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ABSTRACT. The spherical cap discrepancy is a prominent measure of
uniformity for sets on the d-dimensional sphere. It is particularly important
for estimating the integration error for certain classes of functions on the
sphere. Building on a recently proven explicit formula for the spherical
discrepancy, we show as a main result of this paper that this discrepancy is
Lipschitz continuous in a neighbourhood of so-called generic point sets (as
they are typical outcomes of Monte-Carlo sampling). This property may have
some impact (both algorithmically and theoretically for deriving necessary
optimality conditions) on optimal quantization, i.e., on finding point sets of
fixed size on the sphere having minimum spherical discrepancy.

Communicated by Friedrich Pillichshammer

1. Introduction

Point sets uniformly located on the classical or higher dimensional sphere are of much
interest in many disciplines of mathematics. As examples we refer to point cloud interpolation
in computer vision [12] or to optimization problems with chance constraints using the so-called
spherical-radial decomposition of elliptically distributed (e.g., Gaussian) random vectors [14].
Uniformity of point sets on the sphere can be characterized by various criteria, e.g., the sum of
pairwise distances (which should be large) or by its Coulomb energy (which should be small).
If the focus is on estimating the integration error when replacing a spherical integral of a
function by an average function value on the spherical point set, then the so-called spherical
cap discrepancy is a natural measure of goodness for the uniformity of this point set [1],[3],[6].
Contrary to the criteria mentioned above, the spherical cap discrepancy (being defined as a
supremum of infinitely many local discrepancies) is originally not endowed with an explicit
formula which could be used for its numerical computation or for its minimization as a function
of the point set. This did not harm theoretical investigations in the context of the construction
of low discrepancy sequences but it became obstructive in numerical experiments. A possible
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remedy consisted in reducing the supremum to a maximum over finitely many local
discrepancies (e.g. [[1], p.1005]), but, of course, this provides just a lower bound which might
deviate considerably from the true value [[7], p.13]. A certainly more precise algorithmic
approximation was provided in [2], but still it was not based on an exact formula and moreover
restricted to the classical two-dimensional sphere. In [7], a precise enumerative formula for the
spherical cap discrepancy was derived, which reduced the supremum over an infinite family of
local discrepancies to a finite maximum of fully explicit and numerically easy to compute
expressions. Not surprisingly, this formula suffers from a poor complexity. Nonetheless, it
could be used for calibration purposes for moderate sizes of the point set and small dimensions
of the sphere (in [7], sets with 2000 points in the two-dimensional sphere to 100 points in the
five-dimensional sphere were considered). For a practical application of this formula in image
analysis, we refer to [12].

It turns out that, apart from its numerical use, the mentioned formula maybe of interest in
characterizing the spherical cap discrepancy as a function of the point set. This observation is
based on the fact that the finitely many expressions whose maximum constitutes the spherical
cap discrepancy are fully explicit functions of the point set. This allows us, beyond proving the
continuity of the spherical cap discrepancy by elementary arguments, to verify even its
Lipschitz continuity around so-called generic point sets. The latter refers to point sets on the
sphere for which each selection of cardinality not larger than the space dimension is linearly
independent. Such point sets are typical outcomes of Monte-Carlo (but not of Quasi Monte-
Carlo) sampling. The main argument for proving Lipschitz continuity relies on the fact that,
locally around a generic point set, the spherical cap discrepancy can be represented as a
continuous selection of Cl-functions (see [13]). Moreover, we are able to provide explicitly
computable Lipschitz constants. This might be of interest in the application of global
optimization methods for minimizing the spherical cap discrepancy (optimal quantization) for
a fixed sample size. Note that low discrepancy sequences whose design on the sphere is an
active field of research have nice asymptotic properties but do not guarantee optimality for a
fixed sample size. Apart from algorithmic relevance, the proven Lipschitz continuity paves a
way for establishing necessary optimality conditions in optimal quantization on the sphere by
means of the Clarke subdifferential [4].

The paper is organized as follows: Section 2 briefly introduces some basic concepts,
presents some simple preliminary results needed later on and proves the continuity of the
spherical cap discrepancy. In Section 3, a representation formula for the spherical cap
discrepancy as a maximum of finitely many (explicit) functions around generic point sets is
proven. In section 4, an extended cap discrepancy is introduced and its Lipschitz continuity
around generic point sets is verified. As a trivial consequence, the same property for the original
discrepancy is derived as the main result of the paper. Section 5 briefly describes how the
previous results could applied in order to derive necessary conditions for optimal quantization
with respect to the spherical cap discrepancy.

2. Basic concepts and continuity of the spherical cap discrepancy
We start by defining the following family of subsets of R¥:

H(w,t) = {x € R* | (w,x) = t}(w € R4t € R).
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If w # 0, then H(w, t) represents a closed half space in R%, otherwise it coincides with
either R? or the empty set depending on whether t < 0 or t > 0. With each of these sets, we
associate its so-called cap measure on the sphere:

1 (w,t):=o(S4* N H(w,t)) (6 = law of uniform distribution on $4-1),

where $¢~1 refers to the (d — 1)-dimensional Euclidean unit sphere in R¢. We assume in
the following that d > 2.

For a matrix X = (x(l), e, x® )) of order (d, N) with N > 1 representing a set of points
{x®, ...,x(M} c §4-1, the empirical measure induced from this point set assigns to the set
S$%=1 N H(w, t) its empirical probability

pemP (X, w,t):=N"1-{i € {1,..,N} | x® € $41 n H(w, 1)}
=Nt {ie{l,.. N} x®DeHWw0}

As a side remark we note that the following relation is immediate from the definition:
pemP (X, w, 0) + ™ (X, —w,—t) =1+ N1 - #{i € {1,..,N} | (w,xD) = ¢}. (1)

In order to measure the uniformity of a point set on the sphere, one might compare the
deviation between its cap measure and empirical measure on all sets S~ N H(w, t):

XY= sup |uem(X,w,0) —peP(w, 0] (X € (s41)") @)

weR4 teR

Clearly, the smaller A°, the better both measures coincide on the chosen family of sets.
Such quantities are called discrepancies. If one restricts the family of sets H (w, t) to those with
(w,t) € $%1 x [—1,1], then one obtains the so-called spherical cap discrepancy (e.g., [3])

A(X):= sup |ue™P (X, w,t) — uc (w, t)| (X € (Sd‘l)N). 3)

wesd—1te[-1,1]

Observe, that for (w,t) € $471 x [—1,1], the sets H(w, t) represent closed half spaces
with normal vector w and height t. Their intersections S¢~* N H(w, t), on which the empirical
measure and the uniform distribution are compared, are nonempty and called spherical caps.
Some authors define the spherical cap discrepancy by using open half spaces instead, i.e., by
imposing the strict inequality (w,x) > t in the definition of H(w,t) (e.g., [5]). One could
formally refer to this alternative definition as a discrepancy A (X). It is easy to see that all these
three discrepancy definitions coincide, i.e., 4(X) = 4°(X) = A*(X). We provide a proof in
Proposition A.1 of the appendix for the reader’s convenience. We shall base this paper on the
representation (3), but occasionally, the equality with (2) may turn out to be useful.

Ifw € $¢71, then the cap measure does not depend on w and we simply write %P (t) =
U (w, t). In this case, the following explicit formula is well known (e.g., [9]):

can (g Cy foarccos © gind-2 (v)dr, ifo<t<i, @
P (t) = _
1—Cy [T sind 2 (f)dr, if —~1<t<0,
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where

1
 [osind=2 (n)ar

Cd: (5)

is some normalizing constant. It follows immediately from (4) that @ is continuous and
that

peeP(t) = 1—pP(=t) vt € [-11]. (6)

Therefore, we shall work from now on with the following form of (3):

M= sup e own —per@l(xe(st)Y). @)
wesa-1te[-1,1]

We collect three properties of the spherical cap discrepancy that are direct consequences
of the definition (7). We observe first, that the supremum in (7) is actually a maximum and that
the spherical cap realizing this maximum contains at least one element of the given point set on
its relative boundary:

PROPOSITION 2.1. (/7], Proposition 1 & 2). Let X € (S*Y)N be given. Then, there are
w* € S andt* € [—1,1] such that

AX) = [ue™P (X, w*, t*) — uP(t")|.
Moreover, there exists somei € {1,..., N} with (W*,x(i)) =t*.

Secondly, we state a general lower bound for A4(X) that depends on the space dimension
and the number of points, but not on the position of the points on the sphere.

PROPOSITION 2.2. Let k: = min{d, N}. One has that A(X) = k(2N)™1 >0 for all X €
(Sd—l)N‘

Proof. Choose some w € $¢~1 such that (W,x(l) — x(j)) =0 forallj=2,...,k and put t :=
(W, x(1)>. Then, |t| < 1, and we have that (W, x(i)) =tfori =1,..., k. Therefore, owing to (1)
and (6),

20(X) = [p™P (X, w, t) — pu P (O] + [pP (X, —w, —t) — pP (=)
> WP (X, W, )+ HETP (X, —w, —t) — peP (£) — pEP (=0)|
=[1+Nt#{ie{l,. . N} (wxD)=t}-1|
=Nt #{ie{d,.. N (wx®D) =t} >Nk
A further property we want to adapt from [7] is a slightly stronger version of [[7], Corollary

1]. We observe that the empirical measure is always strictly greaterthan the cap measure for
any (w+, t*) realizing the spherical cap discrepancy.

PROPOSITION 2.3. For (W% t*) realizing A(X) in Proposition 2.1 it holds that
WP (X, w*, t*) > ucer(t*).
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Proof. By assumption, we have that A(X) = |u™P(X,w*,t*) — u® (t*)|. From [[7],
Corollary 1] we already know that u®™P(X,w* t*) = u*(t*). Now, the equality
UEMP (X, w*, t*) = u(t*) would imply A(X) = 0, a contradiction with Proposition 2.2.

As a consequence, we end up at a yet different representation of the spherical cap
discrepancy, which allows us to get rid of absolute values:

COROLLARY 2.4. One has that

AX) = sup UEmP (X, w,t) — ucP (t)vX € (Sd‘l)N.
wesa-1te[-1,1]

Proof. Clearly, the relation’ = ’ in the claimed equality holds true by (7). On the other hand, by
Proposition 2.3, there exists (w*,t*) € $¢1 x [—1,1] such that A(X) = u®™P(X,w*, t*) —
U (t*). Hence, the reverse relation’ < ’ holds also true in the claimed equality.

Throughout the paper, we understand the sphere $¢~! as a metric space inheriting its
metric from the Euclidean norm in R%. Next, we are going to prove that the spherical cap
discrepancy is continuous.

THEOREM 2.5. The function A: (S*~1)N — R is continuous.

Proof. We show first that 4 is lower semicontinuous. Fix some arbitrary X = (x(l), oy x W )) €
(S41)N and & > 0. According to Proposition 2.1 and Proposition 2.3, there exist w* € $4~1
and t* € [—1,1] such that

AX) = pmP (X, W, t7) — uP(t").

We claim that t* > 1. Indeed, if t* = —1, then u¢™P(X,w*, t*) = u¢®?(t*) = 1, whence the
contradiction A(X) = 0 with Proposition 2.3.

Define I = {i € {1,...,N}|x®¥ € H(w*, t*)}. Clearly, we find ¢ > 0 such that

t"—c=-1; (W*,x(i)) >t —cVi€el (W*,x(i)) < t*—cVi €S
|ue@P (™) — uP(t* — )| < e.

By continuity, there exists § > 0 such that forall X € (S )N with [ X =X II< S (Il « Il
denoting the Euclidean norm) it holds that

(w5, #D) > t* —cvie I {(w", D) < t* —cVi € I

Consequently, ué™ ()? Wt — C) = u®™P(X,w*,t*) for all such X . Hence, forall X €
(S HN with | X — X II< 6,

AX) = |pemP (X, w*, t* —c) — u(t* — o)|
= |pemP (X, w*, %) — pP (") + pP(t7) —ptP (T — o)l > AX) — &

Since € > 0 was arbitrary, this shows the lower semicontinuity of 4 at X.
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As for the upper semicontinuity, assume that 4 fails to be upper semicontinuous at some
X € (S% 1N, Then there exist some ¢ > 0 as well as a sequence X,, € (¢ with X,, - X
and A(X,,) > A(X) + c. Let (w;, t;;) be a sequence that realizes the cap discrepancies A(X_n).
Due to Proposition 2.3 we have that

AXp) = pe™P (Xn, wn, tn) —puP(ty)  vneN.

Since (w;,t;) € $41 x [—1,1], by passing to a subsequence, we may assume that
(wn, t3) = (W, t) e Sd_'l X [-1,1]. Altogether, (X, wy, t5) = (X, W, D). With the index set
L={ie{1,..,N}1x® € H(, )}, one has that (W, xP) < f for all i € [°. By continuity,
there is some n, such that <W;;, xT(Li)> <t; for all n>ny and i € [°. This entails that
UEP (X, Wi, th) < ue™P (X, w,t) for n = n,. Moreover, by continuity of u®?, we have
| (t) — uc?(t;)| < c for sufficient large n. Consequently, there exists some n,; € N such
that for alln = n,

AXp) = PP (X, i, 1) — 1P (£5)
< WP (X, W, E) — PP (E) + uP (F) — p (&)
< |ue™P (X, W, 8) — ueP (B)] + [P (8) — P (£3)] < ACX) + ¢,

a contradiction to the previously established inequality 4(X,,) > A(X) + c.

A consequence of the continuity property is the existence of an optimal quantization with
respect to the spherical cap discrepancy for any fixed number of points on the unit sphere.

COROLLARY 2.6. For eachN = 1, there exists a point set X, = (x,gl), ,fo)) withX, €

(SN realizing the minimal spherical cap discrepancy, i.e.,

AX) = inf AX)
xe(sa-1)"

3. Generic point sets and a representation formula for the spherical
cap discrepancy

Our ultimate goal in this paper is to prove the local Lipschitz continuity of the spherical
cap discrepancy. While it is not clear at this point, whether a general Lipschitz result holds true
in general, we will be able to derive it for the class of generic point sets, which would be the
typical outcomes of Monte-Carlo sampling on the sphere.

DEFINITION 3.1. A pointset X = (x@), ..., x™) € (R is called generic if for any index
set € {1,...,N} with #/ < d the selection {x(i) li€e I} is linear independent in R%.

Clearly, all point sets close enough to some generic point set are generic themselves, which
allows for the following proposition.

PROPOSITION 3.2. IfX € (RY)N js generic, then there exists a neighborhood O of X such
that X is generic foreachX € O.

DEFINITION 3.3. Define the family of index sets
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d:={IC{1,.. N} 1<#<d} (8)

For generic X = (x™, .., x™) € (RN and I € ®, let X; be the matrix whose columns
are the x (i € I). Put

1:.= (1, ...,1)T (S R#l, tI: = (1T(XITXI)_11)_1/2, wipi= tIXI(XITXI)_ll (9)
which are well-defined by the assumed genericity of X.

PROPOSITION 3.4. IfX € (RN s generic, thent; > 0,w; € (S 1) and X[ w, = t,1 for
alll € ®. If, moreover, X € (S* )N, then0 < t; < 1 foralll € &.

Proof. The first assertion is evident from (9). If X € (S¢~1)¥, then the first assertion implies
the second one: Fix some arbitrary I € @ and some arbitrary j € I and obtain

t = (XU),WI) <lwill =1

Next, we shall prove a representation formula for the spherical cap discrepancy of generic
point sets which follows from and simplifies the enumerative formula for general point sets
proven in [[7], Theorem 1].

Theorem 3.5. LetX = (x@, ..., xM) € (S¥ 1N pe generic. Then, with the notation fiom
Definition 3.3, the spherical cap discrepancy may be represented as

AX) = %%xmax{ﬂemp(x. wp, ty) — pP (), umP (X, —wy, —t;) — uP (=t} (10)

Proof. For some I € &, denote by X, the extension X; = (_Xl’T) of the matrix X;. From the

enumeration formula in [[7], Theorem 1] we know that the cap discrepancy is represented as a
maximum of local discrepancies associated with index subsets contained in @. Let[* € @ some
index set realizing this maximum. Then, according to [[7], Theorem 1], we have that rank X+ =

#I',y:=17(X1%) 1€ (0,1] and
AX) = max{|u®™P (X, w", t*) — pP ()|, [ue™P (X, —w", —t*) — uP(=t")[}, (11)
_\1/2
where t*: = (1—y) > 0 and
Y

W= L

X (X% LI > Gwt eKerXInSETTifE =0, (12)

Asnoted in [[7], Theorem 1], the choice of w* in the second case of (12) is arbitrary. Then,
by virtue of Proposition 2.3, regardless of whether the first or the second term in (11) is
dominating,

A(X) = max{u®™P (X, w", t) — pP ("), pemP (X, —w", —t7) — pP (=)}, (13)

To proceed, put

vi= —(1+))(EE) 1.
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From here, we get the two relations
1Tv=—1+@)?)y=—(1+ 1%))/ = L% Xv=—(1+ ()1
Along with the definition of X;« as an extended matrix, this yields that
—A+ @M1 =X"Xpv=(X X +11T)v =X Xpv — 1.

Therefore, it holds —(t*)?1 = X,\ X;-v. Since X;- X;- is regular by genericity of X, one gets
that

v=—()2(X1X;) 1and 1= —1Tv = (¢)217 (X1 X, ) 1. (14)
In particular, it must be t* > 0 and we observe that
_1 \—1/2
e=(1T(xIx) 1)

Furthermore, thanks to t* > 0, on the other hand, by (12) and (14) one arrives at

« _ 14092
=

X (RE%) = —Lxpw = 0%, (67x) 'L

Altogether, we conclude that (w*, t*) = (wy+, t;+) for wy+, t;» defined in (9). Combining
this with (13), we get that

AX) = max{ué™P (X, wps, t;=) — uP (t;+), ué™P (X, —wy+, —t;=) — u (—t;+)}.
Moreover, because [* € @, it even holds that

A(X) < T}‘Le%xmax{#emp (Xl wiy, tl) - .ucap(tl)' .u'emp (X: —wy, _tI) - #cap (_tl)}
< A(X),

where the last inequality relies on (7) and on the fact that w; € S¢~1 and t, € [—1,1] for
all I € @ by Proposition 3.4. This proves (10).

We may slightly improve the representation formula (10) by excluding singletons from
the index family @ in Theorem 3.5.

PROPOSITION 3.6. Let N = 2. Then the assertion of Theorem 3.5 remains valid if replacing
the family of index sets @ in (8) by the (smaller) family of index sets

d:={I<S{1,..,N} |2 <#I <d} (15)

Proof. Since ® € @, it is sufficient to show that there always exists some I* € ® realizing the
cap discrepancy 4(X) in (10). Assuming to the contrary that

A(X) > r;l%)xmax{uemp (XI wi, tI) - /-’lcap(tl): ‘uemp (XI Wy _tl) - /'l'cap (_tl)}l (16)
€
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A(X) must be realized by some I* € ® \ ®. This implies that I* is a singleton, i.e., [* =
{£} for some € € {1, ..., N}. Then, by (9) we have t; = 1 and w;- = x®), which by ||x(i) || =1
fori = 1,..., N implies that
xD e Hw},t) © (x0,x0) =1 x@=x® (=1,..,N).
On the other hand, by genericity of X, we know that x® = x® for i # £. Consequently,
ué™ (X, wps, t;r) = N~ and pu™P(X,—w;+,—t;<) = 1 due to (1). Moreover, u°®(t;«) =
U (1) = 0 and pu°* (—t;+) = u**?(—1) = 1. Thus,

A(X) = max{u®™ (X, wy, t;+) — u*(t;+) (17)
pemP (X, —wps, —tp) — P (—tp)} = NL

Consider I: = {1,2} € ® and define t;, wr as in (9). For
K: = max{ue™ (X, w, t7) — p% (£7), 1™ (X, ~wj, ~t7) — u° (~t7)}
it holds that (similarly to the proof of Proposition 2.2)

20 = pe™mP (X, wi, tr) — e (t) + pemP (X, —wy, —t) — p°*? (—ty)
=1+Nt#{ie{l,., N {w,xD)=¢}-1=2N"1

From (9), it follows that X,—TW,- = t;1, and so, (W,-,x(i)) = t; for i = 1,2. Therefore, 2A >
2N~1. On the other hand, A(X) > A by (16). This yields the contradiction A(X) > N~ with
(17).

At the end of this section, we prove a lemma connected with Theorem 3.5 and the
quantities defined in (9) which will be of later use.

LEMMA 3.7. LetX € (RN be generic andl € ® with#I < d. Ifthere exists some index
j€{1,...,N)\ I such that (W,,x(j)) = t;, then for]:=1U {j} it holds that t; = t; and w; =
wy.

Proof. By assumption and by definition of w; we obtain for y := x that
tI = (Wl,y) = tllT(XITXI)_IXITy.
Hence, with t; > 0 (see Proposition 3.4), we observe that
1TCTX) Xy =y X, (X X)) =1 (18)
We first show that ¢; = ¢;: The genericity of X ensures that X ]TX ; is regular and that
1 T T -1 T XITXI XITy - 1
g=1(X,X,) 1= |1)< ) ®)

y' X lyll?
=:Z

Using the Schur complement S:= ||y||> —y X,(X X)Xy # 0 of XTX,, a well-
known formula for the inverse of partitioned matrices, yields
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1,1 _ _ 1 _
KIXD™H+ < CTXD T X yy T XX X XD) Ty
1

1 _
_EyTXI(XITXI) ! 35

and together with (18) and the definition of wl in (9) we have that
1 _ 1 _ _
Z = 17X/ X))+ ElT(XITXI) XTyyTX, (X X))

2 — 1 1
—S1TX X)Xy +5 = et

Thus, t; = t; . Now we show that also w; = w; : To this end, referring to (9) and taking
into account (18), we compute

xTx, xTy\ ' .
<W],W1) = t]tl(lT | 1) <y{|-XI ”}11”2> (yIT)XI(XITXI) 11
1
-1
X'X XTy tit
=t,t;(17T | )L ="l =1,
@ )<yTx, i) W75

Since w;,w; € $9-1 by Proposition 3.4, we conclude that w; = wy.

4. Local Lipschitz continuity of the spherical cap discrepancy at
generic point sets

In this section, we are going to prove the main result of this paper, namely the local
Lipschitz continuity of the spherical cap discrepancy A around generic point sets. The main
argument would aim at representing 4 as a continuous selection of C1-functions. The Lipschitz
continuity would allow one to calculate the Clarke subdifferential of 4 and to exploit it in the
derivation of necessary optimality conditions for minimizing 4 as a function of the point set
(optimal quantization). A technical difficulty arising in this context is the fact that both, the
argument of deriving Lipschitz continuity for continuous selections of C!-functions and the
definition of Clarke’s subdifferential are tied to a structure of normed linear spaces, whereas 4
is defined on the sphere. For this reason, we introduce a generalized cap discrepancy A that
extends the spherical cap discrepancy 4 to arbitrary point sets in the Euclidean space (R4)N in
a neighborhood of a given generic point set on the unit sphere. The idea is to prove the local
Lipschitz continuity of A first and then to get as an immediate corollary the same property for
the genuine spherical cap discrepancy 4 which is the restriction of A to the sphere around
generic point sets.

4.1. Definition and continuity of the generalized cap discrepancy

In order to define the generalized cap discrepancy A mentioned above, one could be
tempted to directly extend the definition (7) of 4 to arbitrary Euclidean point sets. For deriving
the desired Lipschitz property, however, it is beneficial to restrict considerations to generic
point sets and to take the representation formula (10) in Theorem 3.5 as a basis for defining A.
From now on, we shall assume that d > 3 which is no substantial restriction because uniformity
of point sets on a circle is trivial.
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We start by introducing an extended cap measure u“@: R - R (for dimension d > 3) in
a way that it is continuously differentiable on R and coincides with the original cap measure
U from (4) on [—1,1] (which is continuously differentiable on (—1,1)). This is achieved by
the following definition:

pewP L),  te[-11]

~t+2, |t|>1,d=3
2 2

0, t>1,d=4
1, t<-1,d=4

O (19)

Indeed, it is easily seen from (4) that (u“??)'(—1) = (u°*?)’(1) = 0, whenever d = 4.
Hence the constant continuation by the respective function values p°? (1) = 0, u“?(-1) =1
yields a continuously differentiable extension in this case. The special case d = 3 cannot be
treated in the same way because one easily sees that P (t) = —t/2 + 1/2 forallt € [—1,1],
so that the derivatives do not vanish at -1 and 1, respectively. We may therefore simply keep
the definition of the function globally in order to end up at a continuously differentiable
extension. Note also, that in the case of d =2 (which we excluded), there exists no
continuously differentiable extension of u”{cap} because its derivative converges to —oo with
the argument t converging to +1.

It is easy to show that for all d = 3 we may extend relation (6) to
ut(—t) =1 —u(t) vteR. (20)

Similarly, to the cap measure, we may extend the empirical measure to arbitrary point sets
by putting for all X € (R?)N and (w, t) € R4*1:

pEmP (X, w,t):=N"1-#{i € {1,..,N} | x®D € Hw, t)}. (21)
Clearly, for all normalized point sets X € (S2~1)V it holds that
uEmP (X, w,t) = u™P (X, w, t)v(w,t) € R4*1, (22)

For the following definition, we make reference to the quantities t;, w; defined in (9) for
I € @ with @ as in (8). Note that, in the previous section, all results were formulated for a fixed
(generic) point set X. Therefore, for notational convenience, we did not emphasize the
dependence of t;, w; on X. In this section, however, we will investigate Lipschitz continuity of
the spherical cap discrepancy based on the representation formula (10). Since now the point set
will become a true variable, we will rather use the notations t;(X), w; (X) in the definitions (9)
in order to stress the dependence on X. It is obvious that tI ,wl are continuous mappings on the
set of generic point sets X.

DEFINITION 4.1. For generic point sets X € (RY)N, we define the generalized cap
discrepancy

AQX): = maxmax{u™™ (X, wy (X), t; (X)) — 1€ (& (X)),

(23)
PEMP (X, —w; (X), —t; (X)) — P (=t (X))}

Thanks to Proposition 3.2, we make the following observation:
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REMARK 1. If X € (R%)V is generic, then there exists a neighborhood O of X such that /A
is defined on O and has the representation (23) for all X € O.

By Proposition 3.4, it follows for generic X € (S4 1)V, that |t;| < 1 for all I € &. This
entails that u ¢ (+t;) = u (+t,) for all I € ®. Moreover, by (22), one also has in this case
that u5™P (X, +w,, +t,) = u®™P (X, +w,, +t;) forall I € @. Now, (23) and Theorem 3.5 entail
that our generalized cap discrepancy reduces to the original spherical cap discrepancy for
generic point sets on the sphere:

COROLLARY 4.2. For genericX € (S4 )N one has that A(X) = A(X).

The first basic ingredient for proving the local Lipschitz continuity of A around a generic
point set is the continuity itself at such point. Adding to this property later that A is a selection
of C'-functions, we will arrive at the desired Lipschitz result. Given the already proven
continuity of the genuine discrepancy 4 at arbitrary point sets (Theorem 2.5), the following
result shows the continuity of the generalized cap discrepancy A at generic point sets.

PROPOSITION 4.3. Let X € (RN be generic and O some open neighborhood of X such
that all X € O are generic too (see Proposition 3.2). Then, A: O — R is continuous.

Proof. Of course, it is sufficient to prove continuity of A at the arbitrarily fixed generic
point set X which entails continuity on the whole neighbourhood @ mentioned in the statement
of Proposition 4.3. We shall show first the lower and later the upper semicontinuity of A at X,
thus proving continuity itself.

Let I" € ® be some index set realizing the maximum in (23), so that AX) =
uEmP (X, w*, t*) — u¢e (t*) for some (w*,t*) € £{(w;-(X), t;+(X)}. We fix an arbitrary £ >
0. Now, by Lemma A.2 proven in the appendix, we can find some § > 0, small enough such

that B5(X) € 0, and in such a way that choosing an arbitrary X € Bs(X), we find J, w and t
with ] € @, (w, t) € £{(w;(X), t;(X))} satisfying

uEm™P (X, w,t) = uFm (X, w*, t*) and uC% (t) < puCe (t*) + «.
In particular, by (23), then

AX) = PP (X, w,t) — ueP ()
= pFMP (X, w,t7) — pCP () + pCP (") — ueP () > AX) — =
This means that A is lower semicontinuous at X. In order to show that A is also upper
semicontinuous at X, we assume to the contrary that there exist some ¢ > 0 as well as a
sequence X, — X such that

AX,) >AX)+c VneN. (24)

For each n € N, choose I, € ® and (Wn*(Xn), t,*l(Xn)) € i{(w,;l(Xn), t,;fL(Xn))} such
that A(X,,) is realized, i.c.,

AKR) = 1B (X, wiy (X, £ (X)) — 1P (8. (X)),
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Since @ is a finite set, there exists some @ # [* € {1, ..., N} such that, upon passing to a
subsequence, I, = I* for all n € N. Once more, by passing to a subsequence, we may assume
that for all n € N either.

a) (W;;(Xn):tr*l(xn)) = (WI*(Xn)' tl*(Xn)) or

) (Wa(X), th (X)) = (—wp (X)), —t (Xp))-

We consider just case a) here (the second case being completely analogous). By continuity
of w;= and t;+ , we have that w;; (X,,) = w;+(X) and t;,(X,) = t;+(X) as n - oo. From the
definition in (21) it follows easily for continuity reasons that the empirical measure at some

triple (X, w, t) is always larger than or equal to the empirical measure of triples (X', w’,t") ina
sufficiently small neighborhood of (X, w, t). Accordingly,

HETP (X, Wi (X)), £, (X)) < B (X, wp=(X), £+ (X))
for n large enough. Moreover, the continuity of the cap measure implies that
€9 (- (X)) — 1P (£, (X)) <
for sufficient large n. Consequently, there exists some ny € N with

ACXR) = pE™ (X, wyy (Xn), 6, (X)) — uCP (6,(X,))
< pEMP (X, wp (X), tp (X)) — pCeP (t(X))
+uCWP (1 (X)) — uCP (65, (Xn)) < AX) + ¢

for all n = n,, which is a contradiction to inequality (24). Hence, A is also upper
semicontinuous at X.
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4.2. Local Lipschitz continuity of the generalized cap discrepancy at
generic point sets

Now we turn to the Lipschitz continuity of the generalized cap discrepancy locally around
a generic point set X . As before, we denote by O an open neighborhood of X of generic point
sets. According to (23), we have the representation

AX) = maxmax {(pl(l)(X),gol(z)(X)} VX €0, (25)
Where

o0 = pEmP (X, wy (X), £, (X)) — pC% (¢, (X))

(2) Em ca (26)
Q7 (X):=pmP (X, —wi(X), —t; (X)) — u*P (=t (X))

As a preparatory step, we prove the following Lemma:

LEMMA 4.4. LetX € (RN be generic and O some open neighborhood of X such that all
X € O are generic too. Then, there exists a neighborhood U € O of X such that for alll € @
and all X € U there holds:

AK) = o), AX) = 9P (X)
= uEmP (X, wy (X), t; (X)) = P (X, w; (%), t; (X))
AK) = 0P &), AX) = P (X)
= uEmP (X, —w;(X), —t;(X)) = uFm™P (X, —w;(X), —t;(X))

Proof. Without loss of generality, we prove just the first implication and assume it would not
hold true. Then, there exist sequences X;,, = X and I,, € @ such that

A = o0 (), A = 0 (Xy)

= = = 1
|Em® (%, w, (), £, (D) = kB (X, wy, (X, 61, (X)) | = %
In the last inequality, we used the fact that the values of u£™? are multiples of % Moreover, by
continuity on O of u¢@ o t, for all I € &, we have that, for n large enough,

o (1, 8 — o (1,060 |< =

whenever U is small enough. Consequently, for n large enough, we arrive at the following
contradiction with the continuity of A shown in Proposition 4.3:

IACK) = A = |00 (D) — o ()| = o

A natural idea to show the local Lipschitz continuity around generic points of the
maximum function A in (25) would rely on checking the continuous differentiability or at least
local Lipschitz continuity of the elementary functions (pl(l), <p,(2) . This, however, does not apply
because these functions fail to be even continuous as a consequence of the discontinuity of

uE™P  The fact is illustrated for a numerical example in Figure 1. Here, a generic set X of four
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points in $? is considered and subjected to one-parametric variation (shifting one of the four
points while keeping the others fixed). The variation parameter zero corresponds to the nominal
point set X. The figure plots the local discrepancies A*(I): = max {(pl(l) X)), (pl(z)()? )} given by
the functions defined in (26). According to (23), their maximum over all index sets I € @ yields
the (global) discrepancy A. As can be seen, this maximum A is continuous as it should be
according to Proposition 4.3. However, all elementary functions (local discrepancies) being
active for the maximum at the nominal point set X exhibit jumps at that same point set. Still,
the maximum function A is apparently not only continuous but even Lipschitz continuous. To
show this rigorously, we shall represent A as a selection (not a maximum though!) of finitely
many smooth functions. It is well known that continuous selections of smooth (or more
generally: locally Lipschitzian) functions are locally Lipschitzian. The desired selection cannot
be made among the original elementary functions q),(l), gol(z) due to their discontinuity. We
therefore define smooth modifications of these functions by locally fixing uE™P around the
nominal point set X:

P (X): = uFmP (X, wy (%), t;(X)) — uc (;(X))

~(2) Emp (¥ % % Ca (27)
Fr7 (0= PP X, —w (X), =, (K)) = uO (=1, (X))

Clearly, the desired smoothness of the @(1)’@1(2) will follow from the continuous

differentiability of the functions f5;: = u¢®? o t, for I € @ around some arbitrary generic point
set X.
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FIGURE 1. The cap discrepancy A as a (continuous) maximum of discontinuous functions. The
picture shows the behavior of the local discrepancies 4*(I) - whose maximum is A (see text) -
when parametrically varying a single point out of four points from a given generic point set
X € (S?)*. The variation parameter zero corresponds to the nominal point set X. Local
discrepancies realizing the maximum (i.e., A) at the nominal set X are highlighted by different
colors.

LEMMA 4.5. Let X € (RN be generic and O a neighbourhood of X such that all X € O
are generic too. Then, for each | € @, the function ; is continuously differentiable on O with
the following partial gradientsw.r.t. x®,(L € 1, ..., N):

0, iflglor|t;(X)|=>1,d >4,
1 .
ViopiX) = _EtIZ(X)CIT(DWI(X); iflel,d=3, VX €0. (28)
pICIT(l)WI(X), ifl el |t;(X)| <1,d >4,

Here, with C, from (5),
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d-3 .
pri=—Cat?(X)A = t?(X)) 2 andc]:=3L, XTX);} (G =1,.. 4D.

Moreover, for | € I, the index t(l) refers to the rank of 1 in the index set I, i.e., if [ =
{1, ..., Kk}, then | = K, ).

Proof. Consider some arbitrary X € O, whence X is generic. Let [ € @ be arbitrary too. We
assume that I = {k1, ..., k4 } € {1, ..., N}. We want to derive first the function

a(X):= 1T (XTX,)"'1. (29)

From well-known rules of matrix differential calculus (see, e.g., [10]) one obtains with M (X) =
XTX, that

i (00 = =2 X0, (SH M1 (s MOO174) X,

0Xy

with 7(1) as introduced in the statement of this lemma (for a detailed argumentation, we refer

to the preprint version of this paper [8]). By definition of M(X) and of the coefficients c,j
introduced in the statement of this Lemma, we obtain that

VoaX) = —2c7V T, clx(*a), (30)
Next, we observe that, forallqg =1, ... , # [,
[(xFxD™'1lg = XL, (TXDgi =X, XTXDig =</
Consequently, by definition (9),
wi(X) = (XXX XD = 6,(X) XhL, ¢ 1 (%)),

Thanks to (30), this entails that

R0
Vioa(X) = -2 ' Wi (X) €2))

We observe next that the function u“*? defined in (4) is continuously differentiable for d >
3,t € (0,1) with

-3

[ueeP]'(t) = =Ca(1 - t*) 2.

Along with (19) and the explanations below this equation, this yields that u¢?? is continuously
differentiable with

0, if |t;(X)| = 1,d = 4,
1 .
[uce]' () = —3 ifd =3, (32)

d-3
—C;(1-t>)=, if [t;(X)| < 1.
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Moreover, the function t; = a~1/2 defined in (9) and (29) is continuously differentiable in the
generic point set X because a was shown so in (30). Therefore, the function f = u¢@ o t; is
continuously differentiable in X with

(0 = [HCP) (6, (X)) - 3= ()

0Xy|
= —2[uCePY (5 (X)) - [a(X)] /2

Ja
anll

X),
whence, along with (31)

V0B (X) = =5 [1P) (6, (X)) - [ OV, wa(X)

(33)
= [LC) (t,(X)) - [t (012 T Pwy ()

Now, lines two and three in (32), yield the corresponding lines in (28). Clearly, the outcomes
of (28) depend continuously on X thanks to the continuity of t;, w;. This also proves the
continuous differentiability of ; on O.

COROLLARY 4.6. For each |1 € &, the functions (ﬁl(l)(-), 951(2)(-) defined in (27) are
continuously differentiable on O(X) with

Ve (X) = —VB,(X) and VG (X) = VB (X) VX € O(X).

Proof. The first formula above is evident from the definition of gol(l) in (27). Similarly, the

definition of (ﬁl(z) yields that

V@ () = [T (=4, 0OV (X) = [P (6 (X)Ve, (X) = VB (X),
where the second equation follows from (32).

We shall prove now that, locally around generic point sets, A is a selection of the

continuously differentiable functions (T)fl), (T)fz).

PROPOSITION 4.7. Let X € (RN be generic and O some open neighborhood of X such
that all X € O are generic too. Then, there exists a neighborhoodV S O of X such that for all

X €V there arel € @ ands € {1,2} with A(X) = (ZJI(S)(X).

Proof. Let U € O be the neighborhood of X from Lemma 4.4 and define the set of active indices
as

AX):={(s) € 2 x {12} | AX) = X)) vX € 0. (34)
(see (25)). We claim that there exists a neighborhood V € U of X such that
AX) S AX) VX EV. (35)

If this wasn’t the case, we could find some sequences X,, € (R*)V and (I,,,s,) € ® X {1,2}
such that
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AXy) = o (%), AK) > @W(X) ¥neN and X, - X.
Moreover, by passing to a subsequence, we may find some I € @ and § € {1,2} such that
AX,) = (plgg)(Xn) vneN and A(X) > <p§—§)()?).
Because A is continuous at X by Proposition 4.3, there is some n, € N such that
(pI@(Xn) > (pl@()?) +§ vn =n, wherec:=A(X)— (pl@()?) > 0.

Next, we use an argument already employed in the proof of Proposition 4.3, namely that the
definition in (21) easily implies for continuity reasons that the empirical measure at some triple
(X,w, t) is always larger than or equal to the empirical measure of triples (X', w',t") in a
sufficiently small neighborhood of (X, w,t). Assuming, without loss of generality that § =1
(the argument being exactly the same for § = 2), we therefore get for n = n,, that

uE™P (X, wi(X),t1(X)) — uC (tr(X)) + 2 = oV (X) + 2
< o Kn) = uEmP (X, wi(Xp), t7(Xy)) — 1EP (£7(X,,))
< WP (X, wi(X), t7(X)) — uCP (¢(X,))

Passing to the limit on the right-hand side and exploiting the continuity of u¢@? o t; , we arrive
at the contradiction

—uCP (£7(X)) + = < =P (£7(X))
which proves (35).

Now, fix an arbitrary X € V and choose I € @ and s € {1,2} such that A(X) = qol(s)(X).
Then, (I,s) € AX) € A(X) by (35), whence A(X) = (pl(s)()?). Since V € U, Lemma 4.4
yields that (pl(s)(X) = @,(S)(X). Thus, A(X) = @,(S)(X), as was to be shown.

We are now in a position to formulate the main result of this paper:

THEOREM 4.8. Let X = (¥, ..., k™) € (RN be generic. Then, there exists some

neighborhood U of X such that X is generic for all X € U and A is Lipschitz continuous onU.
In other words, there exists some L > 0 such that

ACX1) —AX)I < LIIX, — Xl VX, X, €U

Proof. By Propositions 4.3 and 4.7, there exists a neighborhood U of X such that 4 is continuous
and a selection of finitely many continuously differentiable functions on U (which means that
A is piecewise differentiable in the terminology of Scholtes [[13], page 91]). In particular, A is
a continuous selection of Lipschitz functions on U, hence A is Lipschitz continuous on U itself
[[13], Proposition 4.1.2.].

As an immediate consequence, we get the desired local Lipschitz continuity of the
(original) spherical cap discrepancy 4 around generic points on the sphere:
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COROLLARY 4.9. Let X = (D, ..., k™) € (S¢Y)N be generic. Then, there exists some
neighborhood U of X such that X is generic for all X € U N (SN and A is Lipschitz
continuous onU N (SEYN. In other words, there exists some L > 0 such that

|A(X1) - A(Xz)l < L||X1 - X2|| VX1‘X2 eUn (Sd_l)N,
Proof. This follows immediately from Theorem 4.8 and Corollary 4.2.

It is noteworthy that the Lipschitz constant L in Theorem 4.8 (which is the same as in
Corollary 4.9) can be explicitly estimated from the data by using the formulae in Lemma 4.5.
Indeed, as a consequence of Proposition 4.7 and of [[13], Proposition 4.1.2], we obtain that the

Lipschitz constant L of A on U can be represented by the Lipschitz constants L(l.s) of the

continuously differentiable functions (ﬁl(s) as

L= max Lgs) (36)
(1,5)EPx{1,2}

Clearly, the LES) can be chosen greater than but arbitrarily close to the Euclidean norms
||Vg7)1(s) X) || by shrinking the neighbourhood U. By Corollary 4.6 and Lemma 4.5, a rough

upper estimate of the LES) would be (for d = 4)

Cq max
1€®, €l

le(l) |

(a finer estimate would incorporate the expressions t7(X)).
REMARK 2. We make the following observations:

(1)  The best possible Lipschitz constant L in Corollary 4.9 is in general strictly smaller
than the best possible Lipschitz constant in Theorem 4.8 because the set of arguments
for A is restricted to spherical (not arbitrary) point sets.

(2)  The estimate of the Lipschitz constant in (36) can be improved by restricting the
maximum to the active indices at X as defined in (34):

Ii= max L <L (37)
(1,S)EA(X)

which would keep being a Lipschitz constant for A and 4, respectively because, thanks
to (35), nonactive indices at X remain nonactive locally and, hence, do not contribute
to A and A.

The following example illustrates the computation of a Lipschitz constant:

EXAMPLE. We consider a set of four points on the classical sphere $? which represent the
vertices of a regular tetrahedron:
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3 3
[ 0 o0 = :
3 3
\‘_1 L X 1 /
V3 V3 V3 3B
We are going to estimate the Lipschitz constants LSS) in the improved estimate (37). Numerical
computation of the functions (pl(s) (X) in (26) yields that (pl(l) X) =5/12 = 0.417, (pI(Z) X)) =
1/3 ~ 0.333 for all I € & with #I = 3, and ¢V (X) = 1/V12 ~ 0.289,9P (X) = 1/2 —

1/4¥12 = 0.211 for all I € @ with #I = 2. Hence, the set of active indices introduced in (34)
equals A(X) = (I,1)|#I = 3. We approximate the corresponding elementary Lipschitz

constants Lgl) by the norms of the gradients ||V<ﬁ,(1) X ” = ||VB,(X)|| (see Corollary 4.6). By

Lemma 4.5 and Proposition 3.4, the norms of the nonzero components of V3, (X) calculate as

X =

IV.0b Dl = | -3 & Ow @ = 32K wen

Since, by complete symmetry of a tetrahedron, the occurring quantities on the right-hand side
are all the same for all subsets having cardinality 3, we may restrict our considerations to the
representative index set I: = {1,2,3}. From the definition of X, we calculate

|
)

Then, the sum of elements equals 17 (X7 X,)~11 = 9, so that according to (9), t?(X) = 1/9.
Moreover, by definition in Lemma 4.5,

XX = (

BlwNn|w

3

4

BlWN|WA|W
N WS W W

3
GO =cf = (X =3/2+3/4+3/4=3

=1

Hence,

IV, B D =3 X)ef® =2

Similarly, CIT(Z) = CIT(?’) = 3 leading to (recall that 4 € I, whence the corresponding partial

gradient vanishes by Lemma 33)

1V, B = Ve8| = |V, @8 @) = %; [V, .08, = 0

Therefore,

VB, Ol = ( i1 ||an>[31()?)||2)1/2 = 1/v12 ~ 0.289.
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Summarizing, upon shrinking the neighbourhood U in Theorem 4.8, the Lipschitz constant L
for A can be chosen larger than, but arbitrarily close to 0.289. If one is rather interested in the
Lipschitz constant for the original spherical cap discrepancy 4 as in Corollary 4.9, then, one
would have to compute the norms of the partial gradients V.. B;(X) projected onto the tangent
space of the sphere at the points x®_ This is easily done in the present example and yields the
Lipschitz constant 0.272. The gap with the previous Lipschitz constant is explained in Remark
2 item (1).

5. Optimal quantization and necessary optimality conditions

Finding an optimal point set on the sphere minimizing the spherical cap discrepancy
amounts to the optimization problem

minimize A(X) (38)

where A: (S2~1)N — [0,1] is the spherical cap discrepancy introduced in (3). This problem
is also referred to as optimal quantization and has to be distinguished from the construction of
low discrepancy sequences because the cardinality N of the point set X is fixed. Our aim is to
establish necessary optimality conditions a point set has to satisfy in order to be optimal. Note
that there is no hope for optimality conditions which are sufficient at the same time due to the
lack of convexity of A. We will restrict ourselves here to generic point sets. The degenerate
case seems to be more delicate to handle and is left for future research.

While (38) is a free (without constraints) optimization problem, the domain of the
objective function is a manifold. Standard optimization problems, however, are usually defined
on normed spaces subjected to possible further constraints in order to conveniently derive
nonsmooth optimality conditions by using tools from generalized differentiation such as the
subdifferentials in the sense of Clarke [4] or Mordukhovich [11]. For this reason it is beneficial
to equivalently rewrite problem (38) as an optimization problem in the Euclidean space with
the additional constraint that the arguments belong to the sphere componentwise:

minimize A(X) subject to X € (S%1)",X generic. (39)

The restriction to generic X is necessary because A is defined for such point sets only. While
the genericity constraint cannot be conveniently described as a classical (in-)equality constraint,
it is an open property. This means, that if we are interested in checking whether some generic
point set X satisfies certain necessary optimality conditions, then we don’t have to care about
this constraint, because we know it persists to hold in an open neighbourhood O of X and, thus,
has no impact on the necessary optimality condition at all. Now, the equivalence of (39) with
(38) around some generic X € (S¢"1)N is evident from Corollary 4.2. We represent the
normalization constraint on X = (x(l), o, X W )) as the set of smooth equalities

[x®|* = 1vi € {1, ..., N},
Then the derivative with respect to X of the /+th constraint function equals the matrix

2(0 0|x(1)|0 0)
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Clearly, all these derivatives are linearly independent due to x® # 0. Now, the local Lipschitz
continuity of A and the continuous differentiability of the constraint functions implies that a
generic point set X being a (local) solution of the optimal quantization problem (39) has to
satisfy the inclusion

(A D | Ayx™)) € 3CA(X) (40)
for certain multipliers A, ..., Ay € R, where ¢ refers to the Clarke subdifferential of A [[4],
p.235-236]. In order to work with such an abstract condition, one has to make the Clarke

subdifferential more explicit: From [[13], Proposition 4.3.1.], we know that at generic X the
identity

0°AK) = conv{Vg" (X) | (I,5) € A*(K) € @ x {1,2}}

holds true, where A*(X) refers to the so-called set of essentially active indices (see [[13], p.
92]) and ’conv’ refers to the convex hull. Rather than providing a precise definition of the
difficult to handle index set A*(X) here, we just recall from its definition in [[13], p. 92], that
it is always a subset of the set of active indices A*(X) defined in (34)

A'(X) € {U5) € o x (L2} AC) = 61 (D))

={0,9) e o x {12} 1A = (D)} = AD).

Consequently, we arrive at an explicit upper estimate of d¢A(X) just in terms of active
gradients:

0°AK) < conv (Vg (X) | (1,5) € AD)}.

This upper estimate can now be clearly used to establish a weakened but explicit necessary
optimality condition as follows: A generic point set X being a (local) solution of the optimal
quantization problem (39) has to satisfy the inclusion

(L ED] - [2yT™) € conv {V5V(R) | (1, 5) € A

for certain multipliers 4y, ...,Ay € R. Resolving for the convex hull, we may extend this
statement to: If a generic point set X is a (local) solution of the optimal quantization problem
(39), then there exist multipliers A;, ...,Ay € Randy ) = 0 for (I,s) € A(X) with

MxE® =30 eam V(I,s)Vx(l)ff?I(S)(X) and Yseam Yas) = L
[=1,..,N. Taking into account that V@ (X) = (=1)’V, 0B X) for (I,s) €

® x {1,2}andl = 1,..., N by Corollary 4.6, and that Vx(z)ﬂl(s) (X) = 0ifl & I by Lemma 4.5,
we may further rewrite this last relation as

Mx® =Y seamen V(z,s)(—l)svx(l)ﬁl(s)()?) and Y seam Yas) =1L
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I[=1,...,N. This relation is now fully explicit thanks to the explicit gradient formulae in
Lemma 4.5 and it can be used to figure out potential candidates for local minima of the spherical
cap discrepancy (by verifying the necessary optimality conditions) or to exclude certain generic
point sets as local or global minima (by showing that the necessary optimality conditions cannot
hold). We shall not pursue this concrete application of optimality conditions here and rather
leave this to future research.

6. Conclusions

We have proven the Lipschitz continuity of the spherical cap discrepancy around generic
point sets on the sphere. Of course, it would be desirable to prove or disprove the Lipschitz
continuity on the whole sphere. It seems that we will not be able to show the positive result
using the approach taken here (via the representation formula (23)). On the other hand, a counter
example isn’t easy to construct either. We therefore strongly believe that the following
conjecture holds true (note that local Lipschitz continuity around arbitrary point sets implies
the global Lipschitz continuity by compactness of the sphere):

CONJECTURE. The spherical cap discrepancy A: S @~V — [0,1] is Lipschitz continuous.
Apart from proving this conjecture, future research will be devoted to the concrete
application of the necessary optimality conditions derived in Section 5 and to a numerical

solution of the optimal quantization problem exploiting Lipschitz continuity of the spherical
cap discrepancy

7. Appendix A.

PROPOSITION A.1. For the discrepancies presented in the introduction it holds that A(X) =
A°X) = A (X) forallX = (x@, ..., xM) € (SN

Proof. In order to show that A(X) = A°(X), it is evidently sufficient to verify the relation

|ue™ (X, w, t) — u? (w,t)| < A(X)V(w,t) € R X R. 41)
Let (w, t) € R% X R be arbitrary and assume first that w = 0 and t < 0. Then, H(w, t) = R%
and, hence, u¢™? (X, w, t) = u“*?(w, t) = 1 and (41) follows trivially. Similarly, if w = 0 and
t >0, then H(w,t) = @ and, hence, u¢™?(X,w,t) = u“®”(w,t) = 0, so that (41) follows
again. Next, letw # 0 and t < —|| w ||. Then, x € H(w, t) for all x € S~ because of

(w,x) = —|lw|| >t VxeS4?

which implies u™? (X, w, t) = u¢*?(w, t) = 1. Similarly, ift >|| w |, then x & H(w, t) for all
x € $71 because any such x satisfies the relation

w,x) < |w| <t
so we have ué™P(X,w,t) = u°®(w,t) = 0. In both cases, (41) follows trivially as before. It

remains to consider the case that w # 0 and |t| < ||w]|. Then, H(w,t) = H(w*, t*) for w* :=
w/llw ll€ St and t* := t/|l w ll€ [-1,1]. Accordingly, and by virtue of (3),
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|u™P (X, w,t) — uPw,t)| = |u™P (X, w*, t*) — u® (w* t*)| < AX).
It remains to show that

AX) = AY(X):= sup |ugmp(X W, t) — ygap(w, t)
wesSa-1te[-1,1]

b

where, with Hy(w, t): = {x € R? | (w,x) > t},u5"” (w, £): = a(S*™* n Hy(w, t)) and
pe"P (X, w,t):=N"1-#{i € {1,..,N} | x® € Hy(w, 1)}

forallw € S% Y andt € [—1, 1]. We immediately check from the definitions, that for arbitrary
(w,t) € $%1 x [—1,1] one has that

ygmp(X, w,t) =1—u™ (X, —w,—t).
Moreover, by (6), for arbitrary (w, t) € S¢~1 x [—1,1] one has that
KSP (1w, £) = HEP (w, £) = 1 — PP (—w, —t)
Now, the claimed equality 4(X) = A'(X) follows readily from the identity
|lug™ (X, w, ) — g™ (w, )| = ™ (X, —w, —t) — P (—w, —t)|

for all (w,t) € $¢1 x [-1,1].

LEMMA A.2. Let X € (RN be generic. Let I' € & be some index set realizing the
maximum in (23), so that A(X) = uF™(X,w*, t*) —u®(t*) for some (w*,t*)€

+{(w;+(X), t;+(X)}. Then, the following holds true:

Ve > 038 > 0VX € B5(X)3] € @3(w, t) € £{(w; (X)), t;(X))}:

_ 42

pEmP (X, w,t) = pFmP (X, wr, ), peP (1) < uter(tt) + e “
Proof. We assume from the very beginning that the & to be found in (42) is small enough to
satisfy the inclusion Bs(X) € O from Remark 1, so that all X from this ball are generic. We
introduce the index sets

Ipo={ie{l,.N} 1 {(w,x®) =t} :={i € {1,..,N} | (w", D) > t*}

Proposition 3.4 ensures that X\-w;-(X) = t;+(X)1, whence X\.w* =t*1 due to (w*,t*) €
+{(w;-(X), t;(X)}. It follows that I* € I,.

Case 1: I*=1,. Without loss of generality, we may also assume that (w*t*) =
(wp+(X), ;+(X)) (the opposite case following by absolutely analogous arguments). Then, by
definition,

pEMP (X, wi (X), t+(X)) = N7 (#1p + #1;)
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For arbitrarily given € > 0 we choose § > 0 such that By (X) € 0 for the open neighborhood
from the statement of Proposition 4.3 (i.e. all X € Bs(X) are generic). Moreover, § > 0 is
chosen small enough to satisfy (by continuity of the mappings t;-, w;~)

(wrX),xD) >t (X) Vviel, (wqrX),x®)<t (X) Vie(yUL)©

for all X € Bs(X) and all i € {1,..., N}. Moreover, by Proposition 3.4, we have X/ -w;«(X) =
t;+(X)1 for all such X, hence (w;(X), x(D) = t,«(X) forall i € I* = I,. Altogether, this implies
that (W,*(X), x®) > t,-(X) if and only if i € I U I,. Therefore,

HEMP (X, wi(X), t+ (X)) = N7 (#1y + #1;) = pE™P (X, wi-(X), t;+ (X))

for all X € Bs(X). Finally, by continuity of u¢*, we may further shrink § > 0 such that
1P (t- (X)) < uCe (t,+(X))) + € for all X € Bg(X). Thus, we verify (42) by the (constant)
selection ] := I*,w = w;«(X), t := t;+(X) for each X € Bs(X).

Case 2: [* & I,. First, we observe that we may assume that #1 * = d. Indeed, if #1* < d, then
we select some j € I\I*. From (w*,t*) € £{(w;-(X), t;»(X)} and by definition of I, we
derive that (w;« (X), 1)) = t;-(X). Now, Lemma 3.7 yields that

wr(X), t- (X)) = (wreuy X)) trugy (D).

Therefore, we may have replaced the index set [* € @ realizing the maximum in (23) from the
very beginning by the larger index set I* U {j} € @ (with #(I* U {j}) = #I* + 1 < d) realizing
the same value in (23). Calling this larger index set [* again, we may proceed by adding further
indices from I, to I* until I* = I, in which case we are back to the situation we already dealt
with above, or until #I* = d, which will be the setting we follow next.

Case 2.1: (w*, t*) = (wp-(X), t;+(X)). The definition of 10 and Proposition 3.4 yield that

(w*,x®) = ¢* = t;+(X) > OVi € .

Consequently, given an arbitrary £ > 0, we may choose § > 0 such that for all X € Bs(X) €
0,

(W, xO) > t*/2 > 0Vi € Io; P (£;(X)) < P (;(X)) +evI€ D,  (43)

w;(X), xD) > £;(X) = (w;(X), xD) > ¢;(X

( 1X) .) 1) {w; () .> 1(X) ViE(l,. NWVIED  (44)
(Wi (%), xD) < t;(X) = (w;(X),x®) < £;,(X)

where the continuity of uC% and of the wy, t; has been exploited. In order to verify (42), we fix
an arbitrary X € Bs(X) and find J, w, t as required there. To this aim, denote by P the convex
hull of the point set {x(i)}ielo.

Case 2.1.a):int P # @. Clearly, 0 ¢ P due to the first relation of (43). It is wellknown from the
theory of polyhedra (see, e.g., [[15], Theorem 2.15 (7)]), that there exists a representation

P ={x € R* | (v, x) = 7 (k = 1, ..., m)}(vy € S*7, 7, € R), (45)
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such that for k' = 1, ..., m each set
Firi={x € R | (v, x) = 11, (vp, x) = T (k = 1, ..., m, k # k')}

is a facet of P. There exists some kg, € {1, ...,m} such that 7, > 0 because otherwise the
contradiction 0 € P would result. As a facet of a bounded polyhedron P € R® with int P # @,
F, must contain at least d vertices of P. Since the vertices of P are contained in the set {x®3;c Io

, there exists a subset ] € I, with #/ =d and {x(")}iE ' C Fy,. Hence, by definition of

FkO,X]Tka = Ty, 1. By Proposition 3.4, X]TWJ(X) = t;(X)1, with X]T being a regular (d, d)-
matrix by genericity of X. Then,

vy = T, (X)) 1wy = 50 (X]) 1.

Since ||vk0|| = ”W](X)” =1 and 74,,t;(X) >0, (see Proposition 3.4), it follows that
(W] X))t (X)) = (vko, Tko). Now, (45) yields that

(W](X),x(i)) = (vko,x(i)) =1, = (X) Vi€l (46)

With X[ w;(X) = t;(X) (by Proposition 3.4) and X/ w* = t*(by J € I,), the same reasoning
as before yields that (w] X, t](X)) = (w*, t*). After having fixed /] € @, we also fix (w,t): =
(W] X)), X )) as required in (42). Then, by (46), (44) and by the definitions of I, I;, one gets
that

pEmP (X, w, t) = uFm (X, wy(X), t;(X))
=NT#{ie{1,..N} | {w,X),x@) = t;(X)} 47)
= N7 (# Io+i I) = p®™P (X, W, t%),

which is the first desired relation in (42). The second one follows immediately from the second
relation in (43).

Case 2.1.b): int P = @. Then, P as a polytope must be contained in some hyperplane H:

Pc H:={x e R | (w,x) = {}(w € S4V,t e R).

We may assume that £ > 0. In particular, (W,x(i)) =t foralli €I, or, X IZ W = t1, for short.
Since also X/-w;+(X) = t;+(X)1 (by Proposition 3.4), and recalling that #I* = d the same
reasoning as above (46) yields that (w;«(X), t;+(X)) = (W, t). This implies that the choice J :=
I* satisfies (46) (actually as an equation) so that in view of (w*,t*) = (w-(X), t;+(X)) we may
repeat the reasoning after (46) and (47) in order to derive the two relations in (42) in that
alternative case too.

Case 2.2): (w*, t*) = (—w;+(X),—t;+(X)). We observe that, in case of 7, = 0 for all k =
1, ... ,m, P must be unbounded according to (45) because from x@ € P it would follow that

(Vi Ax D) = Hvp, x D) = Aty = VA = 1Yk = 1, ..., m.
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This entails that Ax*{(1)} € P for all 1 > 1, whence P would be unbounded because x® # 0
thanks to the genericity of X. However, P is bounded as a convex combination of finitely many
points. Therefore, there exists some k; € 1, ..., m with 7, < 0. Now, we can repeat exactly the

argumentation from the first case above (referring to 7; > 0), just with reversed signs.
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