References
- Bhatnagar, A., & Ghose, S. (2004). Online information search termination patterns across product categories and consumer demographics. Journal of Retailing, 80(3), 221–228.
- China Internet Network Information Center. (2015). 2014 China Online Shopping Market Research Report (in Chinese). Retrieved from https://www.cnnic.net.cn/hlwfzyj/hlwxzbg/dzswbg/201509/P020150909354828731159.pdf
- Feild, H., & Allan, J. (2013). Task-aware query recommendation. In Proceedings of the 36th international ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 83–92). Dublin, Ireland.
- Fortune. (1998). Net profits: Making the Internet work for you and your business. Technology Buyer’s Guide Supplement, Summer, 240–243.
- Glance, N.S. (2000). Community search sssistant. Artificial intelligence for web search. Menlo Park, CA: Association for the Advancement of Artificial Intelligence Press, 91–96.
- Järvelin, A., Järvelin, A., & Järvelin, K. (2007). S-grams: Defining generalized n-grams for information retrieval. Information Processing & Management, 43(4), 1005–1019.
- Jiang, J., He, D., & Allan, J. (2014). Searching, browsing, and clicking in a search session: Changes in user behavior by task and over time. In Proceedings of the 37th international ACM SIGIR conference on Research & Development in Information Retrieval (pp. 607–616). Queensland, Australia.
- Jones, R., & Klinkner, K.L. (2008). Beyond the session timeout: Automatic hierarchical segmentation of search topics in query logs. In Proceedings of the 17th ACM Conference on Information and Knowledge Management (pp. 699–708). Napa Valley, California, USA.
- Li, J. (2013). Rwordseg: Chinese word segmentation. Retrieved from http://R-Forge.R-project.org/projects/rweibo/.
- Lin, S.J., & Belkin, N. (2005). Validation of a model of information seeking over multiple search sessions. Journal of the American Society for Information Science and Technology 56(4), 393–415.
- Lucchese, C., Orlando, S., Perego, R., Silvestri, F., & Tolomei, G. (2011). Identifying task-based sessions in search engine query logs. In Proceedings of the 4th ACM International Conference on Web Search and Data Mining (pp. 277–286). Hongkong, China.
- Lucchese, C., Orlando, S., Perego, R., Silvestri, F., & Tolomei, G. (2013). Discovering tasks from search engine query logs. ACM Transactions on Information Systems, 31(3), 1–43.
- Moorthy, S., & Talukdar, D. (1995). Consumer information search revisited: Theory and empirical analysis. Journal of Consumer Research, 23(4), 263–277.
- Raghavan, V.V., & Sever, H. (1995). On the reuse of past optimal queries. In Proceedings of the 18th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 344–350). Seattle, Washington, USA.
- Rowley, J. (2000). Product search in e-shopping: A review and research propositions. Journal of Consumer Marketing, 17(1), 20–35.
- Salton, G., & Mcgill, M.J. (1986). Introduction to modern information retrieval. New York, NY: McGraw-Hill.
- Spink, A., Ozmutlu, H.C., & Ozmutlu, S. (2002). Multitasking information seeking and searching processes. Journal of the American Society for Information Science and Technology, 53(8), 639–652.
- Spink, A., Park, M., Jansen, B.J., & Pedersen, J. (2006). Multitasking during web search sessions. Information Processing & Management, 42(1), 264–275.
- Wang, H., Song, Y., Chang, M.W., He, X., White, R.W., & Chu, W. (2013). Learning to extract cross-session search tasks. In Proceedings of the 22nd International Conference on World Wide Web (pp. 1353–1364). Rio de Janeiro, Brazil.
- Ye, C., & Wilson, M.L. (2014). A user defined taxonomy of factors that divide online information retrieval sessions. In Proceedings of the 5th Information Interaction in Context Symposium (pp. 48–54). Regensburg, Germany.
- Yuan, X. (2014). Modeling user behavior on e-commerce websites. Unpublished Master Thesis, Peking University.