Int. J. Appl. Math. Comput. Sci., 2025, Vol. 35, No. 4, 687-702

DOI: 10.61822/amcs-2025-0049

IMPROVING THE PERFORMANCE OF THE FEATURE DRIFT DETECTOR BY
LASSO OBSERVATION OF SAMPLE FEATURE FLUCTUATIONS

PIOTR PORWIK %*, TOMASZ ORCZYK ¢, NATHALIE JAPKOWICZ?

“Institute of Computer Science
University of Silesia
ul. Bedzinska 60, 41-00 Sosnowiec, Poland
e-mail: [{piotr.porwik, tomasz.orczyk}@us.edu.pl

®Computer Science Department
American University
4400 Massachusetts Avenue, NW, Washington, DC, 20016, USA

e-mail: japkowic@american.edu

Feature drift is a subtype of data distribution drift that occurs when the statistical significance of input features changes over
time, despite the overall decision boundary remaining stable. This phenomenon can cause a subtle degradation in model ac-
curacy in streaming environments. In this paper, we propose a new model-aware method called feature importance-driven
drift detection (FIDD). Rather than relying on classification error signals, FIDD tracks changes in feature importance
rankings obtained from LASSO regression across neighbouring data fragments. As it observes the dynamics of feature
importance instead of global label shifts, this method is particularly suited to detecting subtle shifts in data distribution.
Experimental evaluation on both synthetic and real-world data (including different types of drift, such as abrupt, gradual,
incremental and recurrent) shows that FIDD achieves higher accuracy consistently and produces significantly fewer false
alarms than standard drift detectors (e.g., DDM, EDDM and ADWIN). Furthermore, FIDD is robust to labelling noise and
computationally efficient, which makes it a practical and interpretable solution for adaptive learning in real-time applica-

tions.

Keywords: feature drift, data stream, drift detection, feature ranking, classification.

1. Introduction

The occurrence of drift is a common phenomenon
when the distribution of data changes over time, which
leads to the degradation of the classification model’s
performance (Porwik and Doroz, 2021; Guo et al., 2022;
Japkowicz and Boukouvalas, 2024). These phenomena
can occur in many domains, such as financial forecasting,
computer vision, natural language processing, and climate
change assessment. The underlying data can change
due to consumer behavior, technology evolution, sensor
degradation, or external events. Detecting different
types of drift is essential to maintain the model’s
accuracy because ignoring it can lead to incorrect
predictions (Bartz-Beielstein and Lukas, 2024; Japkowicz
and Boukouvalas, 2024; Mielniczuk and Wawrzeficzyk,

*Corresponding author

2025). This is because drifts can change the data’s
statistical properties over time, leading to the degradation
of the model’s performance. There is a rich and
constantly updated part of literature where authors have
been introducing various drift detection methods for
many years, such as statistical tests, procedures based on
classifier ensembles, and distance-based measurements to
detect and respond to drift (Gongalves et al., 2014; Gama
et al., 2014; Agrahari and Singh, 2022).

This paper proposes a new drift detection method
based on statistical tests and feature rank in the
data stream. Feature selection and feature relevance
analysis are applicable techniques for data preprocessing
and analysis in machine learning and data science.
Additionally, the paper tries to explain the problem of
feature drift to equip researchers and practitioners with
the knowledge and tools to effectively detect drifts in

‘ amces

mailto:{piotr.porwik, tomasz.orczyk}@us.edu.pl
mailto:{japkowic@american.edu}

688

P. Porwik et al.

machine learning models. Feature drift occurs when the
rank (importance) of the features’ subset changes in the
pair of adjacent timestamps.

Let a given data piece consist of a set of samples,
where (x,y) represents each sample in the data. We
assume that x is a feature vector and y is a class label.
If concept drift occurs, the distribution of p(x, y) between
the current and next data chunks changes. This means that
there are some places where 3t, p(X,y) # pr+1(X,y).
It can be seen, based on Bayesian theory, that the joint
probability p;(x, y) of events x and y can be written in the
form p; (X, y) = pi(x) - p(y|x). This allows us to consider
two types of concept drift (Gama et al., 2014; de Souza
et al., 2020): real drift, when p;(y|x) # pi+1(y|x), where
p+(X) = piy1(x) is the change in conditional probability,
and virtual drift, when p;(y|x) = piy1(y|x) and pi(x) #
Pry1(X).

Feature drift is a specific type of virtual drift, as
it involves changes in the distribution or importance
of input features x, while the conditional relationship
p+(y|x) remains unchanged. In feature drift, although the
labels remain consistent for given instances, the statistical
properties or relevance of features evolve, signaling
a structural change in the input space rather than in
the decision function (Zliobaité, 2010). Feature-level
virtual drift may lead to shifts in feature relevance or
redundancy, degrading model interpretability, increasing
computational cost, and potentially preceding real drift.
Ignoring such changes may cause models to rely on
outdated or irrelevant input representations.

This paper focuses on the importance (ranking)
of input features that change over time, even though
the underlying decision function remains stable. To
address this challenge, we propose a novel method
called FIDD. The approach uses LASSO regression to
estimate feature importances in consecutive data chunks
and identifies significant rank-based deviations as signals
of feature-level drift. Unlike traditional detectors that
rely on classification errors, FIDD is classifier-agnostic
and focuses on shifts in the internal structure of the data
stream.

Although FIDD detects virtual drift, it triggers
retraining of the classifier when changes are detected.
When the importance of these features changes, even
without altering the decision boundary, the original
model may no longer be representative of the current
data structure. Therefore, updating the model ensures
continuous performance and interpretability. Virtual drift
can also signal impending real drift, where retraining is
necessary.

In the taxonomy of drift, the following types are
distinguished:

* Abrupt (sudden) drift. In this type of drift, the context
change is immediate. The new concept is introduced

abruptly, and since the concepts switch over, there is
no more data from the previous concept in the data
stream. The switching point is clear, but there are no
signs of it happening.

Gradual drift. This type of drift is more subtle. Data
from the new concept starts to appear in the stream
at an increasing frequency over time. The concept
switchover lasts for some time, during which data
from both concepts interleave in the data stream.
The switching point is stretched over time, but subtle
changes in data may indicate it is coming.

Incremental drift. This type of drift is similar gradual
one, but the switchover takes infinite time. The data
stream contains data from both concepts; only their
proportions change over time. In finite time, there is
no clear concept switchover point.

Recurring drift. This is a special case of abrupt
and gradual drift in which switching between
concepts occurs multiple times over time. There is
a special case of recurring drift, where the same data
concept may reappear in the future so that the old
classification model can be reused. This also differs
from data seasonality, as the concept changes are
irregular and unpredictable.

The remainder of the paper is organized as follows.
Section 2 discusses feature ranking and the role of LASSO
in streaming settings. Section 3 presents the FIDD
method. Section 4 describes the datasets used, and
Section 5 contains the experimental setup and evaluation.
Section 6 analyzes runtime performance, Section 7
outlines algorithmic complexity, and Section 8 concludes
the study.

Motivation. The increasing prevalence of non-stationary
data streams across application domains, such as finance,
medicine, or environmental monitoring, presents major
challenges for maintaining classification model accuracy
over time. While concept drift detection has been
widely studied, a less explored but equally important
phenomenon is feature drift-a specific form of virtual
drift where the importance of input features changes
even if the decision boundary remains stable. Feature
drift can silently degrade model interpretability, increase
computational cost, and act as an early indicator of real
concept drift. Traditional classifiers are often unable
to detect such shifts, especially when they rely on
static feature selection. This motivates the development
of methods capable of tracking changes in feature
relevance over time, enabling proactive adaptation to
evolving data streams. Our work addresses this gap by
proposing a flexible, interpretable approach that responds
to fluctuations in feature importance, offering both early

Improving the performance of the feature drift detector by LASSO observation . ..

drift detection and structural insight into the evolving
dataset.

Proposed contribution. This paper presents a compre-
hensive and repeatable study to evaluate feature drift on
a classifier or a drift detector. We introduce the FIDD
method, a novel approach to supervised feature drift
detection. FIDD identifies feature drift by comparing
the rankings of feature relevance across consecutive data
chunks. The detector is adaptable, making it versatile
for various applications. Its key advantages include the
following:

* simultaneous feature ranking and selection in a
single pass,

* controlling the number of significant features with a
single regularization parameter,

* a comprehensive solution for drift detection,
increasing the robustness of classification against
false positives.

Our approach belongs to the family of model-aware
drift detection methods, as it involves training a predictive
model and monitoring the model features over time
(Gama et al., 2014; Baena-Garcia et al., 2006; Duda
et al., 2020). Our strategy requires training an auxiliary
LASSO-based model from which diagnostic knowledge
(feature ranking) is extracted. This means that drift is
detected not directly in the data, but through changes in
the model behavior. Regression-based feature ranking
does not require monitoring of classifier errors—it relies
more on relative changes between features. While
the DDM and EDDM methods rely on classifier error
metrics, our technique tracks the relative importance of
features over time (Japkowicz and Boukouvalas, 2024).
This makes it less sensitive to label noise, especially
in multi-class scenarios with redundant or correlated
features. Although our method technically falls into
the model-aware category, since it tracks changes in
an auxiliary predictive model, it functionally resembles
feature-based approaches, similar to methods based on
PCA or on data distributions such as ADWIN.

2. Features ranking

Feature ranking involves assigning a value (importance
measure) to each feature to determine its relative
importance. Ranking does not eliminate features but
prioritizes them, allowing a better understanding of their
impact. Ranking can be performed using different
strategies, such as calculating correlation coefficients,
mutual information, or weights in linear models. The
essential criterion for selecting the ranking procedure
algorithm must be its time complexity due to the
requirement to analyze the data stream. In general,

feature ranking can be done using filtering, wrapping,
or embedding methods (Saeys et al., 2007; Dhal and
Alad, 2022; Usman et al., 2023).

Filter-based methods work fast, but unfortunately,
filtering methods (e.g., Pearson correlation) do not
recognize mutually correlated features (Usman et al.,
2023). They may retain multiple features conveying
similar information, which increases dimensionality
without real benefit. Feature selection is solely based on
statistical measures, which may lead to discarding features
with a subtle but essential value to the model.

Wrapper-based methods are slow (Dhal and Alad,
2022). They consider the evaluated model and assess its
performance on different subsets of features. This makes
such methods impractical even for average data sizes due
to computational time.

Some embedded methods are also fast, e.g., LASSO
regularization models (Efron et al., 2004). Unlike the ones
mentioned earlier, the LASSO strategy also considers the
interactions between features, which is an advantage of
this approach.

Our strategy assumes that features are ranked
according to importance, but none are removed.
Unimportant features in the current step may suddenly
become essential in the next one due to the non-stationary
nature of the input data. In this case, the drift detector
focuses on observing a new feature that has become
significant in the next chunk of data.

2.1. Feature importance: LASSO. To determine
the importance of all features, we use the LASSO
algorithm with the L1 norm. While, to our knowledge,
the LASSO strategy has not been previously applied
in feature drift detection procedures, we leverage
its unique properties. LASSO is well-suited for
high-dimensional settings where feature redundancy and
noise may hinder drift detection. It enforces sparsity
by introducing an L1 regularization penalty, effectively
selecting a subset of the most relevant features while
eliminating irrelevant or less informative ones. This
property is crucial in drift detection, as changes in data
distribution often manifest themselves through a subset
of features rather than uniformly across all dimensions.
Additionally, LASSO aids in mitigating overfitting,
improving model generalizability when detecting shifts
in feature importance over time. Its capability to
handle collinearity among features further enhances its
suitability for identifying structural changes in evolving
data streams.

We will monitor the individual features x; of the
vector X;, £; € X;, and assess whether they are a source of
potential drift. It should be noted that this strategy differs
from those described in the literature, where concept
drift is detected globally, based on observing changes in
classifier efficiency. In this respect, the proposed method

amcs

amcs@

P. Porwik et al.

is more precise and allows us to assess the change in
the importance (informativeness) of features in adjacent
data chunks. Each chunk’s best feature (highest rank) is
established using the LASSO procedure. The algorithm is
emploed for regression analysis in statistics and machine
learning, particularly for feature selection (Guyon and
Elisseeff, 2003; Efron et al., 2004; Yamada et al., 2014).
The LASSO algorithm has three variants: ElasticNet
(M1 # 0, A2 # 0), Ridge (A = 0), and Lasso (A2 = 0).

Consider a sample with [V instances (observations)
and x; € RY The LASSO ElasticNet linear regression
aims to minimize the following cost function:

2

N d
. 1
Cost Function = N ; Yi — Bo — Z Bji;

j=1
d d

+AD 1B+ XY B (1)
j=1 j=1

where 8 = [81,...,084] is the coefficient (weight)
vector, A1, A2 are predetermined free factor regularization
parameters controlling the strength of the L1 and L2
penalties, vand variable y; is the actual target value
for observation i. The parameter 3y in the LASSO
regression equation () represents the intercept term of
the linear model, the coefficients 3; denote the impact of
particular features of the linear numerical model on the
data representation, vand element x;; is a value of the
j-th feature in the ¢-th observation. This means relevant
features are inside the set {1 < ¢ < d: §8; # 0}.

Unfortunately, ElasticNet (1) introduces the
complexity of two regularization parameters Aj, Ag,
which is not beneficial from the point of view of the
speed at which data is tracked in the stream. The Ridge
version (A\; = 0) is not very interesting, either, because
all the weights ; are different from zero. Weights with
small values are not very relevant in practice, but they
need to be analyzed. Ultimately, in our study, we use
Lasso, which employs L1 norm regularization. Ridge
regression (L2 norm) and ElasticNet (combination of L1
and L2) were discarded for the reasons we gave above.
The obtained feature rankings are compared at time steps
to detect changes. From the point of view of the needs
of the proposed feature drift detector, the Lasso version
(A2 = 0) is the most useful, as it causes zeroing of all
irrelevant feature weights, so they do not need to be
analyzed. This significantly speeds up the feature drift
detection process.

Determination of the values of the minimizing
weights Lasso criterion is not possible by analytical means
and requires an iterative algorithm. In the optimization
process, weights of the [3; coefficients are established
for features x;, so we obtain the desired order of
importance of features after arranging the coefficients 3;

in descending order. In Lasso with L1 regularization
(A1 > 0,A2 = 0), correlated features are grouped and
reduced to a single feature, which is impossible in other
selection and ranking methods. For example, for source
data with samples with eight features, after the Lasso
procedure, the features can be arranged as follows: x; >
Tog > T7 > Ty > T3 = 5 = g = xrg = 0. In our
approach, we set a maximum allowable fluctuation range
for the top-ranked feature x; in the reference part. This
range specifies the degree of change in the position of the
feature x;.

For simplicity, instead of A\;, we will denote this
parameter as A in regard to Lasso. The regularization
parameter A\ controls the number of selected features,
offering flexibility in drift detection. For Lasso with
the L1 regularization parameter, feature x; importance
FI(z;) will be calculated from the formula

FI(z;) = 7%]' e_’\,

S 1B

where d is the number of features and) is a regularization
parameter that controls the strength of feature elimination.

The optimal value of X is the value of the Lasso
regularization parameter that gives the best prediction
results of a given classifier after feature selection in the
Lasso procedure. Small values of the A parameter (weak
regularization) lead to many features and good accuracy.
Too large values of A result in eliminating too many
features, which reduces accuracy. The optimization of the
A parameter, considering the prediction quality of the RF
classifier, was performed in the simulation procedure. The
simulation data were selected to approximately match the
characteristics of the benchmark data used in the article.
Although this example is static, the same Lasso-based
feature ranking procedure is later applied to each data
chunk in a stream to track changes in feature importance
over time.

The simulation was performed on artificial data
with parameters similar to real streaming data, on which
detailed studies were later used: samples = 100K, classes
= 10, features = 50, informative features = 20, redundant
features = 5.

The synthetic data was generated using the
make_classification() function from the scikit-learn
library, which allowed controling the number of samples,
classes, informative and redundant features, as well as
simulating the structure of the real dataset. These data
were used to analyze the behavior of Lasso feature
importance in a controlled, stationary setting before
applying the method to streaming benchmark datasets.

In the next step, 5-fold cross-validation was
implemented. For each value of the regularization
parameter A\, we performed full cross-validation, and the
Lasso model selected features for which ; # 0. The RF

J=1....d, (2

Improving the performance of the feature drift detector by LASSO observation . ..

Optimal A selection with Cross-Validation

o
~

o
o

o
wn

o
>

o
w

\
\
\

1074 1073 10-2 1071 100 10!
Lasso regularization parameter A

o
N

°
i

Cross-Validated Random Forest Accuracy

o°
o

Fig. 1. Classifier prediction depends on A parameter selection
in the Lasso procedure: the best value A = 0.05 for the
highest classifier accuracy. The OX axis is in log scale.

classifier was trained on these features. After completing
the cross-validation, we calculated the average accuracy
for each value of . The simulation results are depicted in
Fig.[

As a result of the experiment, it was observed
that, for small values of A, Lasso preserves most of the
features, which translates into stable, high-accuracy for
the random forest (RF) classifier, while for large A, there
is a strong reduction in dimension and a decrease in
efficiency. The optimal compromise was found in the
range A =~ 1072 ... 1071, In the experiments, we assume
that A = 0.05.

In our experiments, the RF classifier was selected
as the predictive model due to its robustness to noisy
and redundant features and its strong performance in
multi-class classification tasks. Additionally, it is widely
adopted as a reference classifier in the concept drift
literature, providing a stable and interpretable standard
baseline (Breiman, 2001; Gama er al., 2014; Bifet et al.,
2010). The RF classifier was configured with 100 trees,
max depth = 10, and a default Gini criterion (Bifet and
Gavalda,, 2009; Fernandez-Delgado et al., 2014).

Although the following analysis is based on a
single, synthetic dataset for illustrative purposes, the
same LASSO-based ranking procedure is later applied
independently to each data chunk in a streaming scenario
to monitor the evolution of feature importance over time.
It should be noted that a similar solution, based on feature
drift analysis, was described by Zhao and Koh (2020).
This solution is fundamentally different from the proposed
FIDD strategy, both in terms of the definition of feature
drift and the drift detection mechanism. Zhao and Koh
(2020) focus on detecting changes in the distributions of
input features observed in data blocks, measured using the
Wasserstein or energy statistical distance. Their approach

is completely unsupervised. FIDD does not analyze the
input data itself, but estimates the relationship between
features and labels based on the regression coefficients ;.
This makes FIDD a supervised method.

3. Proposed method

This section introduces the proposed method, feature im-
portance driven drift (FIDD), which uses Lasso-based
feature importance variation to detect drift in streaming
data. FIDD is a streaming drift detection algorithm
based on tracking changes in feature importance rankings
obtained from Lasso regression applied to consecutive
data chunks.

The most important part of the feature drift detection
method is identifying the most relevant features of the data
stream using the Lasso procedure. The data are observed
in shifting, non-overlapping windows, within which Lasso
operates. The proposed drift detector analyses all features
for which the weights 3; # 0 and ignores all other weights
where ; = 0. Further on, a self-describing Algorithm 1
(see Fig.[2)) for detecting feature drift and refitting the base
classifier is presented.

In the first step, the features are classified using the
average ranks obtained on the subdivisions of the first
fragment using the Lasso procedure. Next, the features
are sorted from the most to the least important based on
their mean ranks. The process is repeated for each new
data chunk: the chunk is analyzed, and a new feature
ranking is determined. The stability of feature importance
is assessed by comparing the latest ranking with the
reference ranking.

If a feature’s position deviates beyond the range
[p—o, p+0o] in a given chunk, feature drift is detected, and
this chunk becomes the new reference one. The process
continues until all relevant features established by Lasso
are exhausted. It is important to clarify that, in FIDD,
the threshold o; is not a user-defined hyperparameter
but a dynamically computed standard deviation of the
importance of feature ¢ over a recent data window.
This makes the algorithm self-adaptive and statistically
grounded, similar to DDM (Baena-Garcia et al., 2006),
where thresholds are derived from empirical estimates
of classifier error and variance. Therefore, traditional
hyperparameter optimization is not applicable in the same
sense, as FIDD operates without requiring externally
tuned thresholds.

The algorithm terminates when no further chunks
remain for analysis. The mentioned interval covers about
68% of the normally distributed feature values. Exceeding
this range indicates that the new feature value is unusualy
relative to previous observations and may signal a change
in the data distribution or feature drift. This is a simple
but effective method for detecting changes in distribution,
which makes the algorithm work well in data stream

aamcs

P. Porwik et al.

Extract the first chunk as
reference chunk.
Use first chunk as training dataset
for classification process.

Start of algorithm

Partition the reference chunk to
10 equal sub-chunks.
Compute feature ranking
for each sub-chunk using LASSO.

Determine the mean ranks (v) and

standard deviation (o) of features N

based on the rank vectors from
10 reference sub-chunks.

Sort the features from the most
important to the least important
using the mean ranks of the features.

A

No Are there further chunks

Take the next chunk and set it
as the reference chunk.
Use this chunk as the training dataset
for the classification process.

End of algorithm

A

for analysis?

The subsequent chunk is identified
and designated as the current chunk.
A new ranking of the features is
determined for the current chunk.

v

Take out the most important

Are there further chunks
for analysis?

Drift Occurred No

Do the feature (f)
position fall within the
range [p-o, y+o]in the
reference chunk?

No Drift Occurred

feature (f) from the
reference ranking.

Are there any

Yes remaining features
with 8 #0 in the

refefence ranking?

No

\ 4

Fig. 2. Workflow diagram of Algorithm 1 for feature importance-driven drift detection (FIDD). The Python source of the algorithm is
available in the GitHub repository at https://github.com/ZSKPP/feature-driftl

analysis or environments where variability is natural (e.g.,
user behavior, sensory data). The advantages of the
proposed approach can be expressed as follows:

1. The FIDD algorithm automatically updates the
feature ranking when drift is detected. This ensures
the classifier always operates on the most up-to-date
features, increasing efficiency.

2. Classic drift detection methods, such as DDM or
EDDM, detect drift globally based on classification
errors. Our approach evaluates changes in the
importance of individual features, which allows more
precise adjustments to the model.

3. Many drift detection methods require storing and
analyzing large sets of historical data, such as
sliding window methods. The FIDD algorithm
relies on the current data fragment and a simple
standard deviation criterion, remarkably reducing the
computational cost.

4. Comparing feature positions in rankings rather than
raw values avoids false alarms caused by local
fluctuations in the data. This approach is more robust

to short-term anomalies and random changes, unlike
methods based on statistical significance tests that
can detect apparent drifts.

5. The FIDD strategy improves the interpretability
of drift by identifying which features change in
importance over time, helping explain why and
where the model’s behavior changes.

4. Data preparation

Tests on the effectiveness of the proposed feature drift
detector were carried out on artificial collections, where
the drift location can be programmed, and on real-world
data taken from repositories, where places of drift
occurrence are known or unknown. Both two-class and
multi-class data are considered in this study (Table [.
This will assess the universality of the method. Some
benchmarks used in the experiments have no marked
drift moments. Although there are no indicated concept
change points in the file, there are changes in the
distribution of features, and the relationships between
variables change over time. This is a challenge for

https://github.com/ZSKPP/feature-drift

Improving the performance of the feature drift detector by LASSO observation . ..

Table 1. Characteristic of real datasets.

Dataset #Inst #A #C Drift points
Electricity (Frank, 2010) 45,312 8 2 unknown
Ozone (Frank, 2010) 2,534 72 2 unknown
Arrythmia (Frank, 2010) 459 279 16 unknown
Poker-hand (Frank, 2010) 1,025,010 10 10 Modified: drift from 50000 to 99 999
with class &k permutation k— > (k + 1)mod10
Rialto bridge (Frank, 2010) 82,250 27 10 unknown
Outdoor (Frank, 2010) 40,000 21 40 unknown
INSECTS (de Souza et al., 2020)
Abrupt balanced 52,848 33 6 14,352;19,500; 33,240; 38,682; 39,510
Abrupt imbalanced 355,275 33 6 83,859;128,651; 182,320; 242,883; 268,380
Gradual balanced 24,150 33 6 14,028
Gradual imbalanced 143,323 33 6 58,159
Incremental balanced 79,986 33 6 26,568;53,364
Incremental imbalanced 452,044 33 6 150,683;301,365
Reoccurring balanced 79,986 33 6 26,568;53,364
Reoccurring imbalanced 452,044 33 6 150,683;301,365

#Inst: number of instances, #A: number of attributes, #C: number of classes.

drift detection algorithms because the changes are not
known in advance, and the algorithm should detect them
(Stefanowski et al., 2017).

4.1. Synthetic data. The first part of synthetic data
was prepared using the command line interface in the
MOA environment, a popular JAVA open-source machine
learning framework for data streams. Synthetic data
were produced by a hyperplane generator (HPG) (Bifet
et al., 2010). It generates a data stream where the number
of instances, the number of features in an instance, the
number of drifting features, the place of drift occurrence,
and the time of drift can be programmed. The hyperplane
H is a set of multidimensional points such that H =

{x : wI'x = b}, where w = [w1,...,w,], w; € R,
X = [x1,...,%4] i € Rand b € R. We assume
that Zle w; = b. Instances are randomly generated,

and each has the same pre-defined number of features
x;. Instances x for which w/'x > b belong to the first
class, whereas those with condition w/x < b belong
to the second one. Classes are balanced. Drift is
randomly recorded on 10/15 features with 1%, 3%, or 5%
label noise. The noise was introduced by inverting the
class labels with probability n%. Each synthetic dataset
consists of 100 K instances.

4.2, Real data. The study examined several
repositories (Frank, 2010; de Souza et al., 2020), shown
in Table [T}

The selected datasets represent a diverse set of
stream-like scenarios, encompassing both real-world and
synthetic sources, as well as various types of concept
drift. The Electricity dataset, although not annotated

with explicit drift points, contains well-documented
market-driven changes, including both abrupt and gradual
real drifts, making it a standard testbed for adaptive
algorithms. The Ozone and Arrhythmia datasets exhibit
implicit and subtle drift phenomena, mostly of virtual
or gradual nature, due to environmental fluctuations and
patient variability, respectively. Although the Ozone and
Arrhythmia datasets are not among the most commonly
used concept drift benchmarks, such as KDDCup99
(Tavallaee et al., 2009) or Forest Cover Type (Blackard,
1998), they were deliberately selected to reflect real-world
data complexity and irregular drift behavior.

Ozone, derived from atmospheric monitoring,
exhibits natural fluctuations in class distributions over
time, while Arrhythmia captures high-dimensional,
clinical decision scenarios with underlying gradual or
latent drift. These settings are representative of practical
applications where drift is neither synthetic nor annotated,
and the drift detection task becomes inherently more
challenging.

In contrast, Poker-hand is a static synthetic dataset
with no inherent drift, but was artificially permuted
by class permutation. The Rialto Bridge and Outdoor
datasets are sensor-based streams with naturally occurring
gradual drifts, such as seasonal environmental variations;
these drifts are real but unlabeled, thus implicit. Finally,
INSECTS is a hybrid benchmark in which explicitly
defined drifts are introduced in both features and class
distributions, supporting the evaluation of drift detectors
under controlled, repeatable conditions. This collection of
datasets enables a comprehensive and realistic assessment
of drift detection performance across a range of drift

types.

@amcs

amcs@

P. Porwik et al.

5. Experiments and evaluation of the
proposed method

The objective of the experimental study is to answer the
following research questions:

* RQI: Does the proposed FIDD method effectively
detect various types of concept drift (abrupt, gradual,
incremental, recurring) in data streams?

* RQ2: How does the FIDD detector compare to
established drift detection methods (DDM, EDDM,
ADWIN, PCA-FDD) in terms of accuracy, false
positives, and true positives?

* RQ3: Is FIDD robust to label noise and applicable in
both binary and multi-class scenarios?

* RQ4: What is the computational cost of the FIDD
method?

To address these questions, a series of comparative
experiments was conducted using both synthetic and
real-world benchmark datasets. The evaluation involves
accuracy-based metrics, false positive (FP) and true
positive (TP) rates, MCC correlation, and runtime
analysis.

All computational experiments were conducted
in Python 3.8 with the scikit-learn stream-learn,
scikit-multifiow, NumPy and Frouros 0.6.1 packages. In
the experiments, three drift detection methods will be
applied from skmultiflow, a machine learning package for
streaming data in Python (Montiel et al., 2018).

Table 2 lists the hyperparameters and configuration
settings used for each of the compared drift detection
algorithms in the experimental evaluation. The warning
and drift threshold parameters are « and (. To
ensure fairness and reproducibility, the parameters from
Table 2] were used in configuring each drift detection
method and were implemented in Python packages.
The PCA-FDD method implements the algorithm by
Agrahari and Singh (2022). The parameter values for
drift detection algorithms were selected based on the
original publications and default settings from widely
used implementations in the Python scikit-multiflow and
Frouros libraries. These settings enable a fair comparison
and preserve reproducibility. The ADWIN detector
parameter was chosen based on the settings proposed by
Bifet and Gavalda, (2009), whereas parameters of DDM
and EDDM were chosen based on the selection made by
Baena-Garcia et al. (2006).

5.1. Evaluation metrics. In some datasets, the data
stream is characterized by known drift points applied to
all drift detectors. For such assumptions, the evaluation
process of drift detectors can be organized similarly to
classification tasks, which means that, for a given detector,

Table 2. Drift detector parameters description.

Detector Parameters

ADWIN 6 = 0.002

DDM a = 0.01, p-value = 0.001
EDDM a=0.9,8=0.95

PCA-FDD | § = 0.5, no. of components = 2

true positives (TPs), true negatives (TNs), false positives
(FPs), and false negatives (FNs) can be measured (Stapor
et al., 2021). Accuracy is ACC = (TP +TN)/(TP +
TN + FP + FN). The problem with it is that it is
not an informative metric when the two classes are of
significantly different sizes. The Matthews correlation
coefficient (MCC) metric, although not necessarily the
best choice in all cases (see, e.g., Zhu, 2020), often
yields a more helpful performance score than ACC
(Chicco et al., 2021). For the binary classification
and multiclass (which is automatically recognized by
scikit-learn implementation of this metric), we have the
formula

CXN—ZiczlpiXti
\/(NQ*Ziczlpzz) X (NZ*Z?:ltzz)

where C' is the number of classes, N is the number of
samples, c is the number of samples correctly predicted,
t; is the number of times class ¢ truly occurred, and p; is
the number of times class ¢ was predicted. This measure
can be used even if the classes are of very different sizes.
The Matthews correlation coefficient can be considered
a good candidate for a standard metric role for assessing
classifications, especially when datasets are imbalanced.
It generates a high score only if most of the data elements
were predicted correctly in the data classes. From the
definition of the MCC measure, it follows that, for MCC
= +1, we have a perfect prediction, so the classifier well
predicts across all classes. For MCC = 0, predictions are
no better than random guessing. If MCC = —1, it means
that forecasts are completely incorrect. This is the worst
possible solution.

Although the formula @) for a multiclass MCC
is more complex than the binary version, it retains
the same strengths, making it a valuable metric for
evaluating multiclass classifiers, especially in situations
where precision, recall, or accuracy might give a skewed
view of performance due to class imbalance or other
issues. If the data are divided into chunks, the average
values of ACC and the MCC are computed.

MCC =

, 3

5.2. Evaluation based on synthetic data. We connect
Algorithm 1 with the random forest (RF) classifier, both
with and without a signal, to trigger retraining after drift
detection. The experiments (Figs. BH6) illustrate two

Improving the performance of the feature drift detector by LASSO observation . ..

cases: (a) natural accuracy decline after drift and (b)
classifier response upon receiving a drift signal. Various
drift types (sudden, gradual, recurring, incremental) were
tested. The top graphs show the accuracy of a classifier
trained only once, highlighting post-drift performance
drops. The bottom graphs depict retraining upon drift
detection, demonstrating timely drift identification and
improved accuracy.

One drift can be detected several times, as the
concept changes in some drifts, which are fluid and
long-lasting. The proposed method is sensitive to transient
concepts and can detect an early phase of drifts. It
is presented in the middle chart of Fig. [This is,
however, an advantageous phenomenon. In such a
case, the classifier can be re-trained using the transition
patterns between the two concepts, potentially affecting
classification accuracy.

The proposed strategy of drift detection gives good
results—drift is recognized early and the classifier can be
quickly rebuilt. It can be seen that, after re-training on
new data, the classifier quickly achieves high efficiency,
similar to that before the occurrence of the drift. This
ultimately means the classifier makes a prediction error
in a short time interval after concept drift detection.

Algorithm 1 detects drift directly in the source data
and does not use the results of an intermediate classifier
that needs to be selected in advance. Our approach
eliminates the errors that such a classifier induces. Tests
were performed on synthetic datasets. The characteristics
of these datasets were presented earlier in Section 3.1.
The proposed FIDD detector was compared with the
state-of-the-art methods, and the results were averaged
over 10 runs with different random seeds.

In the study, three levels of label noise (1%, 3%,
5%) were used for each of the four drift types and two
numbers of drifting features (10 and 15). The study
was repeated for 10 data sets generated with different,
randomly generated seeds. This gives 60 data sets for each
drift type. This is a compromise between the complexity
of the experiment and its readability. The results are
summarized in Table Bl The proposed FIDD detector
always achieved the highest ACC index, which points out
its effectiveness.

The quality of detection is understood as the number
of detections of an actual drift (TP) or a falsely indicated
one (FP), as presented in Table[d] The row labeled ‘Oracle
result’ reflects the expected detection result based on the
concept drift injected in the synthetic stream: the number
of true positives and false positives. It serves as an
ideal basis for interpreting the results of real detectors.
The results were averaged over 10 runs of data from
Table [3] in each category with different random seeds.
The experiments show that the FIDD detector generates
significantly fewer false alarms (FP) compared to other
methods. This phenomenon is an advantage of the

proposed solution.

The result was also confirmed using the Wilcoxon
test, as shown in Table 3] on the « level equal to 0.05.
The Wilcoxon test does not assume the normality of the
data but requires paired data. The conditions were met
because each pair of results is from the same experimental
condition (noise level + drift type).

The Wilcoxon signed-rank test was applied in its
two-tailed form. The null hypothesis assumes no
systematic difference in paired results (median difference
= 0). Statistical tables are used to calculate p-values
for small samples (< 20), which is the case here. For
p-value < «, we can conclude that statistical evidence
at o = 0.05 shows that the ACC for detectors differs.
At the 5% significance level, the null hypothesis of equal
efficiency is rejected (p ~ 0.03). However, due to
the proximity of the p-value to the threshold, the result
should be considered statistically significant but treated
with caution in practice. Thus, we acknowledge that,
in the future, a more comprehensive evaluation of the
cost-effectiveness and stability of our method is required,
especially under real-world deployment constraints. The
proposed FIDD method shows a statistically significant
difference from all other strategies.

To evaluate the robustness of our method, we
conducted experiments on 10 synthetic data streams. Each
stream was generated with a different initial random seed
to ensure variability. Exactly one drift event (denoted as
P = 1) was embedded in each stream. For each drift
detection method, the average number of true positives
(avgTP) and false positives (avgFP) was computed as the
mean across the ten independent data streams. Based
on Table [the next coefficients were computed: True
Positive Rate (sensitivity) TPR = avgTP/P and Precision
Prec = avgTP/(avgTP + avgFP). These two metrics
directly quantify the sensitivity of the method and its
resistance to false alarms. High precision confirms that
the detector rarely responds to short-term fluctuations
with false alarms, while a high TPR shows that true
drifts are consistently detected. Together, they provide
strong empirical evidence supporting the validity of the
proposed ranking-based approach. It is presented in
Fig. [1 a radar plot comparing the performance of five
concept drift detectors (FIDD, DDM, EDDM, ADWIN,
and PCA-FDD) across evaluation metrics: True Positive
Rate (TPR) and Precision (Prec), for four types of
drift (abrupt, gradual, incremental, and recurring). The
values were averaged over 10 synthetic data streams
with a single programmed drift per stream. The
FIDD detector consistently demonstrates a balanced and
superior performance across most drift types. Notably, it
achieves high precision in all scenarios, particularly under
abrupt (Prec = 0.85) and recurring drift (Prec = 1.00),
while also maintaining high detection rates (e.g., TPR
= 1.00 for abrupt drift and TPR = 3.00 for recurring

@amcs

1.0

0.8
0.6
0.4
0.2

hit!

Accuracy before

0000S

0.0
0
1.0

20000 40000 600p0 80000

0.8
0.6
0.4
0.2

/\

TN

Accuracy after

00005

0.0
0

40000 60000 80000

Instances

20000

Accuracy before

Accuracy after

P. Porwik et al.
1.0
0.8 1 %
0.6 1
0.4 1 =
]
0.2 A o
S
0.0 T T T T
0 20000 40000 60000 80000
1.0
0.8 | \ f
0.6 1
0.4 1
S
0.2 A o
©
U
0.0

40000 60000 80000

Instances

20000

o

Fig. 3. Abrupt drift: drift detection by the FIDD chunk-based detector (left) and the ADWIN instance-based detector (right) for the RF

classifier.
1.0 1.0 A
]
£ 0.8 o }"’ >
Q 9] P e aa
2 0.6 2 0.6 1
> >
@) o
© 0.4 A £ 04+
= %4 =1 w
2 g g g
g 0.2 1 S < 0.2 3
0.0+ T T T T 0.0 T T T T
0 20000 40000 60000 80000 0 20000 40000 60000 80000
1.0 1.0
. FA/\-«
4 — | /\— . e R S
8 0.8 8 0.8 N P ,/'\w
20.61 S 0.6
£ 0.4 £ 0.4
S & 2 S e I @
O 4 < © N
0.2 =3 S 0.2 1 i o,
< S g s [B
0.0 T T T 0.0 T T T T
0 20000 40000 60000 80000 0 20000 40000 60000 80000
Instances Instances

Fig. 4. Gradual drift: drift detection by the FIDD chunk-based detector (left) and the ADWIN instance-based detector (right) for the

RF classifier.

drift). These results indicate that FIDD is not only
effective in identifying true drifts but also resistant to false
positives. In contrast, the DDM and PCA-FDD detectors
show limited effectiveness, with a low TPR and nearly
zero precision across most drift scenarios, indicating
poor sensitivity and high false alarm rates. EDDM
demonstrates a strong TPR in all drift types (1.00 for
both abrupt and incremental drifts), but its low precision
values (as low as 0.05) suggest a tendency to overreact
to short-term fluctuations, resulting in frequent false
positives. ADWIN exhibits intermediate performance,
detecting recurring drifts relatively well (TPR = 2.17),
but with moderate precision (Prec = 0.20). For other drift
types, its performance remains limited. The radar plot
illustrates that FIDD achieves the most favorable trade-off
between sensitivity (TPR) and specificity (Prec), thus
empirically supporting the claim that monitoring feature
importance rankings offers robustness against transient

fluctuations and false alarms, which is an advantage over
other detectors.

5.3. Evaluation based on real data. Studies similar,
as in the previous section were performed for the case
of real data (de Souza et al., 2020). The characteristics
of these data are given in Table [Real data also
contains multi-label examples, which will better enable
the evaluation of the proposed method against others. The
research was conducted similarly to that for synthetic data
for the identical drift detectors. Now, instead of ACC, the
MCC is applied. The training data was constructed from
the initial 5% of the specified dataset. Results in Table @]
show the advantage of the new drift detection method over
other reference methods.

Observation of the results from Table [suggests that
the proposed feature drift detection method in conjunction
with the RF classifier is better than other drift detectors

Improving the performance of the feature drift detector by LASSO observation . ..

1.0 1.0
(]
5 0.8 \ / _ | wos m M
“Q_J .ﬁ’_) o
Q0.6 < 0.6 1
?? 0.4 g 0.4
57 o \ it o\t < \nit 3 8 o 3
o 1 a S a Z 02 3 S S
£02 g g g g g g
0.0 ° = ° 0.0
0 20000 0000 6000 80000 0 20000 40000 60000 80000
1.0 1.0
_ A
g 0.8 < 0.8+ \‘f'\./
2o — NN e i
0.6 %06
5 0.44 504
-] o Z < S N v ~
2021 S S Z <02 Y & 2
Q S o W N}
© o o 5] 0 =
0.0 0.0 T T T T
0 20000 40000 60000 80000 0 20000 40000 60000 80000
Instances Instances

Fig. 5. Recurring drift: drift detection by FIDD chunk-based detector (left) and the ADWIN instance-based detector (right) for the RF

classifier.
1.0 1.0
(0]
— B () .
il 0.8 S 08 M
[[
< 0.6 2 0.6
> >
@] O
© 0.4 - C 0.4+
g
i K02
2 0.2
0.0 T T T r 0.0 T T T :
0 20000 40000 60000 80000 0 20000 40000 60000 80000
1.0 1.0
_ k /\7 L-~—-~.-..,
g 0.84 —mmm——— ?ﬁ 0.8 1 NMM
=
©
0.6 1 2 0.6
£ 0.4- S 04+
S 8 & g] & g
0.2 1 S =3 0.2 o =3 &
< g g g g g
0.0 T T 0.0 T T T T
0 20000 40000 60000 80000 0 20000 40000 60000 80000
Instances Instances

Fig. 6. Incremental drift: drift detection by the FIDD chunk-based detector (left) and the ADWIN instance-based detector (right) for

the RF classifier

Gradual_TPR

Abrupt_PREC

-— FIDD
DDM

— EDDM

— ADWIN

— PCA_FDD

10

Recurring_TPR

Fig. 7. Radar plot of TPR and Precision (logarithmic scale).

cooperating with the same classifier. The FIDD approach
gives MCC values closer to +1 than other methods.

The classification efficiency results were checked
using the Wilcoxon test. The Wilcoxon signed-rank-test,

using W= distribution (two-tailed) for o« = 0.05 for real
data from Tables[6l and [7] is as follows: FIDD vs DDM:
p = 0.016, vs DDM: p = 0.016, vs ADWIN: p = 0.016,
vs PCA-FDD: p = 0.016, for both the ACC and MCC
factors, so there are significant differences between the
proposed FIDD and other drift detection methods.

Similar studies were conducted on real data sets
where drift points were defined. The data set (INSECTS)
is presented by de Souza et al. (2020) and in Table[l

All pairwise comparisons between FIDD and other
detectors (DDM, EDDM, ADWIN, PCA-FDD) on the
real INSECTS dataset (Table B) yielded p = 0.008 using
the two-tailed Wilcoxon signed-rank test (. = 0.05).
All statistical comparisons were performed employing
the Wilcoxon signed-rank test on matched pairs under
identical experimental conditions. The Wilcoxon test
does not assume normality of the data but requires paired
data. The conditions were met because each pair of
results is from the same experimental condition (noise

P. Porwik et al.

(3]
Table 3. Average accuracy ACC of drift recognition by the RF classifier: 10 runs with different seeds each.

Drift feature-noise’ FIDD DDM EDDM ADWIN PCA-FDD
10-1 *0.867/1 0.851/7 0.861/18 0.861/1 0.802/4
10-3 0.858/1 0.842/4 0.852/18 0.853/1 0.796/4
10-5 0.851/1 0.835/3 0.844/18 0.845/1 0.790/4

Abrupt 15-1 0.875/2 0.851/5 0.864/18 0.863/1 0.832/4
15-3 0.863/1 0.846/4 0.855/18 0.854/1 0.825/4
15-5 0.855/1 0.837/3 0.847/18 0.846/1 0.819/4
10-1 0.828/2 0.822/3 0.841/16 0.823/3 0.760/0
10-3 0.836/2 0.812/3 0.833/16 0.814/3 0.756/0
10-5 0.819/2 0.813/4 0.828/18 0.806/3 0.752/0

Gradual 15-1 0.874/5 0.804/4 0.817/15 0.789/4 0.744/2
15-3 0.855/4 0.765/2 0.810/14 0.775/4 0.740/2
15-5 0.848/4 0.755/1 0.804/15 0.768/4 0.736/2
10-1 0.820/2 0.795/5 0.815/19 0.803/3 0.795/2
10-3 0.814/2 0.787/2 0.806/16 0.788/3 0.788/2
10-5 0.807/2 0.764/3 0.798/16 0.784/2 0.782/2

Incremental| 15-1 0.840/6 0.746/1 0.755/19 0.757/4 0.746/4
15-3 0.824/6 0.761/4 0.766/18 0.730/3 0.741/4
15-5 0.847/7 0.736/2 0.762/19 0.732/3 0.739/4
10-1 0.878/3 0.836/8 0.860/18 0.855/3 0.832/8
10-3 0.865/3 0.838/6 0.843/18 0.842/3 0.818/8
10-5 0.851/3 0.814/6 0.828/18 0.823/3 0.801/8

Recurring | 15-1 0.880/3 0.858/7 0.865/3 0.857/3 0.784/3
15-3 0.868/3 0.829/5 0.842/13 0.842/3 0.773/3
15-5 0.855/3 0.824/8 0.829/16 0.824/3 0.761/3

*: <ACC>/<number of drifts detected by the given method>.

level + drift type). Thus, FIDD shows statistically
significant differences in performance compared to all
baseline detectors.

The MCC results from Table 9] for FIDD are higher
than those of other methods, but not high enough to
consider this advantage statistically significant. This is
due to the small number of samples. For this reason,
Wilcoxon may not detect differences because it relies on
ranks rather than actual MCC values. The Student ¢-paired
test compares means and their deviations, so it will be
better when the sample size is small, with null hypothesis
Hy : py = po. The normality of samples was verified
earlier using the Shapiro—Wilk test (¢ = 0.05). The
obtained p-values for all compared columns of Table [9]
ranged between 0.45 and 0.63, indicating no significant
discrepancy from normality.

For the t-paired Student test, we obtain FIDD vs
DDM: p = 0.0051, vs EDDM: p = 0.0196, vs ADWIN:
p = 0.0051, vs PCA-FDD: p = 0.0068. In the mentioned
cases, p < 0.05; hence, significant differences exist
between the proposed FIDD and other methods.

Retraining the classifier for each identified drift can
lead to redundancy due to the high false alarm rate, even
for state-of-the-art drift detectors. As shown in Table [10]
the proposed FIDD detector has, in most cases, a low false

: <number of drifting features>-<% of label noise> in synthetic data.

positive error (FP) rate compared to other detectors, which
is a very positive phenomenon. Drift detectors based
on error rates frequently produce numerous false alarms,
which can mislead the classifier and increase data analysis
time.

6. Evaluation of the operating time of drift
detectors

Tests were performed on a computer with an AMD Ryzen
5 7500 processor, 3.7 GHz, 64 GB main memory, and a
Windows 10 operating system. Evaluation times (running
time in seconds) are presented separately in synthetic and
real data graphs. The best methods depend on both the
dataset and the base detector. This is a trivial conclusion,
but it allows showing these dependencies for the analyzed
datasets and selected drift detectors.

Figures [8 and O] show the data analysis time of
different detectors as a percentage. The results refer
to synthetic data and various real-world data types
discussed in the article. The presented methods for
synthetic datasets (upper chart) show the average run
time separately for the Abrupt, Gradual, Incremental, and
Recurring sets. The color shade legend on the first chart
defines the appropriate types of detectors.

Improving the performance of the feature drift detector by LASSO observation . ..

Table 4. Average TP and FP indices values for drift detectors based on synthetic datasets from Table 3]

Detector Abrupt Gradual Incremental Recurring
TP FP TP FP TP FP TP FP
Oracleresult | 1.00 0.00 1.00 0.00 1.00 0.00 3.00 0.00
FIDD 1.00 0.17 033 283 050 3.67 3.00 0.00
DDM 0.00 433 000 283 033 250 250 4.17
EDDM 1.00 17.00 0.83 14.83 1.00 16.83 233 1450
ADWIN 1.00 0.00 0.00 350 0.00 3.00 283 0.17
PCA-FDD 033 3.17 000 467 033 217 067 250

Table 5. Wilcoxon signed-rank-test using W= distribution
(two-tailed) for a = 0.05: synthetic data for ACC val-
ues. Values inside the table are p-values of the statistic.

FIDD vs. DDM EDDM ADWIN PCA-FDD
Abrupt 0.034 0.035 0.035 0.031
Gradual 0.035 0.031 0.036 0.031
Incremental | 0.031 0.035 0.031 0.031
Recurring 0.031 0.035 0.034 0.034
100%
90%
80%
70%
60% m PCA-FDD
50% EDDM
40% uDDM
30% B Proposed
20%
- = l B =
o || .

Abrupt Gradual Incremenral Recurring

Fig. 8. Drift detector operation time versus the drift rate.

For real data, the proposed approach resulted in
the shortest computation time for all datasets except
the Arrhythmia and Ozone files. The favorable time
results of the proposed method result from the fact that
it does not generate warning levels like other detectors
and immediately indicates the actual drift of features.
Execution time for the INSECTS real-world dataset
contains drifts of a very different nature, and its processing
by different detectors is also relatively long due to
the need for frequent retraining of the classifier. The
observation of all the data sets used shows a favorably
shorter feature drift detection time for the FIDD detector
than for the others included in the study.

7. Complexity of the proposed method

For detecting drift, the FIDD detector applies the LASSO
feature ranking method, so the computational complexity
of the ranking process is a critical factor. When drift is

detected, the subsequent data chunk is divided into Ly
sub-chunks, with the LASSO method applied to each one.
If no drift is detected, ranking is performed once over the
entire chunk. This concept is presented by Algorithm 1
(Fig. 2).

Let Ly denote the number of detected drifts, L.
be the total number of chunks, and O(A) be the
computational complexity of the LASSO procedure.
Under these assumptions, the computational complexity
is givenby O(Lg - L - O(A)) + O((L. — Lg) - O(A)).
Simplifying this expression, the complexity of the FIDD
algorithm becomes O((Ly + L.) - O(A)). Since the
number of sub-chunks is constant, the overall complexity
of the FIDD algorithm is approximately L. - O(A). Given
N instances and d features, and considering the LASSO
implementation using the LARS algorithm (Efron et al.,
2004), the computational complexity of LASSO-LARS is
O(d3 + d? - N). For our datasets, where d < N, this
simplifies to O(A) = O(d? - N).

8. Discussion and conclusions

This section discusses the answers to the research
questions formulated earlier in this study and summarizes
the main conclusions regarding the proposed FIDD
method.

* RQI: Experiments conducted on both synthetic
data—simulating different types of concept drift
(sudden, gradual, incremental, and recurrent)—and
real-world benchmarks show that FIDD effectively
identifies changes in feature saliency even in
the presence of label noise. With an adaptive
threshold based on the standard deviation of feature
saliency scores, FIDD adjusts its sensitivity to local
fluctuations, enabling reliable detection of both
sudden and subtle shifts in the data stream.

e RQ2: As shown in Tables d and [0 FIDD achieves a
favorable trade-off between true positives (TPs) and
false positives (FPs). The TP/FP ratio highlights
its ability to detect significant drift points while
minimizing false alarms, outperforming established
detectors such as DDM, EDDM, ADWIN, and

@amcs

P. Porwik et al.

amcsm

Table 6. Accuracy (ACC) for the RF classifier. Drift points are unknown.

FIDD DDM EDDM ADWIN PCA-FDD

Phishing 0.964/6 0.942/6 0.940/9 0.937/1 0.940/15
Electricity 0.802/4 0.762/18 0.759/18 0.745/13 0.724/2

Ozone 0.954/18 0.789/3 0.893/4 0.897/2 0.892/13
Arrhythmia | 0.977/19 0.550/0 0.583/3 0.550/0 0.563/17
Poker-hand | 0.754/7 0.642/0 0.640/6 0.642/0 0.642/0

Rialto 0.732/5 0.619/18 0.628/19 0.648/17 0.649/10
Outdoor 0.915/18 0.230/0 0.255/12 0.234/4 0.247/14

Table 7. Mathews correlation coefficient (MCC) for the RF classifier. Drift points are unknown.

FIDD DDM EDDM ADWIN PCA-FDD
Phishing 0.926 0.883 0.879 0.873 0.879
Electricity 0.611 0.509 0.504 0482 0.441
Ozone 0.842 0.174 0.121 0.072 0.050
Arrhythmia | 0.952 0.550 0.261 0.114 0.155
Poker-hand | 0.539 0332 0327 0332 0.332
Rialto 0.704 0.577 0587 0.609 0.614
Outdoor 0.914 0220 0236 0218 0.238

Table 8. Accuracy (ACC) for the RF classifier and the INSECTS-type real datasets. Drift points are known.

FIDD DDM EDDM ADWIN PCA-FDD

Abrupt balanced 0.728/7 0.552/8 0.583/17 0.555/7 0.593/15
Abrupt imbalanced 0.809/6 0.682/11 0.713/17 0.682/8 0.673/9

Gradual balanced 0.737/5 0.650/4 0.698/16 0.679/4 0.715/15
Gradual imbalanced 0.806/5 0.735/5 0.768/19 0.735/6 0.749/10
Incremental balanced 0.789/10 0.458/10 0.517/16 0.472/10 0.442/13
Incremental imbalanced 0.822/7 0.718/9 0.749/19 0.728/9 0.712/8

Reoccurring balanced 0.764/9 0.437/8 0.551/16 0.505/11 0.458/12
Reoccurring imbalanced 0.812/6 0.692/10 0.707/14 0.700/12 0.685/15

PCA-FDD, especially in environments with high
noise or jitter.

rankings, measured using LASSO regression. = The
proposed detector exploits feature importance fluctuations
to identify changes in the data distribution, especially in
the presence of virtual drifts, where traditional detectors
may fail due to the lack of change in the decision
boundary.

Extensive experiments were conducted on synthetic
datasets with different types of drifts (sudden, gradual,
incremental, recurrent) and multiple levels of label noise,
as well as on real-world data streams. The results

* RQ3: The method was validated on both binary
and multiclass classification tasks, confirming its
versatility. The robustness to labeling noise was
assessed by controlled noise injection and evaluation
on the Electricity dataset, which naturally contains
noisy labels. The results indicate that FIDD’s
adaptive thresholds reduce the impact of random
fluctuations, leading to more stable drift detection

and fewer false alarms.

* RQ4: In terms of computational efficiency, FIDD
exhibits low memory and time complexity. Unlike
detectors that require retraining classifiers or
maintaining complex structures (e.g., decision trees),
FIDD works with lightweight, piecewise LASSO
regressions. The total execution time does not exceed
that of standard reference methods, confirming its
suitability for processing real-time data streams.

This study presented a new feature drift detection
method based on observing changes in feature importance

confirm that FIDD effectively captures change points
in the feature distribution with minimal false positives.
Remarkably, the method shows better performance in
maintaining a balance between high true positive rates and
reduced false positive rates, outperforming classical drift
detectors such as DDM, EDDM, ADWIN, and PCA-FDD.
FIDD offers the possibility of explanation through the
analysis of feature rankings, which provides insight into
which attributes are responsible for drift. Future work
will focus on extending the method to unsupervised or
semi-supervised learning scenarios, as well as exploring
alternative ranking mechanisms based on examining the
distances of conditional distributions in data blocks.

Improving the performance of the feature drift detector by LASSO observation . ..

Table 9. Accuracy (MCC) for the RF classifier and the INSECTS-type real datasets. Drift points are known.

FIDD DDM EDDM ADWIN PCA-FDD
Abrupt imbalanced 0.745 0.587 0.626 0.586 0.573
Gradual imbalanced 0.740 0.660 0.702 0.660 0.660
Incremental imbalanced | 0.770 0.635 0.675 0.648 0.624
Reoccurring imbalanced | 0.751 0.600 0.617 0.609 0.585

Table 10. Average TP and FP indices value based on the real-world INSECTS datasets from Table 8]

Detector Abr-bal Abr-imb Gra-bal Gra-imb Inc-bal Inc-imb Rec-bal Rec-imb

TP FP TP FP TP FP TP FP TP FP TP FP TP FP TP FP
Oracleresult | 5 0 5 0 1 0 1 0 2 0 2 0 2 0 2 0
FIDD 5 2 2 4 2 3 1 4 2 8 1 6 2 7 0 6
DDM 5 3 2 9 1 3 1 4 2 8 0 9 1 7 0 10
EDDM 4 13 1 16 2 14 1 8 2 14 0 19 2 14 0 14
ADWIN 4 3 3 5 1 3 0 6 2 8 1 8 2 9 0 12
PCA-FDD 7 8 0 9 4 11 0 10 1 12 0 8 1 11 0 15

100%
90%
80%
70%

B PCA-FDD
60%

HADWIN

Abrupt

50%
EDDM

40% = DDM

30% B Proposed

20%
10%

0%

Gradual Incremenral Recurring

100%
9

Q
X

80%
7

Q
X

> >
& il
>/ 3

N > N
v NN
» s zoé' zoé“" ’
< <

&
&7
& ¢
° ¢

60%
50%
40%
30%

20%

10%

0%
¢ &

du,/
&

Q

v 3

Fig. 9. Drift detectors operating time depending on the input data type: from artificial to real.

All algorithms and datasets used in this
study are available in the GitHub repository at
https://github.com/ZSKPP/feature-driftl

References

Agrahari, S. and Singh, A.K. (2022). Adaptive PCA-based
feature drift detection using statistical measure, Cluster
Computing 25(6): 4481-4494.

Baena-Garcia, M., Campo-Avila, J., Bifet, A., Gavald, R. and
Morales-Bueno, R. (2006). Early drift detection, in A.L.C.
Bazzan and S. Labidi (Eds), Advances in Artificial Intel-
ligence, Lecture Notes Artificial Intelligence, Vol. 3171,
Springer, Berlin/Handelberg, pp. 286-295.

Bartz-Beielstein, T. and Lukas, H. (2024). Drift detection and
handling, in E. Bartz and T. Bartz-Beielstein (Eds), Online
Machine Learning: A Practical Guide with Examples in
Python, Springer Nature Singapore, Singapore, pp. 23-39.

Bifet, A. and Gavalda, R. (2009). Adaptive learning from
evolving data streams, Proceedings of the 8th International
Symposium on Intelligent Data Analysis: Advances in In-
telligent Data Analysis VIII (IDA’09), Lyon, France, pp.
249-260.

Bifet, A., Holmes, G., Kirkby, R. and Pfahringer, B. (2010).
MOA: Massive online analysis, Journal of Machine Learn-
ing Research 11(2010): 1601-1604.

Blackard, J. (1998). Covertype, Dataset, UCI Machine Learning
Repository, DOI: 10.24432/C50K5N.

Breiman, L. (2001).
45(2001): 5-32.

Chicco, D., Totsch, N. and Jurman, G. (2021). The
Matthews correlation coefficient (MCC) is more reliable
than balanced accuracy, bookmaker informedness, and
markedness in two-class confusion matrix evaluation, Bio-
Data Mining 14(13): 1-22.

Random forests, Machine Learning

Dhal, P. and Alad, C. (2022). A comprehensive survey on feature
selection in the various fields of machine learning, Applied
Intelligence 52(2022): 4543-4581.

de Souza, V.M.A., dos Reis, D.M., Maletzke, A.G. and Batista,
G.E.A.P.A. (2020). Challenges in benchmarking stream
learning algorithms with real-world data, Data Mining and
Knowledge Discovery 34(2020): 1805-1858.

Duda, P., Przybyszewski, K. and Wang, L. (2020). A novel drift
detection algorithm based on features’ importance analysis
in a data streams environment, Journal of Artificial Intelli-
gence and Soft Computing Research 10(4): 287-298.

aamcs

https://github.com/ZSKPP/feature-drift

amcsu

P. Porwik et al.

Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R.
(2004). Least angle regression, The Annals of Statistics
32(2): 407-451.

Ferndndez-Delgado, M., Cernadas, E., Barro, S. and Amorim,
D. (2014). Do we need hundreds of classifiers to solve real
world classification problems?, Journal of Machine Learn-
ing Research 15(1): 3133-318]1.

Frank, A. (2010). UCI Machine
Repository, University of California,
http://archive.ics.uci.edu/mll

Gama, J., Zliobaité, I., Bifet, A., Pechenizkiy, M. and
Bouchachia, A. (2014). A survey on concept drift
adaptation, ACM Computing Surveys 46(2014): 1-37.

Gongalves, PM., de Carvalho Santos, S.G., Barros, R.S.
and Vieira, D.C. (2014). A comparative study on
concept drift detectors, Expert Systems with Applications
41(18): 8144-8156.

Guo, H., Li, H., Ren, Q. and Wang, W. (2022). Concept drift type
identification based on multi-sliding windows, Information
Sciences 585(2022): 1-23.

Guyon, I. and Elisseeff, A. (2003). An introduction to variable
and feature selection, Journal of Machine Learning Re-
search 3: 1157-1182.

Japkowicz, N. and Boukouvalas, Z. (2024). Machine Learn-
ing Evaluation: Towards Reliable and Responsible Al,
Cambridge University Press, Cambridge.

Mielniczuk, J. and Wawrzeniczyk, A. (2025). Accounting
for label shift of positive unlabeled data under selection
bias, [International Journal of Applied Mathemat-
ics and Computer Science 35(3): 507-517, DOI:
10.61822/amcs-2025-0036.

Montiel, J., Read, J., Bifet, A. and Abdessalem, T. (2018).
Scikit-multiflow: A multi-output streaming framework,
Journal of Machine Learning Research 19(72): 1-5.

Porwik, P. and Doroz, R. (2021). Adaptation of the idea of
concept drift to some behavioral biometrics: Preliminary
studies, Engineering Applications of Artificial Intelligence
99(2021): 104135.

Saeys, S., Inza, I. and Larrafiaga, P. (2007). A review of feature
selection methods for machine learning, Bioinformatics
23(19): 2507-2517.

Stapor, K., Ksieniewicz, P., Garcia, S. and WoZniak, M. (2021).
How to design the fair experimental classifier evaluation,
Applied Soft Computing 104(2021): 107219.

Stefanowski, J., Krawiec, K. and Wrembel, R. (2017). Exploring
complex and big data, International Journal of Applied
Mathematics and Computer Science 27(4): 669-679, DOLI:
10.1515/amcs-2017-0046.

Tavallaee, M., Bagheri, E., Lu, W. and Ghorbani, A.A. (2009).
A detailed analysis of the KDD CUP 99 data set, Proceed-
ings of the 2009 IEEE Symposium on Computational In-
telligence for Security and Defense Applications, Ottawa,
Canada, pp. 1-6.

Learning
Irvine,

Usman, M., Sher, M. and Khan, M.N.A. (2023). A survey on
feature selection techniques based on filtering criteria, In-
Sformation 14(3): 191.

Yamada, M., lJitkrittum, W., Sigal, L., Xing, E.P. and
Sugiyama, M. (2014). High-dimensional feature selection
by feature-wise kernelized Lasso, Neural Computation
26(1): 185-207.

Zhao, D. and Koh, Y.-S. (2020). Feature drift detection
in evolving data streams, in S. Hartmann er al. (Eds),
Database and Expert Systems Applications (DEXA 2020),
Lecture Notes in Computer Science, Vol. 12392, Springer,
Cham, pp. 319-328.

Zhu, Q. (2020). On the performance of Matthews correlation
coefficient (MCC) for imbalanced dataset, Pattern Recog-
nition Letters 136(2020): 71-80.

Zliobaité, I. (2010). Learning under concept drift: An overview,
arXiv 1010.4784.

W Piotr Porwik is a professor of computer sci-
ence at the Computer Science Institute, Univer-
sity of Silesia, Poland. His research focuses on
machine learning, classification methods, data
stream mining, and biometrics. Professor Porwik
has published over 200 conference and journal
papers. He has also been awarded several best pa-
per awards at prestigious conferences. He serves
as a program committee chair and a member of
numerous scientific events. Professor Porwik is

also a member of editorial boards of high-ranked journals.

Tomasz Orczyk is a research scientist and aca-
demic teacher. He received his doctoral degree
in computer science from the University of Sile-
sia in Katowice in 2018, where he continues his
academic career. His research primarily focuses
on machine learning, particularly the classifica-
tion of incomplete data, biometrics, and methods
for handling concept drift. He has published over
40 conference and journal papers.

Nathalie Japkowicz has been a full professor of
computer science at American University, Wash-
ington DC, since August 2016. Prior to that,
she had directed the Laboratory for Research on
Machine Learning Applied to Defense and Secu-
rity at the University of Ottawa in Canada, and
trained over 30 graduate students and collabo-
rated with many Canadian governmental agen-
cies and private industry. Her publications in-
clude two co-authored books by Cambridge Uni-
versity Press, one edited book in Springer, as well as over 150 book
chapters, journal articles, and conference or workshop papers. Her main
research interests are in the area of machine learning.

Received: 18 April 2025
Revised: 7 July 2025
Accepted: 17 September 2025

http://archive.ics.uci.edu/ml

	Introduction
	Features ranking
	Feature importance: LASSO

	Proposed method
	Data preparation
	Synthetic data
	Real data

	Experiments and evaluation of the proposed method
	Evaluation metrics
	Evaluation based on synthetic data
	Evaluation based on real data

	Evaluation of the operating time of drift detectors
	Complexity of the proposed method
	Discussion and conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

