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ABSTRACT. The spherical cap discrepancy is a prominent measure of 
uniformity for sets on the d-dimensional sphere. It is particularly important 
for estimating the integration error for certain classes of functions on the 
sphere. Building on a recently proven explicit formula for the spherical 
discrepancy, we show as a main result of this paper that this discrepancy is 
Lipschitz continuous in a neighbourhood of so-called generic point sets (as 
they are typical outcomes of Monte-Carlo sampling). This property may have 
some impact (both algorithmically and theoretically for deriving necessary 
optimality conditions) on optimal quantization, i.e., on finding point sets of 
fixed size on the sphere having minimum spherical discrepancy. 

Communicated by Friedrich Pillichshammer 

1. Introduction 

Point sets uniformly located on the classical or higher dimensional sphere are of much 
interest in many disciplines of mathematics. As examples we refer to point cloud interpolation 
in computer vision [12] or to optimization problems with chance constraints using the so-called 
spherical-radial decomposition of elliptically distributed (e.g., Gaussian) random vectors [14]. 
Uniformity of point sets on the sphere can be characterized by various criteria, e.g., the sum of 
pairwise distances (which should be large) or by its Coulomb energy (which should be small). 
If the focus is on estimating the integration error when replacing a spherical integral of a 
function by an average function value on the spherical point set, then the so-called spherical 
cap discrepancy is a natural measure of goodness for the uniformity of this point set [1],[3],[6]. 
Contrary to the criteria mentioned above, the spherical cap discrepancy (being defined as a 
supremum of infinitely many local discrepancies) is originally not endowed with an explicit 
formula which could be used for its numerical computation or for its minimization as a function 
of the point set. This did not harm theoretical investigations in the context of the construction 
of low discrepancy sequences but it became obstructive in numerical experiments. A possible 
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remedy consisted in reducing the supremum to a maximum over finitely many local 
discrepancies (e.g. [[1], p.1005]), but, of course, this provides just a lower bound which might 
deviate considerably from the true value [[7], p.13]. A certainly more precise algorithmic 
approximation was provided in [2], but still it was not based on an exact formula and moreover 
restricted to the classical two-dimensional sphere. In [7], a precise enumerative formula for the 
spherical cap discrepancy was derived, which reduced the supremum over an infinite family of 
local discrepancies to a finite maximum of fully explicit and numerically easy to compute 
expressions. Not surprisingly, this formula suffers from a poor complexity. Nonetheless, it 
could be used for calibration purposes for moderate sizes of the point set and small dimensions 
of the sphere (in [7], sets with 2000 points in the two-dimensional sphere to 100 points in the 
five-dimensional sphere were considered). For a practical application of this formula in image 
analysis, we refer to [12]. 

It turns out that, apart from its numerical use, the mentioned formula maybe of interest in 
characterizing the spherical cap discrepancy as a function of the point set. This observation is 
based on the fact that the finitely many expressions whose maximum constitutes the spherical 
cap discrepancy are fully explicit functions of the point set. This allows us, beyond proving the 
continuity of the spherical cap discrepancy by elementary arguments, to verify even its 
Lipschitz continuity around so-called generic point sets. The latter refers to point sets on the 
sphere for which each selection of cardinality not larger than the space dimension is linearly 
independent. Such point sets are typical outcomes of Monte-Carlo (but not of Quasi Monte-
Carlo) sampling. The main argument for proving Lipschitz continuity relies on the fact that, 
locally around a generic point set, the spherical cap discrepancy can be represented as a 
continuous selection of C1-functions (see [13]). Moreover, we are able to provide explicitly 
computable Lipschitz constants. This might be of interest in the application of global 
optimization methods for minimizing the spherical cap discrepancy (optimal quantization) for 
a fixed sample size. Note that low discrepancy sequences whose design on the sphere is an 
active field of research have nice asymptotic properties but do not guarantee optimality for a 
fixed sample size. Apart from algorithmic relevance, the proven Lipschitz continuity paves a 
way for establishing necessary optimality conditions in optimal quantization on the sphere by 
means of the Clarke subdifferential [4]. 

The paper is organized as follows: Section 2 briefly introduces some basic concepts, 
presents some simple preliminary results needed later on and proves the continuity of the 
spherical cap discrepancy. In Section 3, a representation formula for the spherical cap 
discrepancy as a maximum of finitely many (explicit) functions around generic point sets is 
proven. In section 4, an extended cap discrepancy is introduced and its Lipschitz continuity 
around generic point sets is verified. As a trivial consequence, the same property for the original 
discrepancy is derived as the main result of the paper. Section 5 briefly describes how the 
previous results could applied in order to derive necessary conditions for optimal quantization 
with respect to the spherical cap discrepancy. 

2. Basic concepts and continuity of the spherical cap discrepancy 

We start by defining the following family of subsets of ℝ𝑑: 

 𝐻(𝑤, 𝑡) ≔ {𝑥 ∈ ℝ𝑑 ∣ ⟨𝑤, 𝑥⟩ ≥ 𝑡}(𝑤 ∈ ℝ𝑑, 𝑡 ∈ ℝ).  
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If 𝑤 ≠ 0, then 𝐻(𝑤, 𝑡) represents a closed half space in ℝ𝑑, otherwise it coincides with 
either ℝ𝑑 or the empty set depending on whether 𝑡 ≤ 0 or 𝑡 > 0. With each of these sets, we 
associate its so-called cap measure on the sphere: 

𝜇𝑐𝑎𝑝(𝑤, 𝑡): = 𝜎(𝕊𝑑−1 ∩ 𝐻(𝑤, 𝑡)) (𝜎 =  law of uniform distribution on 𝕊𝑑−1), 

where 𝕊𝑑−1 refers to the (𝑑 − 1)-dimensional Euclidean unit sphere in ℝ𝑑. We assume in 
the following that 𝑑 ≥ 2. 

For a matrix 𝑋 = (𝑥(1), … , 𝑥(𝑁)) of order (𝑑, 𝑁) with 𝑁 ≥ 1 representing a set of points 

{𝑥(1), … , 𝑥(𝑁)} ⊆ 𝕊𝑑−1, the empirical measure induced from this point set assigns to the set 
𝕊𝑑−1 ∩ 𝐻(𝑤, 𝑡) its empirical probability 

 
𝜇𝑒𝑚𝑝(𝑋,𝑤, 𝑡): = 𝑁−1 ⋅ {𝑖 ∈ {1,… , 𝑁} ∣ 𝑥(𝑖) ∈ 𝕊𝑑−1 ∩ 𝐻(𝑤, 𝑡)}

= 𝑁−1 ⋅ {𝑖 ∈ {1,… , 𝑁} ∣ 𝑥(𝑖) ∈ 𝐻(𝑤, 𝑡)}.
  

As a side remark we note that the following relation is immediate from the definition: 

𝜇𝑒𝑚𝑝(𝑋,𝑤, 𝑡) + 𝜇𝑒𝑚𝑝(𝑋,−𝑤,−𝑡) = 1 + 𝑁−1 ⋅ #{𝑖 ∈ {1,… ,𝑁} ∣ ⟨𝑤, 𝑥(𝑖)⟩ = 𝑡}. (1) 

In order to measure the uniformity of a point set on the sphere, one might compare the 
deviation between its cap measure and empirical measure on all sets 𝕊𝑑−1 ∩ 𝐻(𝑤, 𝑡): 

 Δ0(𝑋): = 𝑠𝑢𝑝
𝑤∈ℝ𝑑,𝑡∈ℝ

 |𝜇𝑒𝑚𝑝(𝑋,𝑤, 𝑡) − 𝜇𝑐𝑎𝑝(𝑤, 𝑡)| (𝑋 ∈ (𝕊𝑑−1)
𝑁
) (2) 

Clearly, the smaller 𝛥0, the better both measures coincide on the chosen family of sets. 
Such quantities are called discrepancies. If one restricts the family of sets 𝐻(𝑤, 𝑡) to those with 
(𝑤, 𝑡) ∈ 𝕊𝑑−1 × [−1,1], then one obtains the so-called spherical cap discrepancy (e.g., [3]) 

 Δ(𝑋):= 𝑠𝑢𝑝
𝑤∈𝕊𝑑−1,𝑡∈[−1,1]

 |𝜇𝑒𝑚𝑝(𝑋, 𝑤, 𝑡) − 𝜇𝑐𝑎𝑝(𝑤, 𝑡)| (𝑋 ∈ (𝕊𝑑−1)
𝑁
). (3) 

Observe, that for (𝑤, 𝑡) ∈ 𝕊𝑑−1 × [−1,1], the sets 𝐻(𝑤, 𝑡) represent closed half spaces 
with normal vector 𝑤 and height 𝑡. Their intersections 𝕊𝑑−1 ∩ 𝐻(𝑤, 𝑡), on which the empirical 
measure and the uniform distribution are compared, are nonempty and called spherical caps. 
Some authors define the spherical cap discrepancy by using open half spaces instead, i.e., by 
imposing the strict inequality ⟨𝑤, 𝑥⟩  >  𝑡 in the definition of 𝐻(𝑤, 𝑡) (e.g., [5]). One could 
formally refer to this alternative definition as a discrepancy 𝛥1(𝑋). It is easy to see that all these 
three discrepancy definitions coincide, i.e., 𝛥(𝑋) = 𝛥0(𝑋) = 𝛥1(𝑋). We provide a proof in 
Proposition A.1 of the appendix for the reader’s convenience. We shall base this paper on the 
representation (3), but occasionally, the equality with (2) may turn out to be useful. 

If 𝑤 ∈ 𝕊𝑑−1, then the cap measure does not depend on w and we simply write 𝜇𝑐𝑎𝑝(𝑡) ≔
𝜇𝑐𝑎𝑝(𝑤, 𝑡). In this case, the following explicit formula is well known (e.g., [9]): 

 𝜇𝑐𝑎𝑝(𝑡) = {
𝐶𝑑 ∫  

arccos (𝑡)

0
sin𝑑−2 (𝜏)𝑑𝜏,  if 0 ≤ 𝑡 ≤ 1,

1 − 𝐶𝑑 ∫  
arccos (−𝑡)

0
sin𝑑−2 (𝜏)𝑑𝜏,  if − 1 ≤ 𝑡 < 0,

 (4) 
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where 

 𝐶𝑑 : =
1

∫  
𝜋

0
sin𝑑−2 (𝜏)𝑑𝜏

 (5) 

is some normalizing constant. It follows immediately from (4) that 𝜇𝑐𝑎𝑝 is continuous and 
that 

 𝜇𝑐𝑎𝑝(𝑡) = 1 − 𝜇𝑐𝑎𝑝(−𝑡)   ∀𝑡 ∈ [−1,1]. (6) 

Therefore, we shall work from now on with the following form of (3): 

 Δ(𝑋):= 𝑠𝑢𝑝
𝑤∈𝕊𝑑−1,𝑡∈[−1,1]

 |𝜇𝑒𝑚𝑝(𝑋, 𝑤, 𝑡) − 𝜇𝑐𝑎𝑝(𝑡)| (𝑋 ∈ (𝕊𝑑−1)
𝑁
). (7) 

We collect three properties of the spherical cap discrepancy that are direct consequences 
of the definition (7). We observe first, that the supremum in (7) is actually a maximum and that 
the spherical cap realizing this maximum contains at least one element of the given point set on 
its relative boundary: 

PROPOSITION 2.1. ([7], Proposition 1 & 2). Let 𝑋 ∈ (𝕊𝑑−1)𝑁 be given. Then, there are 
𝑤∗ ∈ 𝕊𝑑−𝟙 and 𝑡∗ ∈ [−1,1] such that 

 Δ(𝑋) = |𝜇𝑒𝑚𝑝(𝑋,𝑤∗, 𝑡∗) − 𝜇𝑐𝑎𝑝(𝑡∗)|.  

Moreover, there exists some 𝑖 ∈ {1, . . . , 𝑁} with ⟨𝑤∗, 𝑥(𝑖)⟩ = 𝑡∗. 

Secondly, we state a general lower bound for 𝛥(𝑋) that depends on the space dimension 
and the number of points, but not on the position of the points on the sphere. 

PROPOSITION 2.2. Let 𝜅:= 𝑚𝑖𝑛{𝑑, 𝑁}. One has that 𝛥(𝑋) ≥ 𝜅(2𝑁)−1 > 0 for all 𝑋 ∈
(𝕊𝑑−1)𝑁 . 

Proof. Choose some 𝑤 ∈ 𝕊𝑑−1 such that ⟨𝑤, 𝑥(1) − 𝑥(𝑗)⟩ = 0 for all 𝑗 = 2, . . . , 𝜅 and put 𝑡 ≔

⟨𝑤, 𝑥(1)⟩. Then, |𝑡| ≤ 1, and we have that ⟨𝑤, 𝑥(𝑖)⟩ = 𝑡 for 𝑖 = 1, . . . , 𝜅. Therefore, owing to (1) 
and (6), 

 

2Δ(𝑋) ≥ |𝜇𝑒𝑚𝑝(𝑋, 𝑤, 𝑡) − 𝜇𝑐𝑎𝑝(𝑡)| + |𝜇𝑒𝑚𝑝(𝑋, −𝑤, −𝑡) − 𝜇𝑐𝑎𝑝(−𝑡)|

≥ |𝜇𝑒𝑚𝑝(𝑋, 𝑤, 𝑡) + 𝜇𝑒𝑚𝑝(𝑋,−𝑤,−𝑡) − 𝜇𝑐𝑎𝑝(𝑡) − 𝜇𝑐𝑎𝑝(−𝑡)|

= |1 + 𝑁−1 ⋅⋕ {𝑖 ∈ {1, … , 𝑁} ∣ ⟨𝑤, 𝑥(𝑖)⟩ = 𝑡} − 1|

= 𝑁−1 ⋅⋕ {𝑖 ∈ {1,… , 𝑁} ∣ ⟨𝑤, 𝑥(𝑖)⟩ = 𝑡} ≥ 𝑁−1𝜅.

  

A further property we want to adapt from [7] is a slightly stronger version of [[7], Corollary 
1]. We observe that the empirical measure is always strictly greaterthan the cap measure for 
any (w∗, t∗) realizing the spherical cap discrepancy. 

PROPOSITION 2.3. For (𝑤∗, 𝑡∗) realizing 𝛥(𝑋) in Proposition 2.1 it holds that 
𝜇𝑒𝑚𝑝(𝑋,𝑤∗, 𝑡∗) > 𝜇𝑐𝑎𝑝(𝑡∗). 
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Proof. By assumption, we have that 𝛥(𝑋) = |𝜇𝑒𝑚𝑝(𝑋,𝑤∗, 𝑡∗) − 𝜇𝑐𝑎𝑝(𝑡∗)|. From [[7], 
Corollary 1] we already know that 𝜇𝑒𝑚𝑝(𝑋,𝑤∗, 𝑡∗) ≥ 𝜇𝑐𝑎𝑝(𝑡∗). Now, the equality 
𝜇𝑒𝑚𝑝(𝑋,𝑤∗, 𝑡∗) = 𝜇𝑐𝑎𝑝(𝑡∗) would imply 𝛥(𝑋) = 0, a contradiction with Proposition 2.2. 

As a consequence, we end up at a yet different representation of the spherical cap 
discrepancy, which allows us to get rid of absolute values: 

COROLLARY 2.4. One has that 

 Δ(𝑋) = 𝑠𝑢𝑝
𝑤∈𝕊𝑑−1,𝑡∈[−1,1]

 𝜇𝑒𝑚𝑝(𝑋,𝑤, 𝑡) − 𝜇𝑐𝑎𝑝(𝑡)∀𝑋 ∈ (𝕊𝑑−1)
𝑁
.  

Proof. Clearly, the relation ’ ≥ ’ in the claimed equality holds true by (7). On the other hand, by 
Proposition 2.3, there exists (𝑤∗, 𝑡∗) ∈ 𝕊𝑑−1 × [−1,1] such that 𝛥(𝑋) = 𝜇𝑒𝑚𝑝(𝑋, 𝑤∗, 𝑡∗) −
𝜇𝑐𝑎𝑝(𝑡∗). Hence, the reverse relation ’ ≤ ’ holds also true in the claimed equality. 

Throughout the paper, we understand the sphere 𝕊𝑑−1 as a metric space inheriting its 
metric from the Euclidean norm in ℝ𝑑. Next, we are going to prove that the spherical cap 
discrepancy is continuous. 

THEOREM 2.5. The function 𝛥: (𝕊𝑑−1)𝑁 → ℝ is continuous. 

Proof. We show first that 𝛥 is lower semicontinuous. Fix some arbitrary 𝑋 = (𝑥(1), … , 𝑥(𝑁)) ∈
(𝕊𝑑−1)𝑁  and 𝜀 > 0. According to Proposition 2.1 and Proposition 2.3, there exist 𝑤∗ ∈ 𝕊𝑑−1 
and 𝑡∗ ∈ [−1,1] such that 

 Δ(𝑋) = 𝜇𝑒𝑚𝑝(𝑋,𝑤∗, 𝑡∗) − 𝜇𝑐𝑎𝑝(𝑡∗).  

We claim that 𝑡∗ > 1. Indeed, if 𝑡∗ = −1, then 𝜇𝑒𝑚𝑝(𝑋,𝑤∗, 𝑡∗) = 𝜇𝑐𝑎𝑝(𝑡∗) = 1, whence the 
contradiction 𝛥(𝑋) = 0 with Proposition 2.3. 

Define 𝐼 ≔ {𝑖 ∈ {1,… ,𝑁}|𝑥(𝑖) ∈ 𝐻(𝑤∗, 𝑡∗)}. Clearly, we find 𝑐 > 0 such that 

 
𝑡∗ − 𝑐 ≥ −1; ⟨𝑤∗, 𝑥(𝑖)⟩ > 𝑡∗ − 𝑐∀𝑖 ∈ 𝐼; ⟨𝑤∗, 𝑥(𝑖)⟩ < 𝑡∗ − 𝑐∀𝑖 ∈ 𝐼𝑐;

|𝜇𝑐𝑎𝑝(𝑡∗) − 𝜇𝑐𝑎𝑝(𝑡∗ − 𝑐)| < 𝜀.
  

By continuity, there exists 𝛿 > 0 such that for all 𝑋̃ ∈ (𝕊𝑑−1)𝑁 with ∥ 𝑋̃ − 𝑋 ∥< 𝛿 (∥ · ∥ 
denoting the Euclidean norm) it holds that 

 ⟨𝑤∗, 𝑥̃(𝑖)⟩ > 𝑡∗ − 𝑐∀𝑖 ∈ 𝐼; ⟨𝑤∗, 𝑥̃(𝑖)⟩ < 𝑡∗ − 𝑐∀𝑖 ∈ 𝐼𝑐 .  

Consequently, 𝜇𝑒𝑚𝑝(𝑋̃, 𝑤∗, 𝑡∗ − 𝑐) = 𝜇𝑒𝑚𝑝(𝑋, 𝑤∗, 𝑡∗) for all such 𝑋̃ . Hence, for all 𝑋̃ ∈
(𝕊𝑑−1)𝑁  with ∥ 𝑋̃ − 𝑋 ∥< 𝛿, 

 
Δ(𝑋̃) ≥ |𝜇𝑒𝑚𝑝(𝑋̃, 𝑤∗, 𝑡∗ − 𝑐) − 𝜇𝑐𝑎𝑝(𝑡∗ − 𝑐)|

= |𝜇𝑒𝑚𝑝(𝑋,𝑤∗, 𝑡∗) − 𝜇𝑐𝑎𝑝(𝑡∗) + 𝜇𝑐𝑎𝑝(𝑡∗) − 𝜇𝑐𝑎𝑝(𝑡∗ − 𝑐)| > Δ(𝑋) − 𝜀.
  

Since 𝜀 > 0 was arbitrary, this shows the lower semicontinuity of 𝛥 at 𝑋. 
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As for the upper semicontinuity, assume that 𝛥 fails to be upper semicontinuous at some 
𝑋 ∈ (𝕊𝑑−1)𝑁. Then there exist some 𝑐 > 0 as well as a sequence 𝑋𝑛 ∈ (𝕊

𝑑−1)𝑁 with 𝑋𝑛 → 𝑋 
and 𝛥(𝑋𝑛) > 𝛥(𝑋) + 𝑐. Let (𝑤𝑛

∗, 𝑡𝑛
∗) be a sequence that realizes the cap discrepancies 𝛥(𝑋_𝑛). 

Due to Proposition 2.3 we have that 

 Δ(𝑋𝑛) = 𝜇
𝑒𝑚𝑝(𝑋𝑛 , 𝑤𝑛

∗ , 𝑡𝑛
∗) − 𝜇𝑐𝑎𝑝(𝑡𝑛

∗)     ∀𝑛 ∈ ℕ.  

Since (𝑤𝑛
∗, 𝑡𝑛

∗) ∈ 𝕊𝑑−1 × [−1,1], by passing to a subsequence, we may assume that 
(𝑤𝑛

∗, 𝑡𝑛
∗) → (𝑤̃, 𝑡̃) ∈ 𝕊𝑑−1 × [−1,1]. Altogether, (𝑋𝑛, 𝑤𝑛

∗, 𝑡𝑛
∗) → (𝑋, 𝑤̃, 𝑡̃). With the index set 

𝐼: = {𝑖 ∈ {1, … , 𝑁} ∣ 𝑥(𝑖) ∈ 𝐻(𝑤̃, 𝑡̃)}, one has that ⟨𝑤̃, 𝑥(𝑖)⟩ < 𝑡̃ for all 𝑖 ∈ 𝐼𝑐. By continuity, 

there is some 𝑛0 such that ⟨𝑤𝑛
∗, 𝑥𝑛

(𝑖)
⟩ < 𝑡𝑛

∗  for all 𝑛 ≥ 𝑛0 and 𝑖 ∈ 𝐼𝑐. This entails that 

𝜇𝑒𝑚𝑝(𝑋𝑛, 𝑤𝑛
∗, 𝑡𝑛

∗) ≤ 𝜇𝑒𝑚𝑝(𝑋, 𝑤̃, 𝑡̃) for 𝑛 ≥ 𝑛0. Moreover, by continuity of 𝜇𝑐𝑎𝑝, we have 
|𝜇𝑐𝑎𝑝(𝑡̃) − 𝜇𝑐𝑎𝑝(𝑡𝑛

∗)| ≤ 𝑐 for sufficient large 𝑛. Consequently, there exists some 𝑛1 ∈ ℕ such 
that for all 𝑛 ≥ 𝑛1 

 

Δ(𝑋𝑛) = 𝜇
𝑒𝑚𝑝(𝑋𝑛 , 𝑤𝑛

∗ , 𝑡𝑛
∗) − 𝜇𝑐𝑎𝑝(𝑡𝑛

∗)

≤ 𝜇𝑒𝑚𝑝(𝑋, 𝑤̃, 𝑡̃) − 𝜇𝑐𝑎𝑝(𝑡̃) + 𝜇𝑐𝑎𝑝(𝑡̃) − 𝜇𝑐𝑎𝑝(𝑡𝑛
∗)

≤ |𝜇𝑒𝑚𝑝(𝑋, 𝑤̃, 𝑡̃) − 𝜇𝑐𝑎𝑝(𝑡̃)| + |𝜇𝑐𝑎𝑝(𝑡̃) − 𝜇𝑐𝑎𝑝(𝑡𝑛
∗ )| ≤ Δ(𝑋) + 𝑐,

  

a contradiction to the previously established inequality 𝛥(𝑋𝑛) > 𝛥(𝑋) + 𝑐. 

A consequence of the continuity property is the existence of an optimal quantization with 
respect to the spherical cap discrepancy for any fixed number of points on the unit sphere. 

COROLLARY 2.6. For each 𝑁 ≥ 1, there exists a point set 𝑋∗ = (𝑥∗
(1), … , 𝑥∗

(𝑁)) with 𝑋∗ ∈

(𝕊𝑑−1)𝑁  realizing the minimal spherical cap discrepancy, i.e., 

 Δ(𝑋∗) = 𝑖𝑛𝑓
𝑋∈(𝕊𝑑−1)

𝑁
 Δ(𝑋)  

3. Generic point sets and a representation formula for the spherical 
cap discrepancy 

Our ultimate goal in this paper is to prove the local Lipschitz continuity of the spherical 
cap discrepancy. While it is not clear at this point, whether a general Lipschitz result holds true 
in general, we will be able to derive it for the class of generic point sets, which would be the 
typical outcomes of Monte-Carlo sampling on the sphere. 

DEFINITION 3.1. A point set 𝑋 = (𝑥(1), … , 𝑥(𝑁)) ∈ (ℝ𝑑)𝑁 is called generic if for any index 

set 𝐼 ⊆ {1,… ,𝑁} with #𝐼 ≤ 𝑑  the selection {𝑥(𝑖) ∣ 𝑖 ∈ 𝐼} is linear independent in ℝ𝑑. 

Clearly, all point sets close enough to some generic point set are generic themselves, which 
allows for the following proposition. 

PROPOSITION 3.2. If 𝑋̅ ∈ (ℝ𝑑)𝑁 is generic, then there exists a neighborhood 𝒪 of 𝑋̅ such 
that 𝑋 is generic for each 𝑋 ∈ 𝒪. 

DEFINITION 3.3. Define the family of index sets 
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 Φ:= {𝐼 ⊆ {1, … , 𝑁} ∣ 1 ≤ #𝐼 ≤ 𝑑}. (8) 

For generic 𝑋 = (𝑥(1), … , 𝑥(𝑁)) ∈ (ℝ𝑑)𝑁 and 𝐼 ∈ 𝛷, let 𝑋𝐼  be the matrix whose columns 

are the 𝑥(𝑖)(𝑖 ∈ 𝐼). Put 

 𝟏:= (1,… ,1)⊤ ∈ ℝ#𝐼 , 𝑡𝐼 : = (𝟏
⊤(𝑋𝐼

⊤𝑋𝐼)
−1𝟏)−1/2, 𝑤𝐼:= 𝑡𝐼𝑋𝐼(𝑋𝐼

⊤𝑋𝐼)
−1𝟏 (9) 

which are well-defined by the assumed genericity of 𝑋. 

PROPOSITION 3.4. If 𝑋 ∈ (ℝ𝑑)𝑁 is generic, then 𝑡𝐼 > 0,𝑤𝐼 ∈ (𝕊
𝑑−1) and 𝑋𝐼

𝑇𝑤𝐼 = 𝑡𝐼𝟏 for 
all 𝐼 ∈ 𝛷. If, moreover, 𝑋 ∈ (𝕊𝑑−1)𝑁, then 0 < 𝑡𝐼 ≤ 1 for all 𝐼 ∈ 𝛷. 

Proof. The first assertion is evident from (9). If 𝑋 ∈ (𝕊𝑑−1)𝑁, then the first assertion implies 
the second one: Fix some arbitrary 𝐼 ∈ 𝛷 and some arbitrary 𝑗 ∈ 𝐼 and obtain 

 𝑡𝐼 = ⟨𝑥
(𝑗) , 𝑤𝐼⟩ ≤ ‖𝑤𝐼‖ = 1  

Next, we shall prove a representation formula for the spherical cap discrepancy of generic 
point sets which follows from and simplifies the enumerative formula for general point sets 
proven in [[7], Theorem 1]. 

Theorem 3.5. Let 𝑋 = (𝑥(1), … , 𝑥(𝑁)) ∈ (𝕊𝑑−1)𝑁 be generic. Then, with the notation from 
Definition 3.3, the spherical cap discrepancy may be represented as 

Δ(𝑋) = 𝑚𝑎𝑥
𝐼∈Φ

 𝑚𝑎𝑥{𝜇𝑒𝑚𝑝(𝑋,𝑤𝐼 , 𝑡𝐼) − 𝜇
𝑐𝑎𝑝(𝑡𝐼), 𝜇

𝑒𝑚𝑝(𝑋,−𝑤𝐼, −𝑡𝐼) − 𝜇
𝑐𝑎𝑝(−𝑡𝐼)}. (10) 

Proof. For some 𝐼 ∈ 𝛷, denote by 𝑋̃𝐼  the extension 𝑋̃𝐼 = (
𝑋𝐼
−𝟏𝑇
) of the matrix 𝑋𝐼 . From the 

enumeration formula in [[7], Theorem 1] we know that the cap discrepancy is represented as a 
maximum of local discrepancies associated with index subsets contained in 𝛷. Let 𝐼∗ ∈ 𝛷 some 
index set realizing this maximum. Then, according to [[7], Theorem 1], we have that rank 𝑋̃𝐼∗ =

#𝐼∗, 𝛾:= 𝟏⊤(𝑋̃𝐼∗
⊤𝑋̃𝐼∗)

−1
𝟏 ∈ (0,1] and 

Δ(𝑋) = 𝑚𝑎𝑥{|𝜇𝑒𝑚𝑝(𝑋,𝑤∗, 𝑡∗) − 𝜇𝑐𝑎𝑝(𝑡∗)|, |𝜇𝑒𝑚𝑝(𝑋,−𝑤∗, −𝑡∗) − 𝜇𝑐𝑎𝑝(−𝑡∗)|}, (11) 

where 𝑡∗:= (
1−𝛾

𝛾
)
1/2

≥ 0 and 

 𝑤∗:=
1+(𝑡∗)2

𝑡∗
𝑋𝐼∗(𝑋̃𝐼∗

⊤𝑋̃𝐼∗)
−1
𝟏 if 𝑡∗ > 0;𝑤∗ ∈ Ker𝑋𝐼∗

⊤ ∩ 𝕊𝑑−1 if 𝑡∗ = 0. (12) 

As noted in [[7], Theorem 1], the choice of 𝑤∗ in the second case of (12) is arbitrary. Then, 
by virtue of Proposition 2.3, regardless of whether the first or the second term in (11) is 
dominating, 

Δ(𝑋) = 𝑚𝑎𝑥{𝜇𝑒𝑚𝑝(𝑋, 𝑤∗, 𝑡∗) − 𝜇𝑐𝑎𝑝(𝑡∗), 𝜇𝑒𝑚𝑝(𝑋, −𝑤∗, −𝑡∗) − 𝜇𝑐𝑎𝑝(−𝑡∗)}. (13) 

To proceed, put 

 𝑣:= −(1 + (𝑡∗)2)(𝑋̃𝐼∗
⊤𝑋̃𝐼∗)

−1
𝟏.  
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From here, we get the two relations 

 𝟏⊤𝑣 = −(1 + (𝑡∗)2)𝛾 = −(1 +
1−𝛾

𝛾
)𝛾 = −1; 𝑋̃𝐼∗

⊤𝑋̃𝐼∗𝑣 = −(1 + (𝑡
∗)2)𝟏.  

Along with the definition of 𝑋̃𝐼∗ as an extended matrix, this yields that 

 −(1 + (𝑡∗)2)𝟏 = 𝑋̃𝐼∗
⊤𝑋̃𝐼∗𝑣 = (𝑋𝐼∗

⊤𝑋𝐼∗ + 𝟏𝟏
⊤)𝑣 = 𝑋𝐼∗

⊤𝑋𝐼∗𝑣 − 𝟏.  

Therefore, it holds −(𝑡∗)2𝟏 = 𝑋𝐼∗
⊤𝑋𝐼∗𝑣. Since 𝑋𝐼∗

⊤𝑋𝐼∗ is regular by genericity of 𝑋, one gets 
that 

 𝑣 = −(𝑡∗)2(𝑋𝐼∗
⊤𝑋𝐼∗)

−1
𝟏 and 1 = −𝟏𝑇𝑣 = (𝑡∗)2𝟏𝑇(𝑋𝐼∗

⊤𝑋𝐼∗)
−1
𝟏. (14) 

In particular, it must be 𝑡∗ > 0 and we observe that 

 𝑡∗ = (𝟏⊤(𝑋𝐼∗
⊤𝑋𝐼∗)

−1
𝟏)

−1/2
.  

Furthermore, thanks to 𝑡∗ > 0, on the other hand, by (12) and (14) one arrives at 

 𝑤∗ =
1+(𝑡∗)2

𝑡∗
𝑋𝐼∗(𝑋̃𝐼∗

⊤𝑋̃𝐼∗)
−1
𝟏 = −

1

𝑡∗
𝑋𝐼∗𝑣 = 𝑡

∗𝑋𝐼∗(𝑋𝐼∗
⊤𝑋𝐼∗)

−1
𝟏.  

Altogether, we conclude that (𝑤∗, 𝑡∗) = (𝑤𝐼∗ , 𝑡𝐼∗) for 𝑤𝐼∗ , 𝑡𝐼∗ defined in (9). Combining 
this with (13), we get that 

 Δ(𝑋) = 𝑚𝑎𝑥{𝜇𝑒𝑚𝑝(𝑋, 𝑤𝐼∗ , 𝑡𝐼∗) − 𝜇
𝑐𝑎𝑝(𝑡𝐼∗), 𝜇

𝑒𝑚𝑝(𝑋,−𝑤𝐼∗ , −𝑡𝐼∗) − 𝜇
𝑐𝑎𝑝(−𝑡𝐼∗)}.  

Moreover, because 𝐼∗ ∈ 𝛷, it even holds that 

 
Δ(𝑋) ≤ 𝑚𝑎𝑥

𝐼∈Φ
 𝑚𝑎𝑥{𝜇𝑒𝑚𝑝(𝑋,𝑤𝐼 , 𝑡𝐼) − 𝜇

𝑐𝑎𝑝(𝑡𝐼), 𝜇
𝑒𝑚𝑝(𝑋,−𝑤𝐼, −𝑡𝐼) − 𝜇

𝑐𝑎𝑝(−𝑡𝐼)}

≤ Δ(𝑋),
  

where the last inequality relies on (7) and on the fact that 𝑤𝐼 ∈ 𝕊
𝑑−1 and 𝑡𝐼 ∈ [−1,1] for 

all 𝐼 ∈ 𝛷 by Proposition 3.4. This proves (10). 

We may slightly improve the representation formula (10) by excluding singletons from 
the index family Φ in Theorem 3.5. 

PROPOSITION 3.6. Let 𝑁 ≥ 2. Then the assertion of Theorem 3.5 remains valid if replacing 
the family of index sets 𝛷 in (8) by the (smaller) family of index sets 

 Φ̅:= {𝐼 ⊆ {1, … , 𝑁} ∣ 2 ≤ #𝐼 ≤ 𝑑} (15) 

Proof. Since Φ̅ ⊆ Φ, it is sufficient to show that there always exists some 𝐼∗̅ ∈ Φ̅ realizing the 
cap discrepancy 𝛥(𝑋) in (10). Assuming to the contrary that 

Δ(𝑋) > 𝑚𝑎𝑥
𝐼∈Φ̅

 𝑚𝑎𝑥{𝜇𝑒𝑚𝑝(𝑋,𝑤𝐼 , 𝑡𝐼) − 𝜇
𝑐𝑎𝑝(𝑡𝐼), 𝜇

𝑒𝑚𝑝(𝑋,−𝑤𝐼, −𝑡𝐼) − 𝜇
𝑐𝑎𝑝(−𝑡𝐼)}, (16) 
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𝛥(𝑋) must be realized by some 𝐼∗ ∈ Φ ∖ Φ̅. This implies that 𝐼∗ is a singleton, i.e., 𝐼∗ =
{ℓ} for some ℓ ∈ {1, … , 𝑁}. Then, by (9) we have 𝑡𝐼∗ = 1 and 𝑤𝐼∗ = 𝑥

(ℓ), which by ‖𝑥(𝑖)‖ = 1 
for 𝑖 =  1, . . . , 𝑁 implies that 

𝑥(𝑖) ∈ 𝐻(𝑤𝐼
∗, 𝑡𝐼

∗) ⟺ ⟨𝑥(𝑖), 𝑥(ℓ)⟩ = 1 ⟺ 𝑥(𝑖) = 𝑥(ℓ)     (𝑖 = 1, … , 𝑁). 

On the other hand, by genericity of 𝑋, we know that 𝑥(𝑖) ≠ 𝑥(ℓ) for 𝑖 ≠ ℓ. Consequently, 
𝜇𝑒𝑚𝑝(𝑋,𝑤𝐼∗ , 𝑡𝐼∗) = 𝑁

−1 and 𝜇𝑒𝑚𝑝(𝑋,−𝑤𝐼∗ ,−𝑡𝐼∗) = 1 due to (1). Moreover, 𝜇𝑐𝑎𝑝(𝑡𝐼∗) =
𝜇𝑐𝑎𝑝(1) = 0 and 𝜇𝑐𝑎𝑝(−𝑡𝐼∗) = 𝜇

𝑐𝑎𝑝(−1) = 1. Thus, 

 
Δ(𝑋) = 𝑚𝑎𝑥{𝜇𝑒𝑚𝑝(𝑋, 𝑤𝐼∗ , 𝑡𝐼∗) − 𝜇

𝑐𝑎𝑝(𝑡𝐼∗)

𝜇𝑒𝑚𝑝(𝑋,−𝑤𝐼∗ ,−𝑡𝐼∗) − 𝜇
𝑐𝑎𝑝(−𝑡𝐼∗)} = 𝑁

−1.
 (17) 

Consider 𝐼:̅ = {1,2} ∈ Φ̅ and define 𝑡𝐼̅,𝑤𝐼̅ as in (9). For 

 Δ̅: = 𝑚𝑎𝑥{𝜇𝑒𝑚𝑝(𝑋,𝑤𝐼̅, 𝑡𝐼̅) − 𝜇
𝑐𝑎𝑝(𝑡𝐼̅), 𝜇

𝑒𝑚𝑝(𝑋,−𝑤𝐼̅,−𝑡𝐼̅) − 𝜇
𝑐𝑎𝑝(−𝑡𝐼̅)}  

it holds that (similarly to the proof of Proposition 2.2) 

 
2Δ̅ ≥ 𝜇𝑒𝑚𝑝(𝑋, 𝑤𝐼̅, 𝑡𝐼̅) − 𝜇

𝑐𝑎𝑝(𝑡𝐼̅) + 𝜇
𝑒𝑚𝑝(𝑋, −𝑤𝐼̅, −𝑡𝐼̅) − 𝜇

𝑐𝑎𝑝(−𝑡𝐼̅)

= 1 + 𝑁−1 ⋅⋕ {𝑖 ∈ {1,… , 𝑁} ∣ ⟨𝑤𝐼̅, 𝑥
(𝑖)⟩ = 𝑡𝐼̅} − 1 ≥ 2𝑁

−1   

From (9), it follows that 𝑋𝐼̅
𝑇𝑤𝐼̅ = 𝑡𝐼̅𝟏, and so, ⟨𝑤𝐼̅, 𝑥

(𝑖)⟩ = 𝑡𝐼̅ for 𝑖 = 1,2. Therefore, 2Δ̅ ≥
2𝑁−1. On the other hand, Δ(𝑋) > Δ̅ by (16). This yields the contradiction Δ(𝑋) > 𝑁−1 with 
(17). 

At the end of this section, we prove a lemma connected with Theorem 3.5 and the 
quantities defined in (9) which will be of later use. 

LEMMA 3.7. Let 𝑋 ∈ (ℝ𝑑)𝑁 be generic and 𝐼 ∈ 𝛷 with #𝐼 < 𝑑. If there exists some index 
𝑗 ∈ {1, . . . , 𝑁}\ 𝐼 such that ⟨𝑤𝐼 , 𝑥

(𝑗)⟩ = 𝑡𝐼 , then for 𝐽: = 𝐼 ∪ {𝑗} it holds that 𝑡𝐽 = 𝑡𝐼 and 𝑤𝐽 =
𝑤𝐼. 

Proof. By assumption and by definition of 𝑤𝐼 we obtain for 𝑦 ≔ 𝑥(𝑗) that 

 𝑡𝐼 = ⟨𝑤𝐼 , 𝑦⟩ = 𝑡𝐼𝟏
⊤(𝑋𝐼

⊤𝑋𝐼)
−1𝑋𝐼

⊤𝑦.  

Hence, with 𝑡𝐼 > 0 (see Proposition 3.4), we observe that 

 𝟏⊤(𝑋𝐼
⊤𝑋𝐼)

−1𝑋𝐼
⊤𝑦 = 𝑦⊤𝑋𝐼(𝑋𝐼

⊤𝑋𝐼)
−1𝟏 = 1 (18) 

We first show that 𝑡𝐽 = 𝑡𝐼: The genericity of 𝑋 ensures that 𝑋𝐽
⊤𝑋𝐽 is regular and that 

 
1

𝑡𝐽
2 = 𝟏

⊤(𝑋𝐽
⊤𝑋𝐽)

−1
𝟏 = (𝟏⊤ ∣ 1) (

𝑋𝐼
⊤𝑋𝐼 𝑋𝐼

⊤𝑦

𝑦⊤𝑋𝐼 ‖𝑦‖2
)

−1

⏟          
=:𝑍

(𝟏
1
)  

Using the Schur complement 𝑆:= ‖𝑦‖2 − 𝑦⊤𝑋𝐼(𝑋𝐼
⊤𝑋𝐼)

−1𝑋𝐼
⊤𝑦 ≠ 0 of 𝑋𝐼

𝑇𝑋𝐼 , a well-
known formula for the inverse of partitioned matrices, yields 
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 𝑍 = (
(𝑋𝐼

⊤𝑋𝐼)
−1 +

1

𝑆
(𝑋𝐼

⊤𝑋𝐼)
−1𝑋𝐼

⊤𝑦𝑦⊤𝑋𝐼(𝑋𝐼
⊤𝑋𝐼)

−1 −
1

𝑆
(𝑋𝐼

⊤𝑋𝐼)
−1𝑋𝐼

⊤𝑦

−
1

𝑆
𝑦⊤𝑋𝐼(𝑋𝐼

⊤𝑋𝐼)
−1 1

𝑆

)  

and together with (18) and the definition of wI in (9) we have that 

 

1

𝑡𝐽
2 = 𝟏

⊤(𝑋𝐼
⊤𝑋𝐼)

−1𝟏 +
1

𝑆
𝟏⊤(𝑋𝐼

⊤𝑋𝐼)
−1𝑋𝐼

⊤𝑦𝑦⊤𝑋𝐼(𝑋𝐼
⊤𝑋𝐼)

−1𝟏

−
2

𝑆
𝟏⊤(𝑋𝐼

⊤𝑋𝐼)
−1𝑋𝐼

⊤𝑦 +
1

𝑆
=

1

𝑡𝐼
2 .

  

Thus, 𝑡𝐽 = 𝑡𝐼  . Now we show that also 𝑤𝐽 = 𝑤𝐼 : To this end, referring to (9) and taking 
into account (18), we compute 

 

⟨𝑤𝐽,𝑤𝐼⟩ = 𝑡𝐽𝑡𝐼(𝟏
⊤ ∣ 1) (

𝑋𝐼
⊤𝑋𝐼 𝑋𝐼

⊤𝑦

𝑦⊤𝑋𝐼 ‖𝑦‖2
)

−1

(
𝑋𝐼
⊤

𝑦⊤
)𝑋𝐼(𝑋𝐼

⊤𝑋𝐼)
−1𝟏

= 𝑡𝐽𝑡𝐼(𝟏
⊤ ∣ 1) (

𝑋𝐼
⊤𝑋𝐼 𝑋𝐼

⊤𝑦

𝑦⊤𝑋𝐼 ‖𝑦‖2
)

−1

(𝟏
1
) =

𝑡𝐼𝑡𝐽

𝑡𝐽
2 = 1.

  

Since 𝑤𝐼 ,𝑤𝐽 ∈ 𝕊
𝑑−1 by Proposition 3.4, we conclude that 𝑤𝐽 = 𝑤𝐼. 

4. Local Lipschitz continuity of the spherical cap discrepancy at 
generic point sets 

In this section, we are going to prove the main result of this paper, namely the local 
Lipschitz continuity of the spherical cap discrepancy 𝛥 around generic point sets. The main 
argument would aim at representing 𝛥 as a continuous selection of 𝐶1-functions. The Lipschitz 
continuity would allow one to calculate the Clarke subdifferential of 𝛥 and to exploit it in the 
derivation of necessary optimality conditions for minimizing 𝛥 as a function of the point set 
(optimal quantization). A technical difficulty arising in this context is the fact that both, the 
argument of deriving Lipschitz continuity for continuous selections of 𝐶1-functions and the 
definition of Clarke’s subdifferential are tied to a structure of normed linear spaces, whereas 𝛥 
is defined on the sphere. For this reason, we introduce a generalized cap discrepancy 𝛬 that 
extends the spherical cap discrepancy 𝛥 to arbitrary point sets in the Euclidean space (ℝ𝑑)𝑁 in 
a neighborhood of a given generic point set on the unit sphere. The idea is to prove the local 
Lipschitz continuity of 𝛬 first and then to get as an immediate corollary the same property for 
the genuine spherical cap discrepancy 𝛥 which is the restriction of 𝛬 to the sphere around 
generic point sets. 

4.1. Definition and continuity of the generalized cap discrepancy 

In order to define the generalized cap discrepancy 𝛬 mentioned above, one could be 
tempted to directly extend the definition (7) of 𝛥 to arbitrary Euclidean point sets. For deriving 
the desired Lipschitz property, however, it is beneficial to restrict considerations to generic 
point sets and to take the representation formula (10) in Theorem 3.5 as a basis for defining 𝛬. 
From now on, we shall assume that 𝑑 ≥ 3 which is no substantial restriction because uniformity 
of point sets on a circle is trivial. 
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We start by introducing an extended cap measure 𝜇𝐶𝑎𝑝: ℝ → ℝ (for dimension 𝑑 ≥ 3) in 
a way that it is continuously differentiable on ℝ and coincides with the original cap measure 
𝜇𝑐𝑎𝑝 from (4) on [−1,1] (which is continuously differentiable on (−1,1)). This is achieved by 
the following definition: 

 𝜇𝐶𝑎𝑝(𝑡): =

{
 
 

 
 𝜇

𝑐𝑎𝑝(𝑡), 𝑡 ∈ [−1,1]

−
1

2
𝑡 +

1

2
, |𝑡| > 1, 𝑑 = 3

0, 𝑡 > 1, 𝑑 ≥ 4
1, 𝑡 < −1, 𝑑 ≥ 4

 (19) 

Indeed, it is easily seen from (4) that (𝜇𝑐𝑎𝑝)′(−1) = (𝜇𝑐𝑎𝑝)′(1) = 0, whenever 𝑑 ≥ 4. 
Hence the constant continuation by the respective function values 𝜇𝑐𝑎𝑝(1) = 0, 𝜇𝑐𝑎𝑝(−1) = 1 
yields a continuously differentiable extension in this case. The special case 𝑑 = 3 cannot be 
treated in the same way because one easily sees that 𝜇𝑐𝑎𝑝(𝑡) = −𝑡/2 + 1/2 for all 𝑡 ∈ [−1,1], 
so that the derivatives do not vanish at -1 and 1, respectively. We may therefore simply keep 
the definition of the function globally in order to end up at a continuously differentiable 
extension. Note also, that in the case of 𝑑 = 2 (which we excluded), there exists no 
continuously differentiable extension of 𝜇^{𝑐𝑎𝑝} because its derivative converges to −∞ with 
the argument t converging to ±1. 

It is easy to show that for all 𝑑 ≥ 3 we may extend relation (6) to 

 𝜇𝐶𝑎𝑝(−𝑡) = 1 − 𝜇𝐶𝑎𝑝(𝑡)     ∀𝑡 ∈ ℝ. (20) 

Similarly, to the cap measure, we may extend the empirical measure to arbitrary point sets 
by putting for all 𝑋 ∈ (ℝ𝑑)𝑁 and (𝑤, 𝑡) ∈ ℝ𝑑+1: 

 𝜇𝐸𝑚𝑝(𝑋,𝑤, 𝑡): = 𝑁−1 ⋅ #{𝑖 ∈ {1,… ,𝑁} ∣ 𝑥(𝑖) ∈ 𝐻(𝑤, 𝑡)}. (21) 

Clearly, for all normalized point sets 𝑋 ∈ (𝕊𝑑−1)𝑁 it holds that 

 𝜇𝐸𝑚𝑝(𝑋,𝑤, 𝑡) = 𝜇𝑒𝑚𝑝(𝑋,𝑤, 𝑡)∀(𝑤, 𝑡) ∈ ℝ𝑑+1. (22) 

For the following definition, we make reference to the quantities 𝑡𝐼 , 𝑤𝐼 defined in (9) for 
𝐼 ∈ 𝛷 with 𝛷 as in (8). Note that, in the previous section, all results were formulated for a fixed 
(generic) point set 𝑋. Therefore, for notational convenience, we did not emphasize the 
dependence of 𝑡𝐼 , 𝑤𝐼 on 𝑋. In this section, however, we will investigate Lipschitz continuity of 
the spherical cap discrepancy based on the representation formula (10). Since now the point set 
will become a true variable, we will rather use the notations 𝑡𝐼(𝑋), 𝑤𝐼(𝑋) in the definitions (9) 
in order to stress the dependence on 𝑋. It is obvious that tI ,wI are continuous mappings on the 
set of generic point sets 𝑋. 

DEFINITION 4.1. For generic point sets 𝑋 ∈ (ℝ𝑑)𝑁, we define the generalized cap 
discrepancy 

 
Λ(𝑋):= 𝑚𝑎𝑥

𝐼∈Φ
 𝑚𝑎𝑥{𝜇𝐸𝑚𝑝(𝑋,𝑤𝐼(𝑋), 𝑡𝐼(𝑋)) − 𝜇

𝐶𝑎𝑝(𝑡𝐼(𝑋)),

𝜇𝐸𝑚𝑝(𝑋,−𝑤𝐼(𝑋),−𝑡𝐼(𝑋)) − 𝜇
𝐶𝑎𝑝(−𝑡𝐼(𝑋))}.

 (23) 

Thanks to Proposition 3.2, we make the following observation: 
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REMARK 1. If 𝑋̅ ∈ (ℝ𝑑)𝑁 is generic, then there exists a neighborhood 𝒪 of 𝑋̅ such that 𝛬 
is defined on 𝒪 and has the representation (23) for all 𝑋 ∈ 𝒪. 

By Proposition 3.4, it follows for generic 𝑋 ∈ (𝕊𝑑−1)𝑁, that |𝑡𝐼| ≤ 1 for all 𝐼 ∈ 𝛷. This 
entails that 𝜇𝐶𝑎𝑝(±𝑡𝐼) = 𝜇

𝑐𝑎𝑝(±𝑡𝐼) for all 𝐼 ∈ 𝛷. Moreover, by (22), one also has in this case 
that 𝜇𝐸𝑚𝑝(𝑋, ±𝑤𝐼 , ±𝑡𝐼) = 𝜇

𝑒𝑚𝑝(𝑋, ±𝑤𝐼 , ±𝑡𝐼) for all 𝐼 ∈ 𝛷. Now, (23) and Theorem 3.5 entail 
that our generalized cap discrepancy reduces to the original spherical cap discrepancy for 
generic point sets on the sphere: 

COROLLARY 4.2. For generic 𝑋 ∈ (𝕊𝑑−1)𝑁 one has that 𝛬(𝑋) = 𝛥(𝑋). 

The first basic ingredient for proving the local Lipschitz continuity of 𝛬 around a generic 
point set is the continuity itself at such point. Adding to this property later that 𝛬 is a selection 
of 𝐶1-functions, we will arrive at the desired Lipschitz result. Given the already proven 
continuity of the genuine discrepancy 𝛥 at arbitrary point sets (Theorem 2.5), the following 
result shows the continuity of the generalized cap discrepancy 𝛬 at generic point sets. 

PROPOSITION 4.3. Let 𝑋̅ ∈ (ℝ𝑑)𝑁 be generic and 𝒪 some open neighborhood of 𝑋̅ such 
that all 𝑋 ∈ 𝒪 are generic too (see Proposition 3.2). Then, 𝛬:𝒪 → ℝ is continuous. 

Proof. Of course, it is sufficient to prove continuity of 𝛬 at the arbitrarily fixed generic 
point set 𝑋̅ which entails continuity on the whole neighbourhood 𝒪 mentioned in the statement 
of Proposition 4.3. We shall show first the lower and later the upper semicontinuity of 𝛬 at 𝑋̅, 
thus proving continuity itself. 

Let 𝐼∗ ∈ 𝛷 be some index set realizing the maximum in (23), so that 𝛬(𝑋̅) =
𝜇𝐸𝑚𝑝(𝑋̅,𝑤∗, 𝑡∗) − 𝜇𝐶𝑎𝑝(𝑡∗) for some (𝑤∗, 𝑡∗) ∈ ±{(𝑤𝐼∗(𝑋), 𝑡𝐼∗(𝑋)}. We fix an arbitrary 𝜀 >
0. Now, by Lemma A.2 proven in the appendix, we can find some 𝛿 > 0, small enough such 
that 𝔹𝛿(𝑋̅) ⊆ 𝒪, and in such a way that choosing an arbitrary 𝑋 ∈ 𝔹𝛿(𝑋̅), we find 𝐽, 𝑤 and 𝑡 
with 𝐽 ∈ Φ, (𝑤, 𝑡) ∈ ±{(𝑤𝐽(𝑋), 𝑡𝐽(𝑋))} satisfying 

 𝜇𝐸𝑚𝑝(𝑋,𝑤, 𝑡) = 𝜇𝐸𝑚𝑝(𝑋̅, 𝑤∗, 𝑡∗) and 𝜇𝐶𝑎𝑝(𝑡) < 𝜇𝐶𝑎𝑝(𝑡∗) + 𝜀.  

In particular, by (23), then 

 
Λ(𝑋) ≥ 𝜇𝐸𝑚𝑝(𝑋,𝑤, 𝑡) − 𝜇𝐶𝑎𝑝(𝑡)

= 𝜇𝐸𝑚𝑝(𝑋̅, 𝑤∗, 𝑡∗) − 𝜇𝐶𝑎𝑝(𝑡∗) + 𝜇𝐶𝑎𝑝(𝑡∗) − 𝜇𝐶𝑎𝑝(𝑡) > Λ(𝑋̅) − 𝜀.
  

This means that 𝛬 is lower semicontinuous at 𝑋̅. In order to show that 𝛬 is also upper 
semicontinuous at 𝑋̅, we assume to the contrary that there exist some 𝑐 > 0 as well as a 
sequence 𝑋𝑛 → 𝑋̅ such that 

 Λ(𝑋𝑛) > Λ(𝑋̅) + 𝑐     ∀𝑛 ∈ ℕ. (24) 

For each 𝑛 ∈ ℕ, choose 𝐼𝑛
∗ ∈ Φ and (𝑤𝑛

∗(𝑋𝑛), 𝑡𝑛
∗(𝑋𝑛)) ∈ ±{(𝑤𝐼𝑛∗ (𝑋𝑛), 𝑡𝐼𝑛∗ (𝑋𝑛))} such 

that 𝛬(𝑋𝑛) is realized, i.e., 

 Λ(𝑋𝑛) = 𝜇
𝐸𝑚𝑝(𝑋𝑛 , 𝑤𝑛

∗(𝑋𝑛), 𝑡𝑛
∗(𝑋𝑛)) − 𝜇

𝐶𝑎𝑝(𝑡𝑛
∗(𝑋𝑛)).  
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Since 𝛷 is a finite set, there exists some ∅ ≠ 𝐼∗ ⊆ {1, … , 𝑁} such that, upon passing to a 
subsequence, 𝐼𝑛

∗ = 𝐼∗ for all 𝑛 ∈ ℕ. Once more, by passing to a subsequence, we may assume 
that for all 𝑛 ∈ ℕ either. 

a) (𝑤𝑛
∗(𝑋𝑛), 𝑡𝑛

∗(𝑋𝑛)) = (𝑤𝐼∗(𝑋𝑛), 𝑡𝐼∗(𝑋𝑛))    or 

b) (𝑤𝑛
∗(𝑋𝑛), 𝑡𝑛

∗(𝑋𝑛)) = (−𝑤𝐼∗(𝑋𝑛), −𝑡𝐼∗(𝑋𝑛)). 

We consider just case a) here (the second case being completely analogous). By continuity 
of 𝑤𝐼∗ and 𝑡𝐼∗ , we have that 𝑤𝑛

∗(𝑋𝑛) → 𝑤𝐼∗(𝑋̅) and 𝑡𝑛
∗(𝑋𝑛) → 𝑡𝐼∗(𝑋̅) as 𝑛 → ∞. From the 

definition in (21) it follows easily for continuity reasons that the empirical measure at some 
triple (𝑋,𝑤, 𝑡) is always larger than or equal to the empirical measure of triples (𝑋′, 𝑤′, 𝑡′) in a 
sufficiently small neighborhood of (𝑋, 𝑤, 𝑡). Accordingly, 

 𝜇𝐸𝑚𝑝(𝑋𝑛 , 𝑤𝑛
∗(𝑋𝑛), 𝑡𝑛

∗(𝑋𝑛)) ≤ 𝜇
𝐸𝑚𝑝(𝑋̅, 𝑤𝐼∗(𝑋̅), 𝑡𝐼∗(𝑋̅))  

for 𝑛 large enough. Moreover, the continuity of the cap measure implies that 

 |𝜇𝐶𝑎𝑝(𝑡𝐼∗(𝑋̅)) − 𝜇
𝐶𝑎𝑝(𝑡𝑛

∗(𝑋𝑛))| ≤ 𝑐  

for sufficient large 𝑛. Consequently, there exists some 𝑛0 ∈ ℕ with 

 

Λ(𝑋𝑛) = 𝜇
𝐸𝑚𝑝(𝑋𝑛 , 𝑤𝑛

∗(𝑋𝑛), 𝑡𝑛
∗(𝑋𝑛)) − 𝜇

𝐶𝑎𝑝(𝑡𝑛
∗(𝑋𝑛))

≤ 𝜇𝐸𝑚𝑝(𝑋̅, 𝑤𝐼∗(𝑋̅), 𝑡𝐼∗(𝑋̅)) − 𝜇
𝐶𝑎𝑝(𝑡𝐼∗(𝑋̅))

+𝜇𝐶𝑎𝑝(𝑡𝐼∗(𝑋̅)) − 𝜇
𝐶𝑎𝑝(𝑡𝑛

∗(𝑋𝑛)) ≤ Λ(𝑋̅) + 𝑐

  

for all 𝑛 ≥ 𝑛0, which is a contradiction to inequality (24). Hence, 𝛬 is also upper 
semicontinuous at 𝑋̅. 
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4.2. Local Lipschitz continuity of the generalized cap discrepancy at 
generic point sets 

Now we turn to the Lipschitz continuity of the generalized cap discrepancy locally around 
a generic point set 𝑋̅ . As before, we denote by 𝒪 an open neighborhood of 𝑋̅ of generic point 
sets. According to (23), we have the representation 

 Λ(𝑋) = 𝑚𝑎𝑥
𝐼∈Φ

 𝑚𝑎𝑥 {𝜑𝐼
(1)
(𝑋), 𝜑𝐼

(2)
(𝑋)}    ∀𝑋 ∈ 𝒪, (25) 

Where 

 
𝜑𝐼
(1)
(𝑋): = 𝜇𝐸𝑚𝑝(𝑋,𝑤𝐼(𝑋), 𝑡𝐼(𝑋)) − 𝜇

𝐶𝑎𝑝(𝑡𝐼(𝑋))

𝜑𝐼
(2)
(𝑋): = 𝜇𝐸𝑚𝑝(𝑋,−𝑤𝐼(𝑋), −𝑡𝐼(𝑋)) − 𝜇

𝐶𝑎𝑝(−𝑡𝐼(𝑋))
 (26) 

As a preparatory step, we prove the following Lemma: 

LEMMA 4.4. Let 𝑋̅ ∈ (ℝ𝑑)𝑁 be generic and 𝒪 some open neighborhood of 𝑋̅ such that all 
𝑋 ∈ 𝒪 are generic too. Then, there exists a neighborhood 𝒰 ⊆ 𝒪 of 𝑋̅ such that for all 𝐼 ∈ 𝛷 
and all 𝑋 ∈ 𝒰 there holds: 

 

Λ(𝑋̅) = 𝜑𝐼
(1)
(𝑋̅), Λ(𝑋) = 𝜑𝐼

(1)
(𝑋)

⇒ 𝜇𝐸𝑚𝑝(𝑋, 𝑤𝐼(𝑋), 𝑡𝐼(𝑋)) = 𝜇
𝐸𝑚𝑝(𝑋̅, 𝑤𝐼(𝑋̅), 𝑡𝐼(𝑋̅))

Λ(𝑋̅) = 𝜑𝐼
(2)
(𝑋̅), Λ(𝑋) = 𝜑𝐼

(2)
(𝑋)

⇒ 𝜇𝐸𝑚𝑝(𝑋, −𝑤𝐼(𝑋),−𝑡𝐼(𝑋)) = 𝜇
𝐸𝑚𝑝(𝑋̅, −𝑤𝐼(𝑋̅), −𝑡𝐼(𝑋̅))

  

Proof. Without loss of generality, we prove just the first implication and assume it would not 
hold true. Then, there exist sequences 𝑋𝑛 → 𝑋̅ and 𝐼𝑛 ∈ 𝛷 such that 

 
Λ(𝑋̅) = 𝜑𝐼𝑛

(1)
(𝑋̅), Λ(𝑋𝑛) = 𝜑𝐼𝑛

(1)(𝑋𝑛)

|𝜇𝐸𝑚𝑝(𝑋̅, 𝑤𝐼𝑛(𝑋̅), 𝑡𝐼𝑛(𝑋̅)) − 𝜇
𝐸𝑚𝑝 (𝑋𝑛 ,𝑤𝐼𝑛(𝑋𝑛), 𝑡𝐼𝑛(𝑋𝑛))| ≥

1

𝑁

  

In the last inequality, we used the fact that the values of 𝜇𝐸𝑚𝑝 are multiples of 
1

𝑁
. Moreover, by 

continuity on 𝒪 of 𝜇𝐶𝑎𝑝 ∘ 𝑡𝐼 for all 𝐼 ∈ 𝛷, we have that, for 𝑛 large enough, 

 |𝜇𝐶𝑎𝑝 (𝑡𝐼𝑛(𝑋̅) − 𝜇
𝐶𝑎𝑝 (𝑡𝐼𝑛(𝑋𝑛) |≤

1

2𝑁
  

whenever U is small enough. Consequently, for n large enough, we arrive at the following 
contradiction with the continuity of Λ shown in Proposition 4.3:  

 |Λ(𝑋̅) − Λ(𝑋𝑛)| = |𝜑𝐼𝑛
(1)
(𝑋̅) − 𝜑𝐼𝑛

(1)(𝑋𝑛)| ≥
1

2𝑁
  

A natural idea to show the local Lipschitz continuity around generic points of the 
maximum function 𝛬 in (25) would rely on checking the continuous differentiability or at least 

local Lipschitz continuity of the elementary functions 𝜑𝐼
(1)
, 𝜑𝐼

(2) . This, however, does not apply 
because these functions fail to be even continuous as a consequence of the discontinuity of 
𝜇𝐸𝑚𝑝. The fact is illustrated for a numerical example in Figure 1. Here, a generic set 𝑋̅ of four 
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points in 𝕊2 is considered and subjected to one-parametric variation (shifting one of the four 
points while keeping the others fixed). The variation parameter zero corresponds to the nominal 

point set 𝑋̅. The figure plots the local discrepancies Δ∗(𝐼): = 𝑚𝑎𝑥 {𝜑𝐼
(1)
(𝑋̅), 𝜑𝐼

(2)
(𝑋̅)} given by 

the functions defined in (26). According to (23), their maximum over all index sets 𝐼 ∈ 𝛷 yields 
the (global) discrepancy 𝛬. As can be seen, this maximum 𝛬 is continuous as it should be 
according to Proposition 4.3. However, all elementary functions (local discrepancies) being 
active for the maximum at the nominal point set 𝑋̅ exhibit jumps at that same point set. Still, 
the maximum function 𝛬 is apparently not only continuous but even Lipschitz continuous. To 
show this rigorously, we shall represent 𝛬 as a selection (not a maximum though!) of finitely 
many smooth functions. It is well known that continuous selections of smooth (or more 
generally: locally Lipschitzian) functions are locally Lipschitzian. The desired selection cannot 

be made among the original elementary functions 𝜑𝐼
(1), 𝜑𝐼

(2) due to their discontinuity. We 
therefore define smooth modifications of these functions by locally fixing 𝜇𝐸𝑚𝑝 around the 
nominal point set 𝑋̅: 

 
𝜑̃𝐼
(1)
(𝑋): = 𝜇𝐸𝑚𝑝(𝑋̅, 𝑤𝐼(𝑋̅), 𝑡𝐼(𝑋̅)) − 𝜇

𝐶𝑎𝑝(𝑡𝐼(𝑋))

𝜑̃𝐼
(2)
(𝑋): = 𝜇𝐸𝑚𝑝(𝑋̅, −𝑤𝐼(𝑋̅), −𝑡𝐼(𝑋̅)) − 𝜇

𝐶𝑎𝑝(−𝑡𝐼(𝑋))
 (27) 

Clearly, the desired smoothness of the 𝜑̃𝐼
(1), 𝜑̃𝐼

(2) will follow from the continuous 
differentiability of the functions 𝛽𝐼: = 𝜇

𝐶𝑎𝑝 ∘ 𝑡𝐼 for 𝐼 ∈ 𝛷 around some arbitrary generic point 
set 𝑋. 
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FIGURE 1. The cap discrepancy 𝛬 as a (continuous) maximum of discontinuous functions. The 
picture shows the behavior of the local discrepancies 𝛥∗(𝐼) - whose maximum is 𝛬 (see text) - 

when parametrically varying a single point out of four points from a given generic point set 
𝑋̅ ∈ (𝕊2)4. The variation parameter zero corresponds to the nominal point set 𝑋̅. Local 

discrepancies realizing the maximum (i.e., 𝛬) at the nominal set 𝑋̅ are highlighted by different 
colors. 

LEMMA 4.5. Let 𝑋̅ ∈ (ℝ𝑑)𝑁 be generic and 𝒪 a neighbourhood of 𝑋̅ such that all 𝑋 ∈ 𝒪 
are generic too. Then, for each 𝐼 ∈ 𝛷, the function 𝛽𝐼  is continuously differentiable on 𝒪 with 
the following partial gradients 𝑤. 𝑟. 𝑡.  𝑥(𝑙), (𝑙 ∈ 1, … , 𝑁): 

∇𝑥(𝑙)𝛽𝐼(𝑋) = {

0,  if 𝑙 ∉ 𝐼 or |𝑡𝐼(𝑋)| ≥ 1, 𝑑 ≥ 4,

−
1

2
𝑡𝐼
2(𝑋)𝑐𝐼

𝜏(𝑙)
𝑤𝐼(𝑋),  if 𝑙 ∈ 𝐼, 𝑑 = 3, ∀𝑋 ∈ 𝒪.

𝜌𝐼𝑐𝐼
𝜏(𝑙)
𝑤𝐼(𝑋),  if 𝑙 ∈ 𝐼, |𝑡𝐼(𝑋)| < 1, 𝑑 ≥ 4,

 (28) 

Here, with 𝐶𝑑 from (5), 
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 𝜌𝐼 := −𝐶𝑑𝑡𝐼
2(𝑋)(1 − 𝑡𝐼

2(𝑋))
𝑑−3

2  and 𝑐𝐼
𝑗
:= ∑  #𝐼

𝑖=1 (𝑋𝐼
𝑇𝑋𝐼)𝑖,𝑗

−1   (𝑗 = 1, … , #𝐼).  

Moreover, for 𝑙 ∈ 𝐼, the index 𝜏(𝑙) refers to the rank of l in the index set 𝐼, i.e., if 𝐼 =
{𝜅1, … , 𝜅#𝐼}, then 𝑙 = 𝜅𝜏(𝑙). 

Proof. Consider some arbitrary 𝑋 ∈ 𝒪, whence 𝑋 is generic. Let 𝐼 ∈ 𝛷 be arbitrary too. We 
assume that 𝐼 = {𝜅1,… , 𝜅#𝐼} ⊆ {1,… , N}. We want to derive first the function 

 𝛼(𝑋):= 𝟏𝑇(𝑋𝐼
𝑇𝑋𝐼)

−1𝟏. (29) 

From well-known rules of matrix differential calculus (see, e.g., [10]) one obtains with 𝑀(𝑋) ≔
𝑋𝐼
𝑇𝑋𝐼  that 

 
𝜕𝛼

𝜕𝑋𝑘,𝑙
(𝑋) = −2∑  #𝐼

𝑞=1 (∑  #𝐼
𝑖=1 [𝑀(𝑋)]𝑖,𝜏(𝑙)

−1 )(∑  #𝐼
𝑗=1 [𝑀(𝑋)]𝑗,𝑞

−1)𝑋𝑘,𝜘𝑞  

with 𝜏(𝑙) as introduced in the statement of this lemma (for a detailed argumentation, we refer 

to the preprint version of this paper [8]). By definition of 𝑀(𝑋) and of the coefficients 𝑐𝐼
𝑗 

introduced in the statement of this Lemma, we obtain that 

 ∇𝑥(𝑙)𝛼(𝑋) = −2𝑐𝐼
𝜏(𝑙) ∑  #𝐼

𝑞=1 𝑐𝐼
𝑞
𝑥(𝜘𝑞). (30) 

Next, we observe that, for all 𝑞 = 1, … , ⋕ 𝐼, 

 [(𝑋𝐼
𝑇𝑋𝐼)

−1𝟏]𝑞 = ∑  #𝐼
𝑖=1 (𝑋𝐼

𝑇𝑋𝐼)𝑞,𝑖
−1 = ∑  #𝐼

𝑖=1 (𝑋𝐼
𝑇𝑋𝐼)𝑖,𝑞

−1 = 𝑐𝐼
𝑞 .  

Consequently, by definition (9), 

 𝑤𝐼(𝑋) = 𝑡𝐼(𝑋)𝑋𝐼(𝑋𝐼
⊤𝑋𝐼)

−1𝟏 = 𝑡𝐼(𝑋)∑  #𝐼
𝑞=1 𝑐𝐼

𝑞𝑥(𝜘𝑗).  

Thanks to (30), this entails that 

 ∇𝑥(𝑙)𝛼(𝑋) = −2
𝑐𝐼
𝜏(𝑙)

𝑡𝐼(𝑋)
𝑤𝐼(𝑋) (31) 

We observe next that the function 𝜇𝑐𝑎𝑝 defined in (4) is continuously differentiable for 𝑑 ≥
3, 𝑡 ∈ (0,1) with 

 [𝜇𝑐𝑎𝑝]′(𝑡) = −𝐶𝑑(1 − 𝑡
2)

𝑑−3

2 .  

Along with (19) and the explanations below this equation, this yields that 𝜇𝐶𝑎𝑝 is continuously 
differentiable with 

 [𝜇𝐶𝑎𝑝]′(𝑡) = {

0,  if |𝑡𝐼(𝑋)| ≥ 1, 𝑑 ≥ 4,

−
1

2
,  if 𝑑 = 3,

−𝐶𝑑(1 − 𝑡
2)

𝑑−3

2 ,  if |𝑡𝐼(𝑋)| < 1.

 (32) 
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Moreover, the function 𝑡𝐼 = 𝛼
−1/2 defined in (9) and (29) is continuously differentiable in the 

generic point set 𝑋 because α was shown so in (30). Therefore, the function 𝛽 = 𝜇𝐶𝑎𝑝 ∘ 𝑡𝐼  is 
continuously differentiable in 𝑋 with 

 

𝜕𝛽𝐼

𝜕𝑋𝑘,𝑙
(𝑋) = [𝜇𝐶𝑎𝑝]′(𝑡𝐼(𝑋)) ⋅

𝜕𝑡𝐼

𝜕𝑋𝑘,𝑙
(𝑋)

= −
1

2
[𝜇𝐶𝑎𝑝]′(𝑡𝐼(𝑋)) ⋅ [𝛼(𝑋)]

−3/2 𝜕𝛼

𝜕𝑋𝑘,𝑙
(𝑋),

  

whence, along with (31) 

 
∇𝑥(𝑙)𝛽𝐼(𝑋) = −

1

2
[𝜇𝐶𝑎𝑝]′(𝑡𝐼(𝑋)) ⋅ [𝑡𝐼(𝑋)]

3∇𝑥(𝑙)𝛼(𝑋)

= [𝜇𝐶𝑎𝑝]′(𝑡𝐼(𝑋)) ⋅ [𝑡𝐼(𝑋)]
2𝑐𝐼
𝜏(𝑙)
𝑤𝐼(𝑋)

 (33) 

Now, lines two and three in (32), yield the corresponding lines in (28). Clearly, the outcomes 
of (28) depend continuously on 𝑋 thanks to the continuity of 𝑡𝐼 , 𝑤𝐼. This also proves the 
continuous differentiability of 𝛽𝐼  on 𝒪. 

COROLLARY 4.6. For each 𝐼 ∈ 𝛷, the functions 𝜑̃𝐼
(1)
(⋅), 𝜑̃𝐼

(2)
(⋅) defined in (27) are 

continuously differentiable on 𝒪(𝑋̅) with 

 ∇𝜑̃𝐼
(1)
(𝑋) = −∇𝛽𝐼(𝑋)   and   ∇𝜑̃𝐼

(2)
(𝑋) = ∇𝛽𝐼(𝑋)   ∀𝑋 ∈ 𝒪(𝑋̅).  

Proof. The first formula above is evident from the definition of 𝜑̃𝐼
(1)

 in (27). Similarly, the 

definition of 𝜑̃𝐼
(2)

 yields that 

 ∇𝜑̃𝐼
(2)
(𝑋) = [𝜇𝐶𝑎𝑝]′(−𝑡𝐼(𝑋))∇𝑡𝐼(𝑋) = [𝜇

𝐶𝑎𝑝]′(𝑡𝐼(𝑋))∇𝑡𝐼(𝑋) = ∇𝛽𝐼(𝑋),  

where the second equation follows from (32). 

We shall prove now that, locally around generic point sets, 𝛬 is a selection of the 

continuously differentiable functions φ̃I
(1)
, φ̃I

(2)
. 

PROPOSITION 4.7. Let 𝑋̅ ∈ (ℝ𝑑)𝑁 be generic and 𝒪 some open neighborhood of 𝑋̅ such 
that all 𝑋 ∈ 𝒪 are generic too. Then, there exists a neighborhood 𝒱 ⊆ 𝒪 of 𝑋̅ such that for all 

𝑋 ∈ 𝒱 there are 𝐼 ∈ 𝛷 and 𝑠 ∈ {1,2} with 𝛬(𝑋) = 𝜑̃𝐼
(𝑠)(𝑋). 

Proof. Let 𝒰 ⊆ 𝒪 be the neighborhood of 𝑋̅ from Lemma 4.4 and define the set of active indices 
as 

 𝒜(𝑋):= {(𝐼, 𝑠) ∈ Φ × {1,2} ∣ Λ(𝑋) = 𝜑𝐼
(𝑠)
(𝑋)} ∀𝑋 ∈ 𝒪. (34) 

(see (25)). We claim that there exists a neighborhood 𝒱 ⊆ 𝒰 of 𝑋̅ such that 

 𝒜(𝑋) ⊆ 𝒜(𝑋̅)   ∀𝑋 ∈ 𝒱. (35) 

If this wasn’t the case, we could find some sequences 𝑋𝑛 ∈ (ℝ
𝑑)𝑁  and (𝐼𝑛, 𝑠𝑛) ∈ 𝛷 × {1,2} 

such that 



ON THE LIPSCHITZ CONTINUITY OF THE SPHERICAL CAP DISCREPANCY AROUND GENERIC 

POINT SETS 

 242 

 Λ(𝑋𝑛) = 𝜑𝐼𝑛
(𝑠𝑛)(𝑋𝑛),   Λ(𝑋̅) > 𝜑𝐼𝑛

(𝑠𝑛)(𝑋̅)   ∀𝑛 ∈ ℕ   and   𝑋𝑛 → 𝑋̅.  

Moreover, by passing to a subsequence, we may find some 𝐼 ̅ ∈ 𝛷 and 𝑠̅ ∈ {1,2} such that 

 Λ(𝑋𝑛) = 𝜑𝐼̅
(𝑠̅)(𝑋𝑛)   ∀𝑛 ∈ ℕ   and   Λ(𝑋̅) > 𝜑𝐼̅

(𝑠̅)
(𝑋̅).  

Because 𝛬 is continuous at 𝑋̅ by Proposition 4.3, there is some 𝑛0 ∈ ℕ such that 

 𝜑𝐼̅
(𝑠̅)(𝑋𝑛) > 𝜑𝐼̅

(𝑠̅)
(𝑋̅) +

𝑐

2
   ∀𝑛 ≥ 𝑛0,     where 𝑐: = Λ(𝑋̅) − 𝜑𝐼̅

(𝑠̅)
(𝑋̅) > 0.  

Next, we use an argument already employed in the proof of Proposition 4.3, namely that the 
definition in (21) easily implies for continuity reasons that the empirical measure at some triple 
(𝑋,𝑤, 𝑡) is always larger than or equal to the empirical measure of triples (𝑋′, 𝑤′, 𝑡′) in a 
sufficiently small neighborhood of (𝑋, 𝑤, 𝑡). Assuming, without loss of generality that 𝑠̅ = 1 
(the argument being exactly the same for 𝑠̅ = 2), we therefore get for 𝑛 ≥ 𝑛0 that 

 

𝜇𝐸𝑚𝑝(𝑋̅, 𝑤𝐼̅(𝑋̅),𝑡𝐼̅(𝑋̅)) − 𝜇
𝐶𝑎𝑝(𝑡𝐼̅(𝑋̅)) +

𝑐

2
= 𝜑𝐼̅

(1)
(𝑋̅) +

𝑐

2

< 𝜑𝐼̅
(1)(𝑋𝑛) = 𝜇

𝐸𝑚𝑝(𝑋𝑛 , 𝑤𝐼̅(𝑋𝑛), 𝑡𝐼̅(𝑋𝑛)) − 𝜇
𝐶𝑎𝑝(𝑡𝐼̅(𝑋𝑛))

≤ 𝜇𝐸𝑚𝑝(𝑋̅, 𝑤𝐼̅(𝑋̅), 𝑡𝐼̅(𝑋̅)) − 𝜇
𝐶𝑎𝑝(𝑡𝐼̅(𝑋𝑛))

  

Passing to the limit on the right-hand side and exploiting the continuity of 𝜇𝐶𝑎𝑝 ∘ 𝑡𝐼̅ , we arrive 
at the contradiction 

 −𝜇𝐶𝑎𝑝(𝑡𝐼̅(𝑋̅)) +
𝑐

2
≤ −𝜇𝐶𝑎𝑝(𝑡𝐼̅(𝑋̅))  

which proves (35). 

Now, fix an arbitrary 𝑋 ∈ 𝒱 and choose 𝐼 ∈ 𝛷 and 𝑠 ∈ {1,2} such that 𝛬(𝑋) = 𝜑𝐼
(𝑠)(𝑋). 

Then, (𝐼, 𝑠) ∈ 𝒜(𝑋) ⊆ 𝒜(𝑋̅) by (35), whence 𝛬(𝑋̅) = 𝜑𝐼
(𝑠)(𝑋̅). Since 𝒱 ⊆ 𝒰, Lemma 4.4 

yields that 𝜑𝐼
(𝑠)(𝑋) = 𝜑̃𝐼

(𝑠)(𝑋). Thus, 𝛬(𝑋) = 𝜑̃𝐼
(𝑠)(𝑋), as was to be shown. 

We are now in a position to formulate the main result of this paper: 

THEOREM 4.8. Let 𝑋̅ = (𝑥̅(1), … , 𝑥̅(𝑁)) ∈ (ℝ𝑑)𝑁 be generic. Then, there exists some 
neighborhood 𝒰 of 𝑋̅ such that 𝑋 is generic for all 𝑋 ∈ 𝒰 and 𝛬 is Lipschitz continuous on 𝒰. 
In other words, there exists some 𝐿 > 0 such that 

 |Λ(𝑋1) − Λ(𝑋2)| ≤ 𝐿‖𝑋1 −𝑋2‖     ∀𝑋1, 𝑋2 ∈ 𝒰  

Proof. By Propositions 4.3 and 4.7, there exists a neighborhood 𝒰 of 𝑋̅ such that 𝛬 is continuous 
and a selection of finitely many continuously differentiable functions on 𝒰 (which means that 
𝛬 is piecewise differentiable in the terminology of Scholtes [[13], page 91]). In particular, 𝛬 is 
a continuous selection of Lipschitz functions on 𝒰, hence 𝛬 is Lipschitz continuous on 𝒰 itself 
[[13], Proposition 4.1.2.]. 

As an immediate consequence, we get the desired local Lipschitz continuity of the 
(original) spherical cap discrepancy 𝛥 around generic points on the sphere: 
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COROLLARY 4.9. Let 𝑋̅ = (𝑥̅(1), … , 𝑥̅(𝑁)) ∈ (𝕊𝑑−1)𝑁  be generic. Then, there exists some 
neighborhood 𝒰 of 𝑋̅ such that X is generic for all 𝑋 ∈ 𝒰 ∩ (𝕊𝑑−1)𝑁  and 𝛥 is Lipschitz 
continuous on 𝒰 ∩ (𝕊𝑑−1)𝑁. In other words, there exists some 𝐿 > 0 such that 

 |Δ(𝑋1) − Δ(𝑋2)| ≤ 𝐿‖𝑋1 −𝑋2‖     ∀𝑋1, 𝑋2 ∈ 𝒰 ∩ (𝕊
𝑑−1)

𝑁
.  

Proof. This follows immediately from Theorem 4.8 and Corollary 4.2. 

It is noteworthy that the Lipschitz constant 𝐿 in Theorem 4.8 (which is the same as in 
Corollary 4.9) can be explicitly estimated from the data by using the formulae in Lemma 4.5. 
Indeed, as a consequence of Proposition 4.7 and of [[13], Proposition 4.1.2], we obtain that the 

Lipschitz constant 𝐿 of 𝛬 on 𝒰 can be represented by the Lipschitz constants 𝐿𝑖
(𝑠) of the 

continuously differentiable functions 𝜑̃𝐼
(𝑠)

 as 

 𝐿 = 𝑚𝑎𝑥
(𝐼,𝑠)∈Φ×{1,2}

 𝐿𝐼
(𝑠) (36) 

Clearly, the 𝐿𝐼
(𝑠) can be chosen greater than but arbitrarily close to the Euclidean norms 

‖∇𝜑̃𝐼
(𝑠)
(𝑋̅)‖ by shrinking the neighbourhood 𝒰. By Corollary 4.6 and Lemma 4.5, a rough 

upper estimate of the 𝐿𝐼
(𝑠) would be (for 𝑑 ≥ 4) 

 𝐶𝑑 𝑚𝑎𝑥
𝐼∈Φ,𝑙∈𝐼

  |𝑐𝐼
𝜏(𝑙)
|  

(a finer estimate would incorporate the expressions 𝑡𝐼
2(𝑋)). 

REMARK 2. We make the following observations: 

(1) The best possible Lipschitz constant 𝐿 in Corollary 4.9 is in general strictly smaller 
than the best possible Lipschitz constant in Theorem 4.8 because the set of arguments 
for 𝛥 is restricted to spherical (not arbitrary) point sets. 

(2) The estimate of the Lipschitz constant in (36) can be improved by restricting the 
maximum to the active indices at 𝑋̅ as defined in (34): 

 𝐿̃: = 𝑚𝑎𝑥
(𝐼,𝑠)∈𝒜(𝑋̅)

 𝐿𝐼
(𝑠)
≤ 𝐿 (37) 

which would keep being a Lipschitz constant for 𝛬 and 𝛥, respectively because, thanks 
to (35), nonactive indices at 𝑋̅ remain nonactive locally and, hence, do not contribute 
to 𝛬 and 𝛥. 

The following example illustrates the computation of a Lipschitz constant: 

EXAMPLE. We consider a set of four points on the classical sphere 𝕊2 which represent the 
vertices of a regular tetrahedron: 
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 𝑋̅ =

(

 
 
 
√
2

3
−√

2

3
0 0

0 0 √
2

3
−√

2

3

−1

√3

−1

√3

1

√3

1

√3 )

 
 
 
.  

We are going to estimate the Lipschitz constants 𝐿𝐼
(𝑠) in the improved estimate (37). Numerical 

computation of the functions 𝜑𝐼
(𝑠)(𝑋̅) in (26) yields that 𝜑𝐼

(1)(𝑋̅) = 5/12 ≈ 0.417, 𝜑𝐼
(2)(𝑋̅) =

1/3 ≈ 0.333 for all 𝐼 ∈ 𝛷 with #𝐼 = 3, and 𝜑𝐼
(1)(𝑋̅) = 1/√12 ≈ 0.289, 𝜑𝐼

(2)(𝑋̅) = 1/2 −

1/√12 ≈ 0.211 for all 𝐼 ∈ 𝛷 with #𝐼 = 2. Hence, the set of active indices introduced in (34) 
equals 𝒜(𝑋̅) = (𝐼, 1)|#𝐼 = 3. We approximate the corresponding elementary Lipschitz 

constants 𝐿𝐼
(1) by the norms of the gradients ‖∇𝜑̃𝐼

(1)
(𝑋̅)‖ = ‖∇𝛽𝐼(𝑋̅)‖ (see Corollary 4.6). By 

Lemma 4.5 and Proposition 3.4, the norms of the nonzero components of 𝛻𝛽𝐼(𝑋̅) calculate as 

 ‖∇𝑥(𝑙)𝛽𝐼(𝑋̅)‖ = ‖−
1

2
𝑡𝐼
2(𝑋̅)𝑐𝐼

𝜏(𝑙)
𝑤𝐼(𝑋̅)‖ =

1

2
𝑡𝐼
2(𝑋̅)𝑐𝐼

𝜏(𝑙)
     (𝑙 ∈ 𝐼)  

Since, by complete symmetry of a tetrahedron, the occurring quantities on the right-hand side 
are all the same for all subsets having cardinality 3, we may restrict our considerations to the 
representative index set 𝐼: = {1,2,3}. From the definition of 𝑋̅, we calculate 

 (𝑋̅𝐼
𝑇𝑋̅𝐼)

−1 =

(

 
 

3

2

3

4

3

4
3

4

3

2

3

4
3

4

3

4

3

2)

 
 

  

Then, the sum of elements equals 𝟏𝑇(𝑋̅𝐼
𝑇𝑋̅𝐼)

−1𝟏 = 9, so that according to (9), 𝑡𝐼
2(𝑋̅) = 1/9. 

Moreover, by definition in Lemma 4.5, 

𝑐𝐼
𝜏(1)

= 𝑐𝐼
1 =∑  

3

𝑖=1

(𝑋𝐼
𝑇𝑋𝐼)𝑖,1

−1 = 3/2 + 3/4 + 3/4 = 3 

Hence, 

 ‖∇𝑥(1)𝛽𝐼(𝑋̅)‖ =
1

2
𝑡𝐼
2(𝑋̅)𝑐𝐼

𝜏(1)
=
1

6
.  

Similarly, 𝑐𝐼
𝜏(2)

= 𝑐𝐼
𝜏(3)

= 3 leading to (recall that 4 ∉ 𝐼, whence the corresponding partial 
gradient vanishes by Lemma 33) 

 ‖∇𝑥(1)𝛽𝐼(𝑋̅)‖ = ‖∇𝑥(2)𝛽𝐼(𝑋̅)‖ = ‖∇𝑥(3)𝛽𝐼(𝑋̅)‖ =
1

6
;      ‖∇𝑥(4)𝛽𝐼(𝑋̅)‖ = 0  

Therefore, 

 ‖∇𝛽𝐼(𝑋̅)‖ = (∑  4
𝑖=1 ‖∇𝑥(𝑖)𝛽𝐼(𝑋̅)‖

2
)
1/2

= 1/√12 ≈ 0.289.  
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Summarizing, upon shrinking the neighbourhood 𝒰 in Theorem 4.8, the Lipschitz constant 𝐿 
for 𝛬 can be chosen larger than, but arbitrarily close to 0.289. If one is rather interested in the 
Lipschitz constant for the original spherical cap discrepancy 𝛥 as in Corollary 4.9, then, one 
would have to compute the norms of the partial gradients ∇𝑥(𝑙)β𝐼(𝑋̅) projected onto the tangent 

space of the sphere at the points 𝑥(𝑙). This is easily done in the present example and yields the 
Lipschitz constant 0.272. The gap with the previous Lipschitz constant is explained in Remark 
2 item (1). 

5. Optimal quantization and necessary optimality conditions 

Finding an optimal point set on the sphere minimizing the spherical cap discrepancy 
amounts to the optimization problem 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 Δ(𝑋) (38) 

where Δ: (𝑆𝑑−𝟙)𝑁 → [0,1] is the spherical cap discrepancy introduced in (3). This problem 
is also referred to as optimal quantization and has to be distinguished from the construction of 
low discrepancy sequences because the cardinality 𝑁 of the point set 𝑋 is fixed. Our aim is to 
establish necessary optimality conditions a point set has to satisfy in order to be optimal. Note 
that there is no hope for optimality conditions which are sufficient at the same time due to the 
lack of convexity of 𝛬. We will restrict ourselves here to generic point sets. The degenerate 
case seems to be more delicate to handle and is left for future research. 

While (38) is a free (without constraints) optimization problem, the domain of the 
objective function is a manifold. Standard optimization problems, however, are usually defined 
on normed spaces subjected to possible further constraints in order to conveniently derive 
nonsmooth optimality conditions by using tools from generalized differentiation such as the 
subdifferentials in the sense of Clarke [4] or Mordukhovich [11]. For this reason it is beneficial 
to equivalently rewrite problem (38) as an optimization problem in the Euclidean space with 
the additional constraint that the arguments belong to the sphere componentwise: 

  minimize  Λ(𝑋) subject to 𝑋 ∈ (𝕊𝑑−1)
𝑁
, 𝑋  generic.  (39) 

The restriction to generic 𝑋 is necessary because 𝛬 is defined for such point sets only. While 
the genericity constraint cannot be conveniently described as a classical (in-)equality constraint, 
it is an open property. This means, that if we are interested in checking whether some generic 
point set 𝑋̅ satisfies certain necessary optimality conditions, then we don’t have to care about 
this constraint, because we know it persists to hold in an open neighbourhood 𝒪 of 𝑋̅ and, thus, 
has no impact on the necessary optimality condition at all. Now, the equivalence of (39) with 
(38) around some generic 𝑋 ∈ (𝕊𝑑−1)𝑁 is evident from Corollary 4.2. We represent the 
normalization constraint on 𝑋 = (𝑥(1), … , 𝑥(𝑁)) as the set of smooth equalities 

 ‖𝑥(𝑙)‖
2
= 1∀𝑙 ∈ {1, … ,𝑁}.  

Then the derivative with respect to 𝑋 of the l-th constraint function equals the matrix 

 2(0⋯0|𝑥(𝑙)|0⋯0)  
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Clearly, all these derivatives are linearly independent due to 𝑥(𝑙) ≠ 0. Now, the local Lipschitz 
continuity of 𝛬 and the continuous differentiability of the constraint functions implies that a 
generic point set 𝑋̅ being a (local) solution of the optimal quantization problem (39) has to 
satisfy the inclusion 

 (𝜆1𝑥̅
(1)|⋯ |𝜆𝑁𝑥̅

(𝑁)) ∈ 𝜕𝐶Λ(𝑋̅) (40) 

for certain multipliers 𝜆1, … , 𝜆𝑁 ∈ ℝ, where 𝜕𝐶𝛬 refers to the Clarke subdifferential of Λ [[4], 
p.235-236]. In order to work with such an abstract condition, one has to make the Clarke 
subdifferential more explicit: From [[13], Proposition 4.3.1.], we know that at generic 𝑋̅ the 
identity 

 𝜕𝐶Λ(𝑋̅) = conv {∇𝜑̃𝐼
(𝑠)
(𝑋̅) ∣ (𝐼, 𝑠) ∈ 𝒜∗(𝑋̅) ⊆ Φ × {1,2}}  

holds true, where 𝒜∗(𝑋̅) refers to the so-called set of essentially active indices (see [[13], p. 
92]) and ’conv’ refers to the convex hull. Rather than providing a precise definition of the 
difficult to handle index set 𝒜∗(𝑋̅) here, we just recall from its definition in [[13], p. 92], that 
it is always a subset of the set of active indices 𝒜∗(𝑋̅) defined in (34) 

 
𝒜∗(𝑋̅) ⊆ {(𝐼, 𝑠) ∈ Φ × {1,2} ∣ Λ(𝑋̅) = 𝜑̃𝐼

(𝑠)
(𝑋̅)}

= {(𝐼, 𝑠) ∈ Φ × {1,2} ∣ Λ(𝑋̅) = 𝜑𝐼
(𝑠)
(𝑋̅)} = 𝒜(𝑋̅).

  

Consequently, we arrive at an explicit upper estimate of 𝜕𝐶𝛬(𝑋̅) just in terms of active 
gradients: 

 𝜕𝐶Λ(𝑋̅) ⊆ conv {∇𝜑̃𝐼
(𝑠)
(𝑋̅) ∣ (𝐼, 𝑠) ∈ 𝒜(𝑋̅)}.  

This upper estimate can now be clearly used to establish a weakened but explicit necessary 
optimality condition as follows: A generic point set 𝑋̅ being a (local) solution of the optimal 
quantization problem (39) has to satisfy the inclusion 

 (𝜆1𝑥̅
(1)|⋯ |𝜆𝑁𝑥̅

(𝑁)) ∈ conv {∇𝜑̃𝐼
(𝑠)
(𝑋̅) ∣ (𝐼, 𝑠) ∈ 𝒜(𝑋̅)}  

for certain multipliers 𝜆1, … , 𝜆𝑁 ∈ ℝ. Resolving for the convex hull, we may extend this 
statement to: If a generic point set 𝑋̅ is a (local) solution of the optimal quantization problem 
(39), then there exist multipliers 𝜆1, … , 𝜆𝑁 ∈ ℝ and 𝛾(𝐼,𝑠) ≥ 0 for (𝐼, 𝑠) ∈ 𝒜(𝑋̅) with 

 𝜆𝑙𝑥̅
(𝑙) = ∑    (𝐼,𝑠)∈𝒜(𝑋̅) 𝛾(𝐼,𝑠)∇𝑥(𝑙)𝜑̃𝐼

(𝑠)
(𝑋̅)   and   ∑  (𝐼,𝑠)∈𝒜(𝑋̅)   𝛾(𝐼,𝑠) = 1,  

𝑙 =  1, . . . , 𝑁. Taking into account that ∇𝑥(𝑙)𝜑̃𝐼
(𝑠)
(𝑋̅) = (−1)𝑠∇𝑥(𝑙)𝛽𝐼

(𝑠)
(𝑋̅) for (𝐼, 𝑠) ∈

𝛷 × {1,2} and 𝑙 = 1, . . . , 𝑁 by Corollary 4.6, and that ∇𝑥(𝑙)𝛽𝐼
(𝑠)
(𝑋̅) = 0 if 𝑙 ∉ 𝐼 by Lemma 4.5, 

we may further rewrite this last relation as 

 𝜆𝑙𝑥̅
(𝑙) = ∑  {(𝐼,𝑠)∈𝒜(𝑋̅)∣𝑙∈𝐼}   𝛾(𝐼,𝑠)(−1)

𝑠∇𝑥(𝑙)𝛽𝐼
(𝑠)
(𝑋̅)   and   ∑    (𝐼,𝑠)∈𝒜(𝑋̅) 𝛾(𝐼,𝑠) = 1,  
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𝑙 = 1, . . . , 𝑁. This relation is now fully explicit thanks to the explicit gradient formulae in 
Lemma 4.5 and it can be used to figure out potential candidates for local minima of the spherical 
cap discrepancy (by verifying the necessary optimality conditions) or to exclude certain generic 
point sets as local or global minima (by showing that the necessary optimality conditions cannot 
hold). We shall not pursue this concrete application of optimality conditions here and rather 
leave this to future research. 

6. Conclusions 

We have proven the Lipschitz continuity of the spherical cap discrepancy around generic 
point sets on the sphere. Of course, it would be desirable to prove or disprove the Lipschitz 
continuity on the whole sphere. It seems that we will not be able to show the positive result 
using the approach taken here (via the representation formula (23)). On the other hand, a counter 
example isn’t easy to construct either. We therefore strongly believe that the following 
conjecture holds true (note that local Lipschitz continuity around arbitrary point sets implies 
the global Lipschitz continuity by compactness of the sphere): 

CONJECTURE. The spherical cap discrepancy 𝛥: 𝕊(𝑑−1) → [0,1] is Lipschitz continuous. 

Apart from proving this conjecture, future research will be devoted to the concrete 
application of the necessary optimality conditions derived in Section 5 and to a numerical 
solution of the optimal quantization problem exploiting Lipschitz continuity of the spherical 
cap discrepancy 

7. Appendix A. 

PROPOSITION A.1. For the discrepancies presented in the introduction it holds that 𝛥(𝑋) =
𝛥0(𝑋) = 𝛥1(𝑋) for all 𝑋 = (𝑥(1), … , 𝑥(𝑁)) ∈ (𝕊𝑑−1)𝑁. 

Proof. In order to show that 𝛥(𝑋) = 𝛥0(𝑋), it is evidently sufficient to verify the relation 

 |𝜇𝑒𝑚𝑝(𝑋, 𝑤, 𝑡) − 𝜇𝑐𝑎𝑝(𝑤, 𝑡)| ≤ Δ(𝑋)∀(𝑤, 𝑡) ∈ ℝ𝑑 ×ℝ. (41) 

Let (𝑤, 𝑡) ∈ ℝ𝑑 ×ℝ be arbitrary and assume first that 𝑤 = 0 and 𝑡 ≤ 0. Then, 𝐻(𝑤, 𝑡) = ℝ𝑑 
and, hence, 𝜇𝑒𝑚𝑝(𝑋, 𝑤, 𝑡) = 𝜇𝑐𝑎𝑝(𝑤, 𝑡) = 1 and (41) follows trivially. Similarly, if 𝑤 = 0 and 
𝑡 > 0, then 𝐻(𝑤, 𝑡) = ∅ and, hence, 𝜇𝑒𝑚𝑝(𝑋,𝑤, 𝑡) = 𝜇𝑐𝑎𝑝(𝑤, 𝑡) = 0, so that (41) follows 
again. Next, let 𝑤 ≠ 0 and 𝑡 < −∥ 𝑤 ∥. Then, 𝑥 ∈ 𝐻(𝑤, 𝑡) for all 𝑥 ∈ 𝕊𝑑−1 because of 

 ⟨𝑤, 𝑥⟩ ≥ −‖𝑤‖ > 𝑡     ∀𝑥 ∈ 𝕊𝑑−1  

which implies 𝜇𝑒𝑚𝑝(𝑋, 𝑤, 𝑡) = 𝜇𝑐𝑎𝑝(𝑤, 𝑡) = 1. Similarly, if 𝑡 >∥ 𝑤 ∥, then 𝑥 ∉ H(w, t) for all 
𝑥 ∈ 𝕊𝑑−1 because any such 𝑥 satisfies the relation 

 ⟨𝑤, 𝑥⟩ ≤ ‖𝑤‖ < 𝑡  

so we have 𝜇𝑒𝑚𝑝(𝑋, 𝑤, 𝑡) = 𝜇𝑐𝑎𝑝(𝑤, 𝑡) = 0. In both cases, (41) follows trivially as before. It 
remains to consider the case that 𝑤 ≠ 0 and |𝑡| ≤ ‖𝑤‖. Then, 𝐻(𝑤, 𝑡) = 𝐻(𝑤∗, 𝑡∗) for 𝑤∗ ≔
𝑤/∥ 𝑤 ∥∈ 𝕊𝑑−1 and 𝑡∗ ≔ 𝑡/∥ 𝑤 ∥∈ [−1,1]. Accordingly, and by virtue of (3), 
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 |𝜇𝑒𝑚𝑝(𝑋, 𝑤, 𝑡) − 𝜇𝑐𝑎𝑝(𝑤, 𝑡)| = |𝜇𝑒𝑚𝑝(𝑋, 𝑤∗, 𝑡∗) − 𝜇𝑐𝑎𝑝(𝑤∗, 𝑡∗)| ≤ Δ(𝑋).  

It remains to show that 

 Δ(𝑋) = Δ1(𝑋): = 𝑠𝑢𝑝
𝑤∈𝕊𝑑−1,𝑡∈[−1,1]

 |𝜇0
𝑒𝑚𝑝(𝑋,𝑤, 𝑡) − 𝜇0

𝑐𝑎𝑝(𝑤, 𝑡)|,  

where, with 𝐻0(𝑤, 𝑡):= {𝑥 ∈ ℝ
𝑑 ∣ ⟨𝑤, 𝑥⟩ > 𝑡}, 𝜇0

𝑐𝑎𝑝(𝑤, 𝑡):= 𝜎(𝕊𝑑−1 ∩ 𝐻0(𝑤, 𝑡)) and 

 𝜇0
𝑒𝑚𝑝(𝑋,𝑤, 𝑡): = 𝑁−1 ⋅ #{𝑖 ∈ {1,… ,𝑁} ∣ 𝑥(𝑖) ∈ 𝐻0(𝑤, 𝑡)}  

for all 𝑤 ∈ 𝕊𝑑−1 and 𝑡 ∈ [−1, 1]. We immediately check from the definitions, that for arbitrary 
(𝑤, 𝑡) ∈ 𝕊𝑑−1 × [−1,1] one has that 

 𝜇0
𝑒𝑚𝑝

(𝑋,𝑤, 𝑡) = 1 − 𝜇𝑒𝑚𝑝(𝑋, −𝑤,−𝑡).  

Moreover, by (6), for arbitrary (𝑤, 𝑡) ∈ 𝕊𝑑−1 × [−1,1] one has that 

 𝜇0
𝑐𝑎𝑝(𝑤, 𝑡) = 𝜇𝑐𝑎𝑝(𝑤, 𝑡) = 1 − 𝜇𝑐𝑎𝑝(−𝑤,−𝑡)  

Now, the claimed equality 𝛥(𝑋) = 𝛥1(𝑋) follows readily from the identity 

 |𝜇0
𝑒𝑚𝑝(𝑋,𝑤, 𝑡) − 𝜇0

𝑐𝑎𝑝(𝑤, 𝑡)| = |𝜇𝑒𝑚𝑝(𝑋,−𝑤,−𝑡) − 𝜇𝑐𝑎𝑝(−𝑤,−𝑡)|  

for all (𝑤, 𝑡) ∈ 𝕊𝑑−1 × [−1,1]. 

LEMMA A.2. Let 𝑋̅ ∈ (ℝ𝑑)𝑁 be generic. Let 𝐼∗ ∈ 𝛷 be some index set realizing the 
maximum in (23), so that 𝛬(𝑋̅) = 𝜇𝐸𝑚𝑝(𝑋̅,𝑤∗, 𝑡∗) − 𝜇𝐶𝑎𝑝(𝑡∗) for some (𝑤∗, 𝑡∗) ∈
±{(𝑤𝐼∗(𝑋̅), 𝑡𝐼∗(𝑋̅)}. Then, the following holds true: 

 
∀𝜀 > 0∃𝛿 > 0∀𝑋 ∈ 𝔹𝛿(𝑋̅)∃𝐽 ∈ Φ∃(𝑤, 𝑡) ∈ ±{(𝑤𝐽(𝑋), 𝑡𝐽(𝑋))}:

𝜇𝐸𝑚𝑝(𝑋,𝑤, 𝑡) = 𝜇𝐸𝑚𝑝(𝑋̅, 𝑤∗, 𝑡∗), 𝜇𝐶𝑎𝑝(𝑡) < 𝜇𝐶𝑎𝑝(𝑡∗) + 𝜀.
 (42) 

Proof. We assume from the very beginning that the 𝛿 to be found in (42) is small enough to 
satisfy the inclusion 𝔹𝛿(𝑋̅) ⊆ 𝒪 from Remark 1, so that all 𝑋 from this ball are generic. We 
introduce the index sets 

 𝐼0:= {𝑖 ∈ {1,… ,𝑁} ∣ ⟨𝑤
∗, 𝑥̅(𝑖)⟩ = 𝑡∗}, 𝐼1:= {𝑖 ∈ {1,… ,𝑁} ∣ ⟨𝑤

∗, 𝑥̅(𝑖)⟩ > 𝑡∗}  

Proposition 3.4 ensures that 𝑋̅𝐼∗
𝑇𝑤𝐼∗(𝑋̅) = 𝑡𝐼∗(𝑋̅)𝟏, whence 𝑋̅𝐼∗

𝑇𝑤∗ = 𝑡∗𝟏 due to (𝑤∗, 𝑡∗) ∈
±{(𝑤𝐼∗(𝑋̅), 𝑡𝐼∗(𝑋̅)}. It follows that 𝐼∗ ⊆ 𝐼0. 

Case 1: 𝐼∗ = 𝐼0. Without loss of generality, we may also assume that (𝑤∗, 𝑡∗) =
(𝑤𝐼∗(𝑋̅), 𝑡𝐼∗(𝑋̅)) (the opposite case following by absolutely analogous arguments). Then, by 
definition, 

 𝜇Emp(𝑋̅, 𝑤𝐼∗(𝑋̅), 𝑡𝐼∗(𝑋̅)) = 𝑁
−1(#𝐼0 + #𝐼1)  
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For arbitrarily given 𝜀 > 0 we choose 𝛿 > 0 such that 𝔹𝛿(𝑋̅) ⊆ 𝒪 for the open neighborhood 
from the statement of Proposition 4.3 (i.e. all 𝑋 ∈ 𝔹𝛿(𝑋̅) are generic). Moreover, 𝛿 > 0 is 
chosen small enough to satisfy (by continuity of the mappings 𝑡𝐼∗ ,𝑤𝐼∗) 

 ⟨𝑤𝐼∗(𝑋), 𝑥
(𝑖)⟩ > 𝑡𝐼∗(𝑋)     ∀𝑖 ∈ 𝐼1     ⟨𝑤𝐼∗(𝑋), 𝑥

(𝑖)⟩ < 𝑡𝐼∗(𝑋)     ∀𝑖 ∈ (𝐼0 ∪ 𝐼1)
𝑐  

for all 𝑋 ∈ 𝔹𝛿(𝑋̅) and all 𝑖 ∈ {1, . . . , 𝑁}. Moreover, by Proposition 3.4, we have 𝑋𝐼∗
𝑇𝑤𝐼∗(𝑋) =

𝑡𝐼∗(𝑋)1 for all such 𝑋, hence ⟨𝑤𝐼∗(𝑋), 𝑥
(𝑖)⟩ = 𝑡𝐼∗(𝑋) for all 𝑖 ∈ 𝐼∗ = 𝐼0. Altogether, this implies 

that ⟨𝑤𝐼∗(𝑋), 𝑥
(𝑖)⟩ ≥ 𝑡𝐼∗(𝑋) if and only if 𝑖 ∈ 𝐼0 ∪ 𝐼1. Therefore, 

 𝜇Emp(𝑋,𝑤𝐼∗(𝑋), 𝑡𝐼∗(𝑋)) = 𝑁
−1(#𝐼0 + #𝐼1) = 𝜇

Emp(𝑋̅, 𝑤𝐼∗(𝑋̅), 𝑡𝐼∗(𝑋̅))  

for all 𝑋 ∈ 𝔹𝛿(𝑋̅). Finally, by continuity of 𝜇𝐶𝑎𝑝, we may further shrink 𝛿 > 0 such that 
𝜇𝐶𝑎𝑝(𝑡𝐼∗(𝑋)) < 𝜇

𝐶𝑎𝑝(𝑡𝐼∗(𝑋̅))) + 𝜀 for all 𝑋 ∈ 𝔹𝛿(𝑋̅). Thus, we verify (42) by the (constant) 
selection 𝐽 ≔ 𝐼∗, 𝑤 ≔ 𝑤𝐼∗(𝑋̅), 𝑡 ≔ 𝑡𝐼∗(𝑋̅) for each 𝑋 ∈ 𝔹𝛿(𝑋̅). 

Case 2: 𝐼∗ ⊊ 𝐼0. First, we observe that we may assume that #𝐼∗ = 𝑑. Indeed, if #𝐼∗ < 𝑑, then 
we select some 𝑗 ∈ 𝐼0\𝐼

∗. From (𝑤∗, 𝑡∗) ∈ ±{(𝑤𝐼∗(𝑋̅), 𝑡𝐼∗(𝑋̅)} and by definition of 𝐼0, we 
derive that ⟨𝑤𝐼∗(𝑋̅), 𝑥̅

(𝑗)⟩ = 𝑡𝐼∗(𝑋̅). Now, Lemma 3.7 yields that 

 (𝑤𝐼∗(𝑋̅), 𝑡𝐼∗(𝑋̅)) = (𝑤𝐼∗∪{𝑗}(𝑋̅), 𝑡𝐼∗∪{𝑗}(𝑋̅)).  

Therefore, we may have replaced the index set 𝐼∗ ∈ 𝛷 realizing the maximum in (23) from the 
very beginning by the larger index set 𝐼∗ ∪ {𝑗} ∈ 𝛷 (with #(𝐼∗ ∪ {𝑗}) = #𝐼∗ + 1 ≤ 𝑑) realizing 
the same value in (23). Calling this larger index set 𝐼∗ again, we may proceed by adding further 
indices from 𝐼0 to 𝐼∗ until 𝐼∗ = 𝐼0, in which case we are back to the situation we already dealt 
with above, or until #𝐼∗ = 𝑑, which will be the setting we follow next. 

Case 2.1: (𝑤∗, 𝑡∗) = (𝑤𝐼∗(𝑋̅), 𝑡𝐼∗(𝑋̅)). The definition of I0 and Proposition 3.4 yield that 

 ⟨𝑤∗, 𝑥̅(𝑖)⟩ = 𝑡∗ = 𝑡𝐼∗(𝑋̅) > 0∀𝑖 ∈ 𝐼0.  

Consequently, given an arbitrary 𝜀 > 0, we may choose 𝛿 > 0 such that for all 𝑋 ∈ 𝔹𝛿(𝑋̅) ⊆
𝒪, 

 ⟨𝑤∗, 𝑥(𝑖)⟩ ≥ 𝑡∗/2 > 0∀𝑖 ∈ 𝐼0; 𝜇
𝐶𝑎𝑝(𝑡𝐼(𝑋)) < 𝜇

𝐶𝑎𝑝(𝑡𝐼(𝑋̅)) + 𝜀∀𝐼 ∈ Φ, (43) 

 
⟨𝑤𝐼(𝑋̅), 𝑥

(𝑖)⟩ > 𝑡𝐼(𝑋̅) ⇒ ⟨𝑤𝐼(𝑋), 𝑥
(𝑖)⟩ > 𝑡𝐼(𝑋)

⟨𝑤𝐼(𝑋̅), 𝑥
(𝑖)⟩ < 𝑡𝐼(𝑋̅) ⇒ ⟨𝑤𝐼(𝑋), 𝑥

(𝑖)⟩ < 𝑡𝐼(𝑋)
}∀𝑖 ∈ {1,… , 𝑁}∀𝐼 ∈ Φ, (44) 

where the continuity of 𝜇𝐶𝑎𝑝 and of the 𝑤𝐼 , 𝑡𝐼 has been exploited. In order to verify (42), we fix 
an arbitrary 𝑋 ∈ 𝔹𝛿(𝑋̅) and find 𝐽, 𝑤, 𝑡 as required there. To this aim, denote by 𝑃 the convex 
hull of the point set {𝑥(𝑖)}𝑖∈𝐼0. 

Case 2.1. a): int 𝑃 ≠ ∅. Clearly, 0 ∉ 𝑃 due to the first relation of (43). It is wellknown from the 
theory of polyhedra (see, e.g., [[15], Theorem 2.15 (7)]), that there exists a representation 

 𝑃 = {𝑥 ∈ ℝ𝑑 ∣ ⟨𝑣𝑘, 𝑥⟩ ≥ 𝜏𝑘(𝑘 = 1, … ,𝑚)}(𝑣𝑘 ∈ 𝕊
𝑑−1, 𝜏𝑘 ∈ ℝ), (45) 
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such that for 𝑘′ = 1,… ,𝑚 each set 

 𝐹𝑘′: = {𝑥 ∈ ℝ
𝑑 ∣ ⟨𝑣𝑘′ , 𝑥⟩ = 𝜏𝑘′ , ⟨𝑣𝑘, 𝑥⟩ ≥ 𝜏𝑘(𝑘 = 1,… ,𝑚, 𝑘 ≠ 𝑘

′)}  

is a facet of 𝑃. There exists some 𝑘0 ∈ {1, … ,𝑚} such that 𝜏𝑘0 > 0 because otherwise the 

contradiction 0 ∈ 𝑃 would result. As a facet of a bounded polyhedron 𝑃 ⊆ ℝ𝑑 with int 𝑃 ≠ ∅, 
𝐹𝑘0 must contain at least d vertices of 𝑃. Since the vertices of 𝑃 are contained in the set {𝑥(𝑖)}𝑖∈𝐼0 

, there exists a subset 𝐽 ⊆ 𝐼0 with #𝐽 = 𝑑 and {𝑥(𝑖)}
𝑖∈𝐽
⊆ 𝐹𝑘0 . Hence, by definition of 

𝐹𝑘0 , 𝑋𝐽
𝑇𝑣𝑘0 = 𝜏𝑘0𝟏. By Proposition 3.4, 𝑋𝐽

𝑇𝑤𝐽(𝑋) = 𝑡𝐽(𝑋)𝟏, with 𝑋𝐽
𝑇 being a regular (𝑑, 𝑑)- 

matrix by genericity of 𝑋. Then, 

 𝑣𝑘0 = 𝜏𝑘0(𝑋𝐽
𝑇)
−1
𝟏,     𝑤𝐽(𝑋) = 𝑡𝐽(𝑋)(𝑋𝐽

𝑇)
−1
𝟏.  

Since ‖𝑣𝑘0‖ = ‖𝑤𝐽(𝑋)‖ = 1 and 𝜏𝑘0 , 𝑡𝐽(𝑋) > 0, (see Proposition 3.4), it follows that 

(𝑤𝐽(𝑋), 𝑡𝐽(𝑋)) = (𝑣𝑘0 , 𝜏𝑘0). Now, (45) yields that 

 ⟨𝑤𝐽(𝑋), 𝑥
(𝑖)⟩ = ⟨𝑣𝑘0, 𝑥

(𝑖)⟩ ≥ 𝜏𝑘0 = 𝑡𝐽(𝑋)     ∀𝑖 ∈ 𝐼0. (46) 

With 𝑋̅𝐽
𝑇𝑤𝐽(𝑋̅) = 𝑡𝐽(𝑋̅) (by Proposition 3.4) and 𝑋̅𝐽

𝑇𝑤∗ = 𝑡∗( by 𝐽 ⊆ 𝐼0), the same reasoning 

as before yields that (𝑤𝐽(𝑋), 𝑡𝐽(𝑋)) = (𝑤
∗, 𝑡∗). After having fixed 𝐽 ∈ 𝛷, we also fix (𝑤, 𝑡): =

(𝑤𝐽(𝑋), 𝑡𝐽(𝑋)) as required in (42). Then, by (46), (44) and by the definitions of 𝐼0, 𝐼1, one gets 
that 

 

𝜇𝐸𝑚𝑝(𝑋,𝑤, 𝑡) = 𝜇𝐸𝑚𝑝(𝑋, 𝑤𝐽(𝑋), 𝑡𝐽(𝑋))

= 𝑁−1 ⋕ {𝑖 ∈ {1,… ,𝑁} ∣ ⟨𝑤𝐽(𝑋), 𝑥
(𝑖)⟩ ≥ 𝑡𝐽(𝑋)}

= 𝑁−1(⋕ 𝐼0+⋕ 𝐼1) = 𝜇
𝐸𝑚𝑝(𝑋,𝑤∗, 𝑡∗),

 (47) 

which is the first desired relation in (42). The second one follows immediately from the second 
relation in (43). 

Case 2.1.b): int 𝑃 = ∅. Then, 𝑃 as a polytope must be contained in some hyperplane 𝐻: 

 𝑃 ⊆ 𝐻:= {𝑥 ∈ ℝ𝑑 ∣ ⟨𝑤̂, 𝑥⟩ = 𝑡̂}(𝑤̂ ∈ 𝕊(𝑑−1), 𝑡̂ ∈ ℝ).  

We may assume that 𝑡̂ ≥ 0. In particular, ⟨𝑤̂, 𝑥(𝑖)⟩ = 𝑡̂ for all 𝑖 ∈ 𝐼0, or, 𝑋𝐼0
𝑇𝑤̂ = 𝑡̂1, for short. 

Since also 𝑋𝐼∗
𝑇𝑤𝐼∗(𝑋) = 𝑡𝐼∗(𝑋)𝟏 (by Proposition 3.4), and recalling that #𝐼∗ = 𝑑 the same 

reasoning as above (46) yields that (𝑤𝐼∗(𝑋), 𝑡𝐼∗(𝑋)) = (𝑤̂, 𝑡̂). This implies that the choice 𝐽 ≔
𝐼∗ satisfies (46) (actually as an equation) so that in view of (𝑤∗, 𝑡∗) = (𝑤𝐼∗(𝑋), 𝑡𝐼∗(𝑋)) we may 
repeat the reasoning after (46) and (47) in order to derive the two relations in (42) in that 
alternative case too. 

Case 2.2): (𝑤∗, 𝑡∗) = (−𝑤𝐼∗(𝑋̅),−𝑡𝐼∗(𝑋̅)). We observe that, in case of 𝜏𝑘 ≥ 0 for all 𝑘 =
1, … ,𝑚, 𝑃 must be unbounded according to (45) because from 𝑥(1) ∈ 𝑃 it would follow that 

 ⟨𝑣𝑘, 𝜆𝑥
(1)⟩ = 𝜆⟨𝑣𝑘, 𝑥

(1)⟩ ≥ 𝜆𝜏𝑘 ≥ 𝜏𝑘∀𝜆 ≥ 1∀𝑘 = 1,… ,𝑚.  
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This entails that 𝜆𝑥^{(1)} ∈ 𝑃 for all 𝜆 ≥ 1, whence 𝑃 would be unbounded because 𝑥(1) ≠ 0 
thanks to the genericity of 𝑋. However, 𝑃 is bounded as a convex combination of finitely many 
points. Therefore, there exists some 𝑘1 ∈ 1, … ,𝑚 with 𝜏𝑘1 < 0. Now, we can repeat exactly the 
argumentation from the first case above (referring to 𝜏𝑘0 > 0), just with reversed signs. 
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