extracell. Vesicles. 2, DOI: 10.3402/jev.v2i0.20181 (2013)10.3402/jev.v2i0.20181376063724009891
  5. Bauman S.J., Kuehn M.J.: Purification of outer membrane vesicles from Pseudomonas aeruginosa and their activation of an IL-8 response. Microbes Infect. 8, 2400–2408 (2006)10.1016/j.micinf.2006.05.001352549416807039
  6. Baumgarten T., Sperling S., Seifert J., von Bergen M., Steiniger F., Wick L., Heipieper H.: Membrane vesicle formation as a multiple-stress response mechanism enhances Pseudomonas putida DOT-T1E cell surface hydrophobicity and biofilm formation. Appl. Environ. Microbiol. 78, 6217–6224 (2012)10.1128/AEM.01525-12341662122752175
  7. Beveridge T.J.: Structures of Gram-negative cell walls and their derived membrane vesicles. J. Bacteriol. 181, 4725–4733 (1999)10.1128/JB.181.16.4725-4733.19999395410438737
  8. Bomberger J.M., MacEachran D.P., Coutermarsh B.A., Ye S., O’Toole G.A., Stanton B.A.: Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa outer membrane vesicles. PLoS Pathog. 5, DOI: 10.1371/journal.ppat.1000382 (2009)10.1371/journal.ppat.1000382266102419360133
  9. Brudal E., Lampe E., Reubsaet L., Roos N., Hegna I., Thrane I., Koppang E., Winther-Larsen H.C.: Vaccination with outer membrane vesicles from Francisella noatunensis reduces development of francisellosis in a zebrafish model. Fish Shellfish Immunol. 42, 50–57 (2015)10.1016/j.fsi.2014.10.02525449706
  10. Brudeseth B.E., Wiulsrød R., Fredriksen B.N., Lindmo K., Løkling K.E., Bordevik M.: Status and future perspectives of vaccines for industrialised fin-fish farming. Fish Shellfish Immunol. 35, 1759–1768 (2013)10.1016/j.fsi.2013.05.02923769873
  11. Chatterjee S. N., Chaudhuri K.: Lipopolysaccharides of Vibrio cholerae. Physical and chemical characterization. Biochim. Biophys. Acta, 1639, 65–79 (2003)
  12. Clausen T., Southan C., Ehrmann M.: The HtrA family of proteases: implications for protein composition and cell fate. Mol. Cell. 10, 443–455 (2002)
  13. Collins B.S.: Gram-negative outer membrane vesicles in vaccine development. Discov. Med. 12, 7–15 (2011)
  14. Daczkowska-Kozon E.: Kampylobakterioza – możliwe źródła infekcji. Folia Univ. Agric. Stetin. Scientia Alimentaria, 238, 21–28 (2004)
  15. De S.N.: Enterotoxicity of bacteria-free culture-filtrate of Vibrio cholerae. Nature, 183, 1533–1534 (1959)10.1038/1831533a013666809
  16. Deatherage B.L., Lara J.C., Bergsbaken T., Rassoulian Barrett S.L., Lara S., Cookson B.T.: Biogenesis of bacterial membrane vesicles. Mol. Microbiol. 72, 1395–1407 (2009)
  17. Delbos V., Lemée L., Bénichou J., Berthelot G., Deghmane A.E., Leroy J.P., Houivet E., Hong E., Taha M.K., Caron F.: Impact of MenBvac, an outer membrane vesicle (OMV) vaccine, on the meningococcal carriage. Vaccine, 31, 4416–4420 (2013)10.1016/j.vaccine.2013.06.08023856330
  18. Ellen A.F., Albers S.V., Huibers W., Pitcher A., Hobel C.F., Schwarz H., Folea M., Schouten S., Boekema E.J., Poolman B.: Proteomic analysis of secreted membrane vesicles of archaeal Sulfolobus species reveals the presence of endosome sorting complex components. Extremophiles, 13, 67–79 (2009)10.1007/s00792-008-0199-x
  19. Elmi A., Dorrell N. i wsp.: Campylobacter jejuni outer membrane vesicles play an important role in bacterial interactions with human intestinal epithelial cells. Infect. Immun. 80, 4089–4098 (2012)
  20. Fernández S., Fajardo E.M., Mandiarote A., Año G., Padrón M.A., Acosta M.: A proteoliposome formulation derived from Bordetella pertussis induces protection in two murine challenge models. BMC Immunol. 14, DOI: 10.1186/1471-2172-14-S1-S8 (2013)10.1186/1471-2172-14-S1-S8
  21. Finco O., Frigimelica E., Buricchi F., Petracca R., Galli G.: Approach to discover T- and B-cell antigens of intracellular pathogens applied to the design of Chlamydia trachomatis vaccines. Proc. Natl. Acad. Sci. USA, 108, 9969–9974 (2011)10.1073/pnas.1101756108
  22. Finne J., Leinonen M., Makela P.H.: Antigenic similarities between brain components and bacteria causing meningitis. Implications for vaccine development and pathogenesis. Lancet, 2, 355–357 (1983)10.1016/S0140-6736(83)90340-9
  23. Furuta N., Tsuda K., Omori H., Yoshimori T., Yoshimura F., Amano A.: Porphyromonas gingivalis outer membrane vesicles enter human epithelial cells via an endocytic pathway and are sorted to lysosomal compartments. Infect. Immun. 77, 4187– 4196 (2009)
  24. Główny Inspektorat Sanitarny: Stan sanitarny kraju w roku 2014, http://gis.gov.pl/images/kafelki/stan_sanitarny_kraju.pdf (06.09.2016)
  25. Gurung M., Moon D.C., Choi C.W., Lee J.H., Bae Y.C., Kim J., Lee Y.C., Seol S.Y., Cho D.T., Kim S.I.: Staphylococcus aureus produces membrane-derived vesicles that induce host cell death. PloS One, 6, DOI: 10.1371/journal.pone.0027958 (2011)10.1371/journal.pone.0027958321807322114730
  26. Helms M., Simonsen J., Olsen K.E., Mølbak K.: Adverse health events associated with antimicrobial drug resistance in Campylobacter species: a registry-based cohort study. J. Infect. Dis. 191, 1050–1055 (2005)
  27. Holst J.D., Martin R., Campa C., Oster P., O’Hallahan J., Rosenqvist E.: Properties and clinical performance of vaccines containing outer membrane vesicles from Neisseria meningitidis. Vaccine, 27, DOI: 10.1016/j.vaccine.2009.04.071 (2009)10.1016/j.vaccine.2009.04.07119481313
  28. Huang W., Yao Y., Long Q., Yang X., Sun W.: Immunization against multidrug-resistant Acinetobacter baumannii effectively protects mice in both pneumonia and sepsis models. PLoS One, 9, DOI: 10.1371/journal.pone.0100727 (2014)10.1371/journal.pone.0100727406735424956279
  29. Huntley J.F., Conley P.G., Hagman K.E., Norgard M.V.: Characterization of Francisella tularensis outer mambrane proteins. J. Bacteriol. 189, 561–574 (2007)10.1128/JB.01505-06179740117114266
  30. Jagusztyn-Krynicka E.K., Łaniewski P., Wyszyńska A.: Update on Campylobacter jejuni vaccine development for preventing human campylobacteriosis. Expert. Rev. Vaccines, 8, 625–645 (2009)
  31. Jang K.S., Sweredoski M.J., Graham R.L., Hess S., Clemons W.M.: Comprehensive proteomic profiling of outer membrane vesicles from Campylobacter jejuni. J. Proteomics, 98, 90–98 (2014)10.1016/j.jprot.2013.12.014453400324382552
  32. Jun S.H., Lee J.H., Kim B.R., Kim S.I., Park T.I., Lee J.C., Lee Y.C.: Acinetobacter baumannii outer membrane vesicles elicit a potent innate immune response via membrane proteins. PLoS One, 8, DOI: 10.1371/journal.pone.0071751 (2013)10.1371/journal.pone.0071751374374423977136
  33. Kaaijk P., van Straaten I., van de Waterbeemd B., Boot E.P., Levels L.M., van Dijken H.H., van den Dobbelsteen G.P.: Preclinical safety and immunogenicity evaluation of a nonavalent PorA native outer membrane vesicle vaccine against serogroup B meningococcal disease. Vaccine, 31, 1065–1071 (2013)10.1016/j.vaccine.2012.12.03123273968
  34. Kadurugamuwa J.L., Beveridge T.J.: Membrane vesicles derived from Pseudomonas aeruginosa and Shigella flexneri can be integrated into the surfaces of other Gram-negative bacteria. Microbiology, 145, 2051–2060 (1999)10.1099/13500872-145-8-205110463171
  35. Kadurugamuwa J.L., Beveridge, T.J.: Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J. Bacteriol. 177, 3998–4008 (1995)10.1128/jb.177.14.3998-4008.19951771307608073
  36. Kahn M.E., Maul G., Goodgal S.H.: Possible mechanism for donor DNA binding and transport in Haemophilus. Proc. Natl. Acad. Sci. USA, 79, 6370–6374 (1982)10.1073/pnas.79.20.63703471236959125
  37. Kitagawa R., Takaya A., Ohya M., Mizunoe Y., Takade A., Yoshida S., Isogai E., Yamamoto T.: Biogenesis of Salmonella enterica serovar Typhimurium membrane vesicles provoked by induction of PagC. J. Bacteriol. 192, 5645–5656 (2010)10.1128/JB.00590-10295367820802043
  38. Klose K.: Regulation of virulence in Vibrio cholerae. Int. J. Med. Microbiol. 29, 81–88 (2001)10.1078/1438-4221-0010411437342
  39. Kłapeć T., Cholewa A.: Tularemia – wciąż groźna zoonoza. Medycyna Ogólna i Nauki o Zdrowiu, 17, 155–160 (2011)
  40. Knox K.W., Vesk M., Work E.: Relation between excreted lipopolysaccharide complexesand surface structures of a lysine limited culture of Escherichia coli. J. Bacteriol. 92, 1206–1217 (1966)10.1128/jb.92.4.1206-1217.19662763964959044
  41. Kulp A., Kuehn M.J.: Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu. Rev. Microbiol. 64, 163–184 (2010)10.1146/annurev.micro.091208.073413352546920825345
  42. Lee E.Y., Bang J.Y., Park G.W., Choi D.S., Kang J.S.: Global proteomic profiling of native outermembrane vesicles derived from Escherichia coli. Proteomics, 7, 3143–3153 (2007)10.1002/pmic.20070019617787032
  43. Locht C.: A common vaccination strategy to solve unsolved problems of tuberculosis and pertussis? Microbes Infect. 10, 1051–1056 (2008)10.1016/j.micinf.2008.07.00818672086
  44. Manning A.J., Kuehn M.J.: Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC Microbiol. 11, DOI: 10.1186/1471-2180-11-258 (2011)10.1186/1471-2180-11-258324837722133164
  45. Manning A.J., Kuehn M.J.: Functional advantages conferred by extracellular prokaryotic membrane vesicles. J. Mol. Microbiol. Biotechnol. 23, 131–141 (2013)
  46. Mashburn L.M., Whiteley M.: Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature, 437, 422–425 (2005)10.1038/nature0392516163359
  47. McBroom A.J., Kuehn M.J.: Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response. Mol. Microbiol. 63, 545–558 (2007)
  48. Mitra S., Chakrabarti M.K., Koley H.: Multi-serotype outer membrane vesicles of Shigellae confer passive protection to the neonatal mice against shigellosis. Vaccine, 31, 3163–3173 (2013)10.1016/j.vaccine.2013.05.00123684822
  49. Nieves W., Asakrah S., Qazi O., Brown K.A., Kurtz J.: A naturally derived outer membrane vesicle vaccine protects against lethal pulmonary Burkholderia pseudomallei infection. Vaccine, 29, 8381–8389 (2011)10.1016/j.vaccine.2011.08.058319586821871517
  50. Nieves W., Petersen H., Judy B.M., Blumentritt C.A., Russell-Lodrigue K., Roy C.J., Torres A.G., Morici L.A.: A Burkholderia pseudomallei outer membrane vesicle vaccine provides protection against lethal sepsis. Clin. Vaccine Immunol. 21, 747–754 (2014)10.1128/CVI.00119-14401889224671550
  51. Norheim G., Tunheim G., Naess L.M., Bolstad K., Fjeldheim A.K., Garcia L.: A trivalent outer membrane vesicle (OMV) vaccine against serogroup A, W-135 and X meningococcal disease. XVIIIth International Pathogenic Neisseria Conference. Würzburg: Conventus Congress Management & Marketing GmbH (2012)10.1111/j.1365-3083.2012.02709.x22537024
  52. Panatto D., Amicizia D., Lai P.L., Cristina M.L., Domnich A., Gasparini R.: New versus old meningococcal Group B vaccines: How the new ones may benefit infants & toddlers. Indian J. Med. Res. 138, 835–846 (2013)
  53. Pawlikowska M., Deptuła W.: Swoista odporność humoralna a chlamydie i chlamydofile. Post. Hig. Med. Dosw. 15, 505–511 (2006)
  54. Perez J.L., Acevedo R., Callico A., Fernandez Y., Cedre B., Ano G.: A proteoliposome based formulation administered by the nasal route produces vibriocidal antibodies against El Tor Ogawa Vibrio cholerae O1 in BALB/c mice. Vaccine, 27, 205–212 (2009)10.1016/j.vaccine.2008.10.05218996426
  55. Pizza M., Scarlato V., Masignani V.: Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science, 287, 1816–1820 (2000)10.1126/science.287.5459.181610710308
  56. Rachel R., Wyschkony I., Riehl S., Huber H.: The ultrastructure of Ignicoccus: evidence for a novel outer membrane and for intracellular vesicle budding in an archaeon. Archaea, 1, 9–18 (2002)10.1155/2002/307480268554715803654
  57. Ram P.K., Crump J.A., Gupta S.K., Miller M.A., Mintz E.D.: Part II. Analysis of data gaps pertaining to Shigella infections in low and medium human development index countries, 1984–2005. Epidemiol. Infect. 136, 577–603 (2008)
  58. Renelli M., Matias V., Lo R.Y., Beveridge T.J.: DNA containing membrane vesicles of Pseudomonas aeruginosa PAO1 and their genetic transformation potential. Microbiology, 150, 2161–2169 (2004)10.1099/mic.0.26841-015256559
  59. Rivera J., Cordero R.J., Nakouzi A.S., Frases S., Nicola A., Casadevall A.: Bacillus anthracis produces membrane-derived vesicles containing biologically active toxins. Proc. Natl. Acad. Sci. USA, 107, 19002–19007 (2010)10.1073/pnas.1008843107297386020956325
  60. Rosenthal J.A., Chen L., Baker J.L., Putnam D., DeLisa M.P.: Pathogen-like particles: biomimetic vaccine carriers engineered at the nanoscale. Curr. Opin. Biotechnol. 28, 51–8 (2014)10.1016/j.copbio.2013.11.00524832075
  61. Rupali J., Danziger L.H.: Multidrug-resistant Acinetobacter infections: an emerging challenge to clinicians. Ann. Pharmacother. 38, 1449–1459 (2004)10.1345/aph.1D59215280512
  62. Sack D.A., Sack R.B., Chaignat C.L.: Getting serious about cholera. N. Engl. J. Med. 355, 649–651 (2006)
  63. Schaar V., Nordstrom T., Morgelin M., Riesbeck K.: Moraxella catarrhalis outer membrane vesicles carry β-lactamase and promote survival of Streptococcus pneumoniae and Haemophilus influenzae by inactivating amoxicillin. Antimicrob. Agents Chemother. 55, 3845–3853 (2011)10.1128/AAC.01772-10314765021576428
  64. Schild S., Nelson E.J., Camilli A.: Immunization with Vibrio cholerae outer membrane vesicles induces protective immunity in mice. Infect. Immun. 76, 4554–4563 (2008)
  65. Schooling S.R., Hubley A., Beveridge T.J.: Interactions of DNA with biofilm-derived membrane vesicles. J. Bacteriol. 191, 4097–4102 (2009)10.1128/JB.00717-08269848519429627
  66. Segal S., Pollard A.J.: Vaccines against bacterial meningitis. Br. Med. Bull. 72, 65–81 (2005)
  67. Serruto D., Bottomley M.J., Ram S.: The new multicomponent vaccine against meningococcal serogroup B, Bexsero®: immunological, functional and structural characterization of the antigens. Vaccine, 30, 87–97 (2012)10.1016/j.vaccine.2012.01.033336087722607904
  68. Sierra G., Campa H.C., Varcacel N.M., Izquierdo P.L., Sotolongo P.F., Garcia L.: Vaccine against group B Neisseria meningitidis: protection trial and mass vaccination results in Cuba. NIPH Ann. 14, 195–210 (1991)
  69. Silva E.B., Dow S.W.: Development of Burkholderia mallei and Pseudomallei vaccines. Front. Cell. Infect. Microbiol. 3, DOI: 10.3389/fcimb.2013.00010 (2013)10.3389/fcimb.2013.00010359800623508691
  70. Silva J., Leite D., Fernandes M.: Campylobacter spp. as a foodborne pathogen: A Review. Front. Microbiol. 2, DOI: 10.3389/fmicb.2011.00200 (2011)10.3389/fmicb.2011.00200318064321991264
  71. Sinha R., Koley H., Nag D., Mitra S., Mukhopadhyay A.K., Chattopadhyay B.: Pentavalent outer membrane vesicles of Vibrio cholerae induce adaptive immune response and protective efficacy in both adult and passive suckling mice models. Microbes Infect. 17, 215–227 (2015)10.1016/j.micinf.2014.10.01125461799
  72. Sinha S., Langford P., Kroll J.: Functional diversity of three different DsbA proteins from Neisseria meningitidis. Microbiology, 150, 2993–3000 (2004)10.1099/mic.0.27216-015347757
  73. Tan L.K., Carlone G.M., Borrow R.: Advances in the development of vaccines against Neisseria meningitidis. N. Engl. J. Med. 362, 1511–1520 (2010)
  74. Tribble D.R., Baqar S., Carmolli M.P., Porter C.: Campylobacter jejuni strain CG8421: a refined model for the study of Campylobacteriosis and evaluation of Campylobacter vaccines in human subjects. Clin. Infect. Dis. 49, 1512–1519 (2009)
  75. Unal C.M., Schaar V., Riesbeck K.: Bacterial outer membrane vesicles in disease and preventive medicine. Semin. Immunopathol. 33, 395–408 (2011)10.1007/s00281-010-0231-y21153593
  76. van de Waterbeemd B., Streefland M., van der Ley P., Zomer B., van Dijken H.: Improved OMV vaccine against Neisseria meningitidis using genetically engineered strains and a detergent-free purification process. Vaccine, 28, 4810–4816 (2010)10.1016/j.vaccine.2010.04.08220483197
  77. van der Ley P., Steeghs L., Hamstra H.J.: Modification of lipid A biosynthesis in Neisseria meningitidis lpxL mutants: influence on lipopolysaccharide structure, toxicity, and adjuvant activity. Infect. Immun. 69, 5981–5990 (2001)10.1128/IAI.69.10.5981-5990.20019872511553534
  78. Von Seidlein L., Kim D.R., Ali M., Lee H., Wang X.: A multicentre study of Shigella diarrhoea in six Asian countries: disease burden, clinical manifestations, and microbiology. PLoS Med. 3, DOI: 10.1371/journal.pmed.0030353 (2006)10.1371/journal.pmed.0030353156417416968124
  79. Wiersinga W.J., Currie B.J., Peacock S.J.: Melioidosis. N. Engl. J. Med. 367, 1035–1044 (2012)
  80. Wyle F.A., Artenstein M.S., Brandt B.L.: Immunologic response of man to group B meningococcal polysaccharide vaccines. J. Infect. Dis. 126, 514–521 (1972)
  81. Yaron S., Kolling G.L., Simon L., Matthews K.R.: Vesicle-mediated transfer of virulence genes from Escherichia coli O157:H7 to other enteric bacteria. Appl. Environ. Microbiol. 66, 4414–4420 (2000)
  82. Yonezawa H., Osaki T., Kurata S., Fukuda M., Kawakami H., Ochiai K., Hanawa T., Kamiya S.: Outer membrane vesicles of Helicobacter pylori TK1402 are involved in biofilm formation. BMC Microbiol. 9, DOI: 10.1186/1471-2180-9-197 (2009)10.1186/1471-2180-9-197274905519751530
  83. Young K.T., Davis L.M., Dirita V.J.: Campylobacter jejuni: molecular biology and pathogenesis. Nat. Rev. Microbiol. 5, 665–679 (2007)
  84. Zhou L., Srisatjaluk R., Justus D.E., Doyle R.J.: On the origin of membrane vesicles in Gram-negative bacteria. FEMS Microbiol. Lett. 163, 223–228 (1998)
DOI: https://doi.org/10.21307/PM-2017.56.1.043 | Journal eISSN: 2545-3149 | Journal ISSN: 0079-4252
Language: English, Polish
Page range: 43 - 55
Submitted on: Jun 1, 2016
Accepted on: Sep 1, 2016
Published on: May 21, 2019
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Joanna Jadwiga Klim, Renata Godlewska, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.