Have a personal or library account? Click to login
Influence of visible light wavelengths on bioactive compounds and GABA contents in barley sprouts Cover

Influence of visible light wavelengths on bioactive compounds and GABA contents in barley sprouts

Open Access
|Dec 2025

References

  1. Guo, T, Horvath, C, Chen, L, Chen, J, Zheng, B. Understanding the nutrient composition and nutritional functions of highland barley (Qingke): a review. Trends Food Sci Technol 2020;103:109–17. https://doi.org/10.1016/J.TIFS.2020.07.011.
  2. Farag, MA, Xiao, J, Abdallah, HM. Nutritional value of barley cereal and better opportunities for its processing as a value-added food: a comprehensive review. Crit Rev Food Sci Nutr 2022;62:1092–104. https://doi.org/10.1080/10408398.2020.1835817.
  3. Zhang, X, Bian, Z, Yuan, X, Chen, X, Lu, C. A review on the effects of light-emitting diode (LED) light on the nutrients of sprouts and microgreens. Trends Food Sci Technol 2020;99:203–16. https://doi.org/10.1016/J.TIFS.2020.02.031.
  4. Simkin, AJ, Kapoor, L, Doss, CGP, Hofmann, TA, Lawson, T, Ramamoorthy, S. The role of photosynthesis related pigments in light harvesting, photoprotection and enhancement of photosynthetic yield in planta. Photosynth Res 2022;152:23–42. https://doi.org/10.1007/S11120-021-00892-6.
  5. Wang, P, Chen, S, Gu, M, , Chen, X, Chen, X, Yang, J, et al.. Exploration of the effects of different blue LED light intensities on flavonoid and lipid metabolism in tea plants via transcriptomics and metabolomics. Int J Mol Sci 2020;21:4606. https://doi.org/10.3390/IJMS21134606.
  6. Craine, EB, Bramwell, S, Ross, CF, Fisk, S, Murphy, KM. Strategic malting barley improvement for craft brewers through consumer sensory evaluation of malt and beer. J Food Sci 2021;86:3628–44. https://doi.org/10.1111/1750-3841.15786.
  7. Wanikawa, A. Flavors in malt whisky: a review. J Am Soc Brew Chem 2020;78:260–78. https://doi.org/10.1080/03610470.2020.1795795.
  8. Wan, Y, Wu, Y, Zhang, M, Hong, A, Liu, Y. Effects of photoperiod extension via red–blue light-emitting diodes and high-pressure sodium lamps on the growth and photosynthetic characteristics in Paeonia lactiflora. Acta Physiol Plant 2020;42:1–9. https://doi.org/10.1007/S11738-020-03157-2/FIGURES/4.
  9. Poonia, A, Pandey, S, Vasundhara. Application of light emitting diodes (LEDs) for food preservation, post-harvest losses and production of bioactive compounds: a review. Food Prod Process Nutr 2022;4:1–10. https://doi.org/10.1186/S43014-022-00086-0/TABLES/3.
  10. Wang, JL, Evers, JB, Anten, NPR, Li, Y, Yang, X, Douma, JC, et al.. Far-red light perception by the shoot influences root growth and development in cereal-legume crop mixtures. Plant Soil 2024;1–18. https://doi.org/10.1007/S11104-024-06903-4/FIGURES/6.
  11. Wang, Z, Fan, S, Wu, J, Zhang, C, Xu, F, Yang, X, et al.. Application of long-wave near infrared hyperspectral imaging for determination of moisture content of single maize seed. Spectrochim Acta Mol Biomol Spectrosc 2021;254:119666. https://doi.org/10.1016/J.SAA.2021.119666.
  12. Madrera, RR, Negrillo, AC, Valles, BS, Fernández, JJF. Phenolic content and antioxidant activity in seeds of common bean (Phaseolus vulgaris L.). Foods 2021;10:864. https://doi.org/10.3390/FOODS10040864/S1.
  13. Khwanchai, P, Chinprahast, N, Pichyangkura, R, Chaiwanichsiri, S. Gamma-aminobutyric acid and glutamic acid contents, and the GAD activity in germinated brown rice (Oryza sativa L.): effect of rice cultivars. Food Sci Biotechnol 2014;23:373–9. https://doi.org/10.1007/S10068-014-0052-1.
  14. Wei, Y, Wang, S, Yu, D. The role of light quality in regulating early seedling development. Plants 2023;12:2746. https://doi.org/10.3390/PLANTS12142746.
  15. Chutimanukul, P, Piew-ondee, P, Dangsamer, T, , Thongtip, A, Janta, S, Wanichananan, P, et al.. Effects of light spectra on growth, physiological responses, and antioxidant capacity in five radish varieties in an indoor vertical farming system. Horticulturae 2024;10:1059. https://doi.org/10.3390/HORTICULTURAE10101059.
  16. Chen, X, Chhun, S, Xiang, J, Tangjaidee, P, Peng, Y, Quek, SY. Microencapsulation of cyclocarya paliurus (Batal.) iljinskaja extracts: a promising technique to protect phenolic compounds and antioxidant capacities. Foods 2021;10:2910. https://doi.org/10.3390/FOODS10122910/S1.
  17. Cao, Q, Teng, J, Wei, B, Huang, L, Xia, N. Phenolic compounds, bioactivity, and bioaccessibility of ethanol extracts from passion fruit peel based on simulated gastrointestinal digestion. Food Chem 2021;356:129682. https://doi.org/10.1016/J.FOODCHEM.2021.129682.
  18. Zhu, Z, Li, X, Zhang, Y, Wang, J, Dai, F, Wang, W. Profiling of phenolic compounds in domestic and imported extra virgin olive oils in China by high performance liquid chromatography-electrochemical detection. LWT 2023;174:114424. https://doi.org/10.1016/J.LWT.2023.114424.
  19. Abdel-Aty, AM, Elsayed, AM, Gad, AAM, , Barakat, AZ, Mohamed, SA. Antioxidant system of garden cress sprouts for using in bio-monitor of cadmium and lead contamination. Sci Rep 2023 13:1–11. https://doi.org/10.1038/s41598-023-37430-4.
  20. Sadeer, NB, Montesano, D, Albrizio, S, , Zengin, G, Mahomoodally, MF. The versatility of antioxidant assays in food science and safety – chemistry, applications, strengths, and limitations. Antioxidants 2020;9:709. https://doi.org/10.3390/ANTIOX9080709.
  21. Li, W, Liu, SW, Ma, JJ, Liu, HM, Han, FX, Li, Y, et al.. Gibberellin signaling is required for far-red light-induced shoot elongation in pinus tabuliformis seedlings1. Plant Physiol 2020;182:658–68. https://doi.org/10.1104/PP.19.00954/-/DCSUPPLEMENTAL.
  22. Zhen, S, van Iersel, MW. Far-red light is needed for efficient photochemistry and photosynthesis. J Plant Physiol 2017;209:115–22. https://doi.org/10.1016/J.JPLPH.2016.12.004.
  23. Singkhornart, S, Ryu, GH. Effect of soaking time and steeping temperature on biochemical properties and γ-Aminobutyric acid (GABA) content of germinated wheat and barley. Prev Nutr Food Sci 2011;16:67–73. https://doi.org/10.3746/JFN.2011.16.1.067.
  24. Park, JH, Kang, MJ, Kang, JR, Shin, JH. Changes in the physicochemical characteristics and antioxidant activity of barley during germination using different pre-treatment methods. Food Sci Preservation 2018;25:337–43. https://doi.org/10.11002/KJFP.2018.25.3.337.
  25. Lee, YJ, Jang, GY, Li, M, Kim, MY, Kim, EH, Lee, MJ, et al.. Changes in the functional components of barley produced from different cultivars and germination periods. Cereal Chem 2017;94:978–83. https://doi.org/10.1094/CCHEM-05-17-0114-R.
  26. AL-Ansi, W, Mahdi, AA, Al-Maqtari, QA, Mushtaq, BS, Ahmed, A, Karrar, E, et al.. The potential improvements of naked barley pretreatments on GABA, β-glucan, and antioxidant properties. LWT 2020;130:109698. https://doi.org/10.1016/J.LWT.2020.109698.
  27. Hyun, TK, Eom, SH, Jeun, YC, Han, SH, Kim, JS. Identification of glutamate decarboxylases as a γ-aminobutyric acid (GABA) biosynthetic enzyme in soybean. Ind Crops Prod 2013;49:864–70. https://doi.org/10.1016/J.INDCROP.2013.06.046.
  28. Eprintsev, AT, Anokhina, GB, Shakhov, ZN, Moskvina, PP, Igamberdiev, AU. The role of glutamate metabolism and the GABA shunt in bypassing the tricarboxylic acid cycle in the light. Int J Mol Sci 2024;25:12711. https://doi.org/10.3390/IJMS252312711/S1.
  29. Vann, K, Techaparin, A, Apiraksakorn, J. Beans germination as a potential tool for GABA-enriched tofu production. J Food Sci Technol 2020;57:3947–54. https://doi.org/10.1007/S13197-020-04423-4.
  30. Rai, MK, Shekhawat, NS, Harish, , Gupta, AK, Phulwaria, M, Ram, K, et al.. The role of abscisic acid in plant tissue culture: a review of recent progress. Plant Cell, Tissue Organ Cult (PCTOC) 2011;106:179–90. https://doi.org/10.1007/S11240-011-9923-9.
  31. Galieni, A, Falcinelli, B, Stagnari, F, , Datti, A, Benincasa, P. Sprouts and microgreens: trends, opportunities, and Horizons for novel research. Agronomy 2020;10:1424. https://doi.org/10.3390/AGRONOMY10091424.
  32. Edwards, J, editor. Procrop barley growth and development. Orange: Industry & Investment NSW; 2010.
  33. Li, W, Liu, SW, Ma, JJ, Liu, HM, Han, FX, Li, Y, et al.. Gibberellin signaling is required for far-red light-induced shoot elongation in Pinus tabuliformis seedlings. Plant Physiol 2020;182:658–68. https://doi.org/10.1104/PP.19.00954.
  34. Villaño, D, Fernández-Pachón, MS, Moyá, ML, Troncoso, A, García-Parrilla, M. Radical scavenging ability of polyphenolic compounds towards DPPH free radical. Talanta 2007;71:230–5. https://doi.org/10.1016/J.TALANTA.2006.03.050.
  35. Thaipong, K, Boonprakob, U, Crosby, K, Cisneros-Zevallos, L, Hawkins Byrne, D. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J Food Compos Anal 2006;19:669–75. https://doi.org/10.1016/J.JFCA.2006.01.003.
  36. Wu, W, Wu, H, Liang, R, Huang, S, Meng, L, Zhang, M, et al.. Light regulates the synthesis and accumulation of plant secondary metabolites. Front Plant Sci 2025;16:1644472. https://doi.org/10.3389/FPLS.2025.1644472/XML.
  37. Olszowy, M. What is responsible for antioxidant properties of polyphenolic compounds from plants? Plant Physiol Biochem 2019;144:135–43. https://doi.org/10.1016/J.PLAPHY.2019.09.039.
  38. Du, L, Yu, P, Rossnagel, BG, Christensen, DA, McKinnon, JJ. Physicochemical characteristics, hydroxycinnamic acids (ferulic acid, p-coumaric acid) and their ratio, and in situ biodegradability: comparison of genotypic differences among six barley varieties. J Agric Food Chem 2009;57:4777–83. https://doi.org/10.1021/JF803995P/ASSET/IMAGES/JF-2008-03995P_M001.GIF.
  39. Silva, MC, Dos Anjos, JP, Guarieiro, LLN, Machado, BAS. A simple method for evaluating the bioactive phenolic compounds’ presence in Brazilian craft beers. Molecules 2021;26:4716. https://doi.org/10.3390/MOLECULES26164716.
  40. Zhang, S, Zhang, L, Zou, H, Qiu, L, Zheng, Y, Yang, D, et al.. Effects of light on secondary metabolite biosynthesis in medicinal plants. Front Plant Sci 2021;12:781236. https://doi.org/10.3389/FPLS.2021.781236.
  41. Jung, WS, Chung, IM, Hwang, MH, , Kim, SH, Yu, CY, Ghimire, BK. Application of light-emitting diodes for improving the nutritional quality and bioactive compound levels of some crops and medicinal plants. Molecules 2021;26:1477. https://doi.org/10.3390/MOLECULES26051477.
  42. Šimić, G, Lalić, A, Horvat, D, Viljevac Vuletić, M, Dvojković, K, Jukić, M, et al.. Genotypic, environmental, and processing effects on phenolic content and antioxidant activity in barley and wheat. Plants 2025;14:1664. https://doi.org/10.3390/PLANTS14111664/S1.
  43. Noreen, S, Tufail, T, Mubashar, H, Bader-ul-ain, H, Hassan, A, Zafar, A, et al.. Antioxidant activity and phytochemical analysis of different varieties of barley (Hordeum vulgare L.) available in Pakistan. Front Nutr 2025;12:1618457. https://doi.org/10.3389/FNUT.2025.1618457.
  44. Barbarestani, SY, Samadi, F, Zaghari, M, Pirsaraei, ZA, Kastelic, JP. Dietary supplementation with barley sprouts and d-aspartic acid improves reproductive hormone concentrations, testicular histology, antioxidant status, and mRNA expressions of apoptosis-related genes in aged broiler breeder roosters. Theriogenology 2024;214:224–32. https://doi.org/10.1016/J.THERIOGENOLOGY.2023.10.030.
  45. Sova, M, Saso, L. Natural sources, pharmacokinetics, biological activities and health benefits of hydroxycinnamic acids and their metabolites. Nutrients 2020;12:2190. https://doi.org/10.3390/NU12082190.
  46. Di Giacomo, S, Percaccio, E, Gullì, M, , Romano, A, Vitalone, A, Mazzanti, G, et al.. Recent advances in the neuroprotective properties of ferulic acid in Alzheimer’s disease: a narrative review. Nutrients 2022;14:3709. https://doi.org/10.3390/NU14183709.
  47. Halpani, CG, Mishra, S. Design, synthesis, characterization of ferulic acid and p-coumaric acid amide derivatives as an antibacterial/antioxidant agent. Pharmaceut Sci Adv2024;2:100023. https://doi.org/10.1016/J.PSCIA.2023.100023.
  48. Antonio Hernández Cortés, J, Tolera, GB, Heo, J-Y. Optimizing germination, growth, and antioxidant potential of Aegopodium podagraria L. under different LED light spectra. Seeds 2025;4:2025. https://doi.org/10.3390/SEEDS4030032.
Language: English
Submitted on: Jul 19, 2025
Accepted on: Nov 20, 2025
Published on: Dec 9, 2025
Published by: Sciendo
In partnership with: Paradigm Publishing Services

© 2025 Siriyakorn Janpitu, Achirapon Puttawong, Pipat Tangjaidee, Wannaporn Klangpetch, Kridsada Unban, Suphat Phongthai, Tabkrich Khumsap, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 License.