Have a personal or library account? Click to login
Identification and Analysis of Multi-tasking Product Information Search Sessions with Query Logs Cover

Identification and Analysis of Multi-tasking Product Information Search Sessions with Query Logs

By: Xiang Zhou,  Pengyi Zhang and  Jun Wang  
Open Access
|Sep 2017

References

  1. Bhatnagar, A., & Ghose, S. (2004). Online information search termination patterns across product categories and consumer demographics. Journal of Retailing, 80(3), 221–228.
  2. China Internet Network Information Center. (2015). 2014 China Online Shopping Market Research Report (in Chinese). Retrieved from https://www.cnnic.net.cn/hlwfzyj/hlwxzbg/dzswbg/201509/P020150909354828731159.pdf
  3. Feild, H., & Allan, J. (2013). Task-aware query recommendation. In Proceedings of the 36th international ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 83–92). Dublin, Ireland.
  4. Fortune. (1998). Net profits: Making the Internet work for you and your business. Technology Buyer’s Guide Supplement, Summer, 240–243.
  5. Glance, N.S. (2000). Community search sssistant. Artificial intelligence for web search. Menlo Park, CA: Association for the Advancement of Artificial Intelligence Press, 91–96.
  6. Järvelin, A., Järvelin, A., & Järvelin, K. (2007). S-grams: Defining generalized n-grams for information retrieval. Information Processing & Management, 43(4), 1005–1019.
  7. Jiang, J., He, D., & Allan, J. (2014). Searching, browsing, and clicking in a search session: Changes in user behavior by task and over time. In Proceedings of the 37th international ACM SIGIR conference on Research & Development in Information Retrieval (pp. 607–616). Queensland, Australia.
  8. Jones, R., & Klinkner, K.L. (2008). Beyond the session timeout: Automatic hierarchical segmentation of search topics in query logs. In Proceedings of the 17th ACM Conference on Information and Knowledge Management (pp. 699–708). Napa Valley, California, USA.
  9. Li, J. (2013). Rwordseg: Chinese word segmentation. Retrieved from http://R-Forge.R-project.org/projects/rweibo/.
  10. Lin, S.J., & Belkin, N. (2005). Validation of a model of information seeking over multiple search sessions. Journal of the American Society for Information Science and Technology 56(4), 393–415.
  11. Lucchese, C., Orlando, S., Perego, R., Silvestri, F., & Tolomei, G. (2011). Identifying task-based sessions in search engine query logs. In Proceedings of the 4th ACM International Conference on Web Search and Data Mining (pp. 277–286). Hongkong, China.
  12. Lucchese, C., Orlando, S., Perego, R., Silvestri, F., & Tolomei, G. (2013). Discovering tasks from search engine query logs. ACM Transactions on Information Systems, 31(3), 1–43.
  13. Moorthy, S., & Talukdar, D. (1995). Consumer information search revisited: Theory and empirical analysis. Journal of Consumer Research, 23(4), 263–277.
  14. Raghavan, V.V., & Sever, H. (1995). On the reuse of past optimal queries. In Proceedings of the 18th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 344–350). Seattle, Washington, USA.
  15. Rowley, J. (2000). Product search in e-shopping: A review and research propositions. Journal of Consumer Marketing, 17(1), 20–35.
  16. Salton, G., & Mcgill, M.J. (1986). Introduction to modern information retrieval. New York, NY: McGraw-Hill.
  17. Spink, A., Ozmutlu, H.C., & Ozmutlu, S. (2002). Multitasking information seeking and searching processes. Journal of the American Society for Information Science and Technology, 53(8), 639–652.
  18. Spink, A., Park, M., Jansen, B.J., & Pedersen, J. (2006). Multitasking during web search sessions. Information Processing & Management, 42(1), 264–275.
  19. Wang, H., Song, Y., Chang, M.W., He, X., White, R.W., & Chu, W. (2013). Learning to extract cross-session search tasks. In Proceedings of the 22nd International Conference on World Wide Web (pp. 1353–1364). Rio de Janeiro, Brazil.
  20. Ye, C., & Wilson, M.L. (2014). A user defined taxonomy of factors that divide online information retrieval sessions. In Proceedings of the 5th Information Interaction in Context Symposium (pp. 48–54). Regensburg, Germany.
  21. Yuan, X. (2014). Modeling user behavior on e-commerce websites. Unpublished Master Thesis, Peking University.
DOI: https://doi.org/10.20309/jdis.201621 | Journal eISSN: 2543-683X | Journal ISSN: 2096-157X
Language: English
Page range: 79 - 94
Submitted on: Mar 16, 2016
Accepted on: Jun 6, 2016
Published on: Sep 1, 2017
Published by: Chinese Academy of Sciences, National Science Library
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Xiang Zhou, Pengyi Zhang, Jun Wang, published by Chinese Academy of Sciences, National Science Library
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.