Have a personal or library account? Click to login
The influence of nickel on intestinal microbiota disturbances Cover

The influence of nickel on intestinal microbiota disturbances

Open Access
|Apr 2022

References

  1. 1. Ahlström MG, Thyssen JP, Wennervaldt M, Menné T, Johansen JD. Nickel allergy and allergic contact dermatitis: A clinical review of immunology, epidemiology, exposure, and treatment. Contact Dermatitis 2019;81(4):227-41. doi: 10.1111/cod.13327.10.1111/cod.13327
  2. 2. Woźniak D, Cichy W, Przysławski J, Drzymała-Czyż S. The role of micro-biota and enteroendocrine cells in maintaining homeostasis in the human digestive tract. Adv Med Sci 2021;66(2):284-92. doi: 10.1016/j.advms.2021.05.003.10.1016/j.advms.2021.05.003
  3. 3. Madison A, Kiecolt-Glaser JK. Stress, depression, diet, and the gut microbiota: human-bacteria interactions at the core of psychoneuroimmunology and nutrition. Curr Opin Behav Sci 2019;28:105-10. doi: 10.1016/j.cobeha.2019.01.011.10.1016/j.cobeha.2019.01.011
  4. 4. Tramontana M, Bianchi L, Hansel K, Agostinelli D, Stingeni L. Nickel allergy: epidemiology, pathomechanism, clinical patterns, treatment and prevention programs. Endocr Metab Immune Disord Drug Targets 2020;20(7):992-1002. doi: 10.2174/1871530320666200128141900.10.2174/1871530320666200128141900
  5. 5. Denkhaus E, Salnikow K. Nickel essentiality, toxicity, and carcinogenicity. Crit Rev Oncol Hematol 2002;42(1):35-56. doi: 10.1016/s1040-8428(01)00214-1.10.1016/S1040-8428(01)00214-1
  6. 6. Zambelli B, Ciurli S. Nickel and human health. Met Ions Life Sci 2013;13:321-57. doi: 10.1007/978-94-007-7500-8_10.10.1007/978-94-007-7500-8_1024470096
  7. 7. Zhao J, Shi X, Castranova V, Ding M. Occupational toxicology of nickel and nickel compounds. J Environ Pathol Toxicol Oncol 2009;28(3):177-208. doi: 10.1615/jenvironpatholtoxicoloncol.v28.i3.10.10.1615/JEnvironPatholToxicolOncol.v28.i3.10
  8. 8. Guo H, Liu H, Wu H, Cui H, Fang J, Zuo Z, et al. Nickel carcinogenesis mechanism: DNA damage. Int J Mol Sci 2019;20(19):4690. doi: 10.3390/ijms20194690.10.3390/ijms20194690680200931546657
  9. 9. Zambelli B, Uversky VN, Ciurli S. Nickel impact on human health: An intrinsic disorder perspective. Biochim Biophys Acta 2016;1864(12):1714-31. doi: 10.1016/j.bbapap.2016.09.008.10.1016/j.bbapap.2016.09.00827645710
  10. 10. Barceloux DG. Zinc. J Toxicol Clin Toxicol 1999;37(2):279-92. doi: 10.1081/clt-100102426.10.1081/CLT-10010242610382562
  11. 11. Zdrojewicz Z, Popowicz E, Winiarski J. Nikiel – rola w organizmie człowieka i działanie toksyczne. Pol Merkur Lekarski 2016;41(242):115-8.
  12. 12. Ringborg E, Lidén C, Julander A. Nickel on the market: a baseline survey of articles in ‘prolonged contact’ with skin. Contact Dermatitis 2016;75(2):77-81. doi: 10.1111/cod.12602.10.1111/cod.1260227125984
  13. 13. Bencko V, Wagner V, Wagnerová M, Reichrtová E. Immuno-biochemical findings in groups of individuals occupationally and nonoccupationally exposed to emissions containing nickel and cobalt. J Hyg Epidemiol Microbiol Immunol 1983;27(4):387-94.
  14. 14. Shirakawa T, Kusaka Y, Morimoto K. Specific IgE antibodies to nickel in workers with known reactivity to cobalt. Clin Exp Allergy 1992;22(2):213-8. doi: 10.1111/j.1365-2222.1992.tb03075.x.10.1111/j.1365-2222.1992.tb03075.x1571814
  15. 15. Kumar V, Mishra RK, Kaur G, Dutta D. Cobalt and nickel impair DNA metabolism by the oxidative stress independent pathway. Metallomics 2017;9(11):1596-609. doi: 10.1039/c7mt00231a.10.1039/C7MT00231A
  16. 16. Łańczak A, Choręziak A, Płocka M, Sadowska-Przytocka A, Czarnecka-Operacz M, Adamski Z, et al. Nickel-free environment – dreams vs. reality: Everyday utilities as a source of nickel and cobalt for patients sensitized to these metals. JMS 2019;88(3):150-5. doi: 10.20883/jms.357.10.20883/jms.357
  17. 17. Wojciechowska M, Kołodziejczyk J, Gocki J, Bartuzi Z. Nadwrażliwość na nikiel. Alerg Astma Immunol 2008;13(3):136-40.
  18. 18. Genchi G, Carocci A, Lauria G, Sinicropi MS, Catalano A. Nickel: human health and environmental toxicology. Int J Environ Res Public Health 2020;17(3):679. doi: 10.3390/ijerph17030679.10.3390/ijerph17030679703709031973020
  19. 19. Guarneri F, Costa C, Cannavò SP, Catania S, Bua GD, Fenga C, et al. Release of nickel and chromium in common foods during cooking in 18/10 (grade 316) stainless steel pots. Contact Dermatitis 2017;76(1):40-8. doi: 10.1111/cod.12692.10.1111/cod.1269227804135
  20. 20. EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on the risks to public health related to the presence of nickel in food and drinking water. EFSA J 2015;13(2):4002.10.2903/j.efsa.2015.4002
  21. 21. EFSA Panel on Contaminants in the Food Chain (CONTAM). Update of the risk assessment of nickel in food and drinking water. EFSA J 2020;18(11):6268. doi: 10.2903/j.efsa.2020.6268.10.2903/j.efsa.2020.6268764371133193868
  22. 22. Jensen CS, Menné T, Johansen JD. Systemic contact dermatitis after oral exposure to nickel: a review with a modified meta-analysis. Contact Dermatitis 2006;54(2):79-86. doi: 10.1111/j.0105-1873.2006.00773.x.10.1111/j.0105-1873.2006.00773.x16487279
  23. 23. Ricciardi L, Arena A, Arena E, Zambito M, Ingrassia A, Valenti G, et al. Systemic nickel allergy syndrome: epidemiological data from four Italian allergy units. Int J Immunopathol Pharmacol 2014;27(1):131-6. doi: 10.1177/039463201402700118.10.1177/03946320140270011824674689
  24. 24. Bibbò S, Ianiro G, Giorgio V, Scaldaferri F, Masucci L, Gasbarrini A, et al. The role of diet on gut microbiota composition. Eur Rev Med Pharmacol Sci 2016;20(22):4742-9.
  25. 25. Stinson LF, Boyce MC, Payne MS, Keelan JA. The not-so-sterile womb: evidence that the human fetus is exposed to bacteria prior to birth. Front Microbiol 2019;10:1124. doi: 10.3389/fmicb.2019.01124.10.3389/fmicb.2019.01124655821231231319
  26. 26. Zoetendal EG, Vaughan EE, de Vos WM. A microbial world within us. Mol Microbiol 2006;59(6):1639-50. doi: 10.1111/j.1365-2958.2006.05056.x.10.1111/j.1365-2958.2006.05056.x16553872
  27. 27. Barczyńska R, Śliżewska K, Libudzisz Z, Litwin M. Rola mikrobioty jelit w utrzymaniu prawidłowej masy ciała. Stand Med, Pediatr 2013;1:55-62.
  28. 28. Wang HX, Wang YP. Gut microbiota-brain axis. Chin Med J (Engl) 2016;129(19):2373-80. doi: 10.4103/0366-6999.190667.10.4103/0366-6999.190667504002527647198
  29. 29. Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD, Gasbarrini A, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 2019;7(1):14. doi: 10.3390/microorganisms7010014.10.3390/microorganisms7010014635193830634578
  30. 30. Odamaki T, Kato K, Sugahara H, Hashikura N, Takahashi S, Xiao JZ, et al. Age-related changes in gut microbiota composition from newborn to centenarian: A cross-sectional study. BMC Microbiol 2016;16(90):1-12. doi: 10.1186/s12866-016-0708-5.10.1186/s12866-016-0708-5487973227220822
  31. 31. Riva A, Borgo F, Lassandro C, Verduci E, Morace G, Borghi E, et al. Pediatric obesity is associated with an altered gut microbiota and discordant shifts in Firmicutes populations. Environ Microbiol 2017;19(1):95-105. doi: 10.1111/1462-2920.13463.10.1111/1462-2920.13463551618627450202
  32. 32. Gregorczyk-Maślanka K, Kurzawa R. Mikrobiota organizmu ludzkiego i jej wpływ na homeostazę immunologiczną – część I. Alerg Astma Immun 2016;21(3):146-50.
  33. 33. Shreiner AB, Kao JY, Young VB. The gut microbiome in health and in disease. Curr Opin Gastroenterol 2015;31(1):69-75. doi: 10.1097/MOG.0000000000000139.10.1097/MOG.0000000000000139429001725394236
  34. 34. Drzymała-Czyż S, Banasiewicz T, Biczysko M, Walkowiak J. Maślany w nieswoistych zapaleniach jelit. Fam Med Primary Care Rev 2011;13(2):305-7.
  35. 35. Książek EE, Chęcińska-Maciejewska Z, Grochowska A, Krauss H. Czynniki żywieniowe wpływające na kształtowanie mikrobioty przewodu pokarmowego. In: Krauss H, editor. Fizjologia żywienia. Warszawa: Wydawnictwo Lekarskie PZWL; 2019. p. 231-49.
  36. 36. Mangiola F, Ianiro G, Franceschi F, Fagiuoli S, Gasbarrini G, Gasbarrini A. Gut microbiota in autism and mood disorders. World J Gastroenterol 2016;22(1):361-8. doi: 10.3748/wjg.v22.i1.361.10.3748/wjg.v22.i1.361469849826755882
  37. 37. Rosenfeld CS. Gut dysbiosis in animals due to environmental chemical exposures. Front Cell Infect Microbiol 2017;7:396. doi: 10.3389/fcimb.2017.00396.10.3389/fcimb.2017.00396559610728936425
  38. 38. Turroni F, Foroni E, Pizzetti P, Giubellini V, Ribbera A, Merusi P, et al. Exploring the diversity of the bifidobacterial population in the human intestinal tract. Appl Environ Microbiol 2009;75(6):1534-45. doi: 10.1128/AEM.02216-08.10.1128/AEM.02216-08265544119168652
  39. 39. Richardson JB, Dancy BCR, Horton CL, Lee YS, Madejczyk MS, Xu ZZ, et al. Exposure to toxic metals triggers unique responses from the rat gut microbiota. Sci Rep 2018;8(1):6578. doi: 10.1038/s41598-018-24931-w.10.1038/s41598-018-24931-w591990329700420
  40. 40. Lusi EA, Santino I, Petrucca A, Zollo V, Magri F, O’Shea D, et al. The human nickel microbiome and its relationship to allergy and overweight in women. bioRxiv 2019;546739. doi: 10.1101/546739.10.1101/546739
  41. 41. Li X, Brejnrod AD, Ernst M, Rykær M, Herschend J, Olsen NMC, et al. Heavy metal exposure causes changes in the metabolic health-associated gut microbiome and metabolites. Environ Int 2019;126:454-67. doi: 10.1016/j.envint.2019.02.048.10.1016/j.envint.2019.02.04830844581
  42. 42. Lu K, Abo RP, Schlieper KA, Graffam ME, Levine S, Wishnok JS, et al. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis. Environ Health Perspect 2014;122(3):284-91. doi: 10.1289/ehp.1307429.10.1289/ehp.1307429394804024413286
  43. 43. Zhang S, Jin Y, Zeng Z, Liu Z, Fu Z. Subchronic exposure of mice to cadmium perturbs their hepatic energy metabolism and gut microbiome. Chem Res Toxicol 2015;28(10):2000-9. doi: 10.1021/acs.chemrestox.5b00237.10.1021/acs.chemrestox.5b0023726352046
  44. 44. Liu Y, Li Y, Liu K, Shen J. Exposing to cadmium stress cause profound toxic effect on microbiota of the mice intestinal tract. PLoS One 2014;9(2):e85323. doi: 10.1371/journal.pone.0085323.10.1371/journal.pone.0085323391191024498261
  45. 45. Wu B, Cui H, Peng X, Pan K, Fang J, Zuo Z, et al. Toxicological effects of dietary nickel chloride on intestinal microbiota. Ecotoxicol Environ Saf 2014;109:70-6. doi: 10.1016/j.ecoenv.2014.08.002.10.1016/j.ecoenv.2014.08.00225164205
  46. 46. Li Y, Liu K, Shen J, Liu Y. Wheat bran intake can attenuate chronic cadmium toxicity in mice gut microbiota. Food Funct 2016;8(7):3524-30. doi: 10.1039/C6FO00233A.10.1039/C6FO00233A27425201
  47. 47. Breton J, Massart S, Vandamme P, De Brandt E, Pot B, Foligné B. Ecotoxicology inside the gut: impact of heavy metals on the mouse microbiome. BMC Pharmacol Toxicol 2013;14:62. doi: 10.1186/2050-6511-14-62.10.1186/2050-6511-14-62387468724325943
  48. 48. Zhou X, Li J, Sun JL. Oral nickel changes of intestinal microflora in mice. Curr Microbiol 2019;76(5):590-6. doi: 10.1007/s00284-019-01664-1.10.1007/s00284-019-01664-130859288
  49. 49. Rizzi A, Nucera E, Laterza L, Gaetani E, Valenza V, Corbo GM, et al. Irritable bowel syndrome and nickel allergy: what is the role of the low nickel diet? J Neurogastroenterol Motil 2017;23(1):101-8. doi: 10.5056/jnm16027.10.5056/jnm16027521664028049864
  50. 50. Di Gioacchino M, Ricciardi L, De Pità O, Minelli M, Patella V, Voltolini S, et al. Nickel oral hyposensitization in patients with systemic nickel allergy syndrome. Ann Med 2014;46(1):31-7. doi: 10.3109/07853890.2013.861158.10.3109/07853890.2013.861158467350924256166
  51. 51. Minelli M, Schiavino D, Musca F, Bruno ME, Falagiani P, Mistrello G, et al. Oral hyposensitization to nickel induces clinical improvement and a decrease in TH1 and TH2 cytokines in patients with systemic nickel allergy syndrome. Int J Immunopathol Pharmacol 2010;23(1):193-201. doi: 10.1177/039463201002300117.10.1177/03946320100230011720378005
  52. 52. Randazzo CL, Pino A, Ricciardi L, Romano C, Comito D, Arena E, et al. Probiotic supplementation in systemic nickel allergy syndrome patients: study of its effects on lactic acid bacteria population and on clinical symptoms. J Appl Microbiol 2015;118(1):202-11. doi: 10.1111/jam.12685.10.1111/jam.1268525363062
  53. 53. Camilo V, Sugiyama T, Touati E. Pathogenesis of Helicobacter pylori infection. Helicobacter 2017;22 Suppl 1:e12405. doi: 10.1111/hel.12405.10.1111/hel.1240528891130
  54. 54. Drzymała-Czyż S, Kwiecień J, Pogorzelski A, Rachel M, Banasiewicz T, Pławski A, et al. Prevalence of Helicobacter pylori infection in patients with cystic fibrosis. J Cyst Fibros 2013;12(6):761-5. doi: 10.1016/j.jcf.2013.01.004.10.1016/j.jcf.2013.01.00423375733
  55. 55. Benoit SL, Miller EF, Maier RJ. Helicobacter pylori stores nickel to aid its host colonization. Infect Immun 2013;81(2):580-4. doi: 10.1128/IAI.00858-12.10.1128/IAI.00858-12355381723230291
  56. 56. Campanale M, Nucera E, Ojetti V, Cesario V, Di Rienzo TA, D’Angelo G, et al. Nickel free-diet enhances the Helicobacter pylori eradication rate: a pilot study. Dig Dis Sci 2014;59(8):1851-5. doi: 10.1007/s10620-014-3060-3.10.1007/s10620-014-3060-324595654
  57. 57. Abenavoli L, Scarpellini E, Colica C, Boccuto L, Salehi B, Sharifi-Rad J, et al. Gut microbiota and obesity: A role for probiotics. Nutrients 2019;11(11):2690. doi: 10.3390/nu11112690.10.3390/nu11112690689345931703257
  58. 58. Lusi EA, Di Ciommo VM, Patrissi T, Guarascio P. High prevalence of nickel allergy in an overweight female population: a pilot observational analysis. PLoS One 2015;10(3):e0123265. doi: 10.1371/journal.pone.0123265.10.1371/journal.pone.0123265437905525822975
  59. 59. Cerdó T, García-Santos JA, Bermúdez MG, Campoy C. The role of probiotics and prebiotics in the prevention and treatment of obesity. Nutrients 2019;11(3):635. doi: 10.3390/nu11030635.10.3390/nu11030635647060830875987
  60. 60. Luoto R, Kalliomäki M, Laitinen K, Isolauri E. The impact of perinatal probiotic intervention on the development of overweight and obesity: follow-up study from birth to 10 years. Int J Obes (Lond) 2010;34(10):1531-7. doi: 10.1038/ijo.2010.50.10.1038/ijo.2010.5020231842
  61. 61. Sanchis-Chordà J, Del Pulgar EMG, Carrasco-Luna J, Benítez-Páez A, Sanz Y, Codoñer-Franch P. Bifidobacterium pseudocatenulatum CECT 7765 supplementation improves inflammatory status in insulin-resistant obese children. Eur J Nutr 2019;58(7):2789-800. doi: 10.1007/s00394-018-1828-5.10.1007/s00394-018-1828-530251018
  62. 62. Jung S, Lee YJ, Kim M, Kim M, Kwak JH, Lee JW, et al. Supplementation with two probiotic strains, Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032, reduced body adiposity and Lp-PLA2 activity in overweight subjects. J Funct Foods 2015;19:744-52. doi: 10.1016/j.jff.2015.10.006.10.1016/j.jff.2015.10.006
  63. 63. Gomes AC, de Sousa RG, Botelho PB, Gomes TL, Prada PO, Mota JF. The additional effects of a probiotic mix on abdominal adiposity and anti-oxidant status: A double-blind, randomized trial. Obesity (Silver Spring) 2017;25(1):30-8. doi: 10.1002/oby.21671.10.1002/oby.2167128008750
  64. 64. Watanabe M, Masieri S, Costantini D, Tozzi R, De Giorgi F, Gangitano E, et al. Overweight and obese patients with nickel allergy have a worse metabolic profile compared to weight matched non-allergic individuals. PLoS One 2018;13(8):e0202683. doi: 10.1371/journal.pone.0202683.10.1371/journal.pone.0202683611267130153310
DOI: https://doi.org/10.21164/pomjlifesci.810 | Journal eISSN: 2719-6313 | Journal ISSN: 2450-4637
Language: English
Page range: 46 - 51
Published on: Apr 22, 2022
Published by: Pomeranian Medical University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Jessica Świerc, Sylwia Drzymała, Dagmara Woźniak, Sławomira Drzymała-Czyż, published by Pomeranian Medical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.