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ABSTRACT. The purpose of our paper is to prove the existence of the dis-
tributional solutions for anisotropic nonlinear elliptic equations with variable
exponents, which contain lower order terms dependent on the gradient of the solu-
tion and on the solution itself. The terms are weighted, and the main results rely
on the possibility of comparing the weights with each other, where the right-hand

side is a sum of the natural growth term and the datum f ∈ L1(Ω). Furthermore

the weight function θ(·) is in W̊ 1,−→p (·)(Ω), with θ(·) > 0 and connected with the
coefficient b(·) ∈ L1(Ω) of the lower order term.

1. Introduction

Our aim here is to prove the existence of distributional solutions to the
weighted anisotropic nonlinear elliptic equations whose model is⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−
N∑
i=1

Di

(
θ(x)|Diu|pi(x)−2Diu

)
+ a(x)

N∑
i=1

|u|pi(x)−2u

= b(x)

N∑
i=1

|Diu|pi(x) + f(x) in Ω,

u = 0 on ∂Ω,

(1)

where Ω ⊂ R
N (N ≥ 2) a bounded open set with Lipschitz boundary ∂Ω,

θ(·) is in W̊ 1,−→p (·)(Ω) such that, for some α > 0

θ(·) ≥ α, (2)
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f, a(·) and b(·) three L1(Ω) functions such that, there exists β > 0, γ > 0 :

|f(x)| ≤ βa(x), (3)

|b(x)| ≤ γθ(x). (4)

The existence results for a weighted elliptic equations it was given in the
works [1,3,7,10–12,14–16].

The main result of the paper is to prove the existence of the distributional
solution for the problem governed by equation (1), which is anisotropic and
elliptic with variable exponents, and contains lower order terms dependent on
the gradient of the solution and on the solution itself. The terms are weighted
and the main results relies on the possibility of comparing the weights between
each other, where the right-hand side is a sum of the (natural growth) lower
order term and the datum f ∈ L1(Ω), furthermore the weight function θ(·) is
in the anisotropic Sobolev space with variable exponents and zero boundary
W̊ 1,−→p (·)(Ω) under the assumption (2), and this is what distinguishes this work.
The anisotropic differential operator and the (natural growth) lower order term,
are connected by the fact that everyone θ(·) and b(·)(∈ L1(Ω)) be singular and
this is what appears through the assumption (4) where this assumption helped

us find solutions in W̊ 1,−→p (·)(Ω), while the datum f had a relationship with
a(·) ∈ L1(Ω) and it is what is manifested in the condition (3). The existence
results in the isotropic scalar case (i.e., pi(x) = p), is proven in [3].

The proof requires a priori estimates for a sequence of suitable approximate
solutions (un), which in turn is proving its existence by Leray-Schauder’s fixed
point Theorem. After that we prove the strong convergence, then we pass to the
limit in the weak formulation.

2. Preliminaries

In this section we need to provide some basics definitions and properties
about isotropic and anisotropic variable exponent Lebesgue-Sobolev spaces
(see [5,6,9]).

Let Ω ⊂ R
N (N ≥ 2) be a bounded open subset, we denote

C+(Ω) = {continuous function p(·) : Ω �−→ R, / 1 < p− ≤ p+ < ∞},
where

p+ = max
x∈Ω

p(x) and p− = min
x∈Ω

p(x).

Let p(·) ∈ C+(Ω). Then the following Young’s inequality holds true for all a, b ∈ R

and all ε > 0,
|ab| ≤ ε|a|p(x) + c(ε)|b|p′(x), (5)
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where, p′(·) denotes the Sobolev conjugate of p(·) (i.e., 1
p(·) +

1
p′(·) = 1 in Ω).

In addition, for any two real a, b
(
(a, b) 	= (0, 0)

)
(|a|p(x)−2a−|b|p(x)−2b

)
(a−b) ≥

⎧⎨
⎩
22−p+ |a− b|p(x), if p(x) ≥ 2,

(p− − 1) |a−b|2
(|a|+|b|)2−p(x) , if 1 < p(x) < 2.

(6)

Variable exponent Lebesgue space with Lp(·)(Ω) defined by

Lp(·)(Ω) := {measurable functions u : Ω �→ R; ρp(·)(u) < ∞},
where

ρp(·)(u) :=
∫
Ω

|u(x)|p(x) dx, the convex modular.

It is a Banach space, and reflexive if p− > 1, under the Luxemburg norm

u �→ ‖u‖p(·) := ‖u‖Lp(·)(Ω) = inf
{
λ > 0 | ρp(·)(u/λ) ≤ 1

}
.

The Hölder type inequality∣∣∣∣∣∣
∫
Ω

uv dx

∣∣∣∣∣∣ ≤
(

1

p−
+

1

p′−

)
‖u‖p(·)‖v‖p′(·) ≤ 2‖u‖p(·)‖v‖p′(·),

holds true, such that p′i denotes the Sobolev congugate of pi

(i.e., 1
p(x)

+ 1
p′(x) = 1).

The variable exponents Sobolev space W 1,p(·)(Ω) defined as fellows

W 1,p(·)(Ω) :=
{
u ∈ Lp(·)(Ω) : |Du| ∈ Lp(·)(Ω)

}
,

it becomes a Banach space when equipped with the norm

u �→ ‖u‖W 1,p(·)(Ω) := ‖Du‖p(·).
The Banach space W

1,p(·)
0 (Ω) defined by

W
1,p(·)
0 (Ω) := C∞

0 (Ω)
W 1,p(·)(Ω)

,

under the norm

u �→ ‖u‖
W

1,p(·)
0 (Ω)

:= ‖u‖W 1,p(·)(Ω).

Moreover, is reflexive and separable if p(·) ∈ C+(Ω).
The following results came in [5,6]. If (un), u ∈ Lp(·)(Ω), then we have

min
(
ρp(·)(u)

1
p+ , ρp(·)(u)

1
p−
)
≤ ‖u‖p(·) ≤ max

(
ρp(·)(u)

1
p+ , ρp(·)(u)

1
p−
)
, (7)

min
(
‖u‖p−

p(·), ‖u‖p
+

p(·)
)
≤ ρp(·)(u) ≤ max

(
‖u‖p−

p(·), ‖u‖p
+

p(·)
)
. (8)
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Now, we will go to introduce the variable exponents anisotropic Sobolev spaces

W 1,−→p (·)(Ω).

Let pi(·) ∈ C
(
Ω, [1,+∞)

)
, i = 1, . . . , N , and we set for every x in Ω

−→p (x) = (p1(x), . . . , pN(x)
)
,

p+(x) = max
1≤i≤N

pi(x), p−(x) = min
1≤i≤N

pi(x),

p−− = min
x∈Ω

p−(x), p++ = max
x∈Ω

p+(x),

p(x) =
N

N∑
i=1

1
pi(x)

, p�(x) =

{
Np(x)
N−p(x) , for p(x) < N,

+∞, for p(x) ≥ N.

The Banach space W 1,−→p (·)(Ω) is defined by

W 1,−→p (·)(Ω) =
{
u ∈ Lp+(·)(Ω), Diu ∈ Lpi(·)(Ω), i = 1, . . . , N

}
,

under the norm

‖u‖−→p (·) = ‖u‖p+(·) +
N∑
i=1

‖Diu‖pi(·) .

The spaces W
1,−→p (·)
0 (Ω) and W̊ 1,−→p (·)(Ω) are defined as follow

W
1,−→p (·)
0 (Ω) = C∞

0 (Ω)
W 1,−→p (·)(Ω)

,

W̊ 1,−→p (·)(Ω) = W 1,−→p (·)(Ω) ∩W 1,1
0 (Ω).

The following embedding results given in [8,9].

Let Ω ⊂ R
N be a bounded domain and −→p (·) ∈ (C+(Ω))N .

(i) If r ∈ C+(Ω) and ∀x ∈ Ω, r(x) < max
(
p+(x), p

�(x)
)
. Then the embedding

W̊ 1,−→p (·)(Ω) ↪→ Lr(·)(Ω) is compact. (9)

(ii) If we have ∀x ∈ Ω, p+(x) < p�(x). (10)

Then the following inequality holds

‖u‖p+(·) ≤ C

N∑
i=1

‖Diu‖pi(·), ∀u ∈ W̊ 1,−→p (·)(Ω), (11)

where C > 0 independent of u. Thus,

u �→
N∑
i=1

‖Diu‖pi(·) is an equivalent norm on W̊ 1,−→p (·)(Ω). (12)
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3. Statement of results and proof

���������� 3.1� The function u is a distributional solution for (1) if and only

if u ∈ W 1,1
0 (Ω), and for every ϕ ∈ C∞

c (Ω),

∫
Ω

N∑
i=1

θ(x)|Diu|pi(x)−2DiuDiϕ dx +

∫
Ω

a(x)

N∑
i=1

|u|pi(x)−2uϕ dx =

∫
Ω

b(x)

N∑
i=1

|Diu|pi(x)ϕ dx +

∫
Ω

f(x)ϕ dx.

The following is our main results.

	
����� 3.2� Let −→p (·) ∈ (C+(Ω))N such that p(x) < N for all x ∈ Ω and

(10) holds, and let f , a(·) and b(·) are in L1(Ω), and θ(·) is in W̊ 1,−→p (·)(Ω) such
that (2), (3), and (4) holds. Then the problem (1) has at least one solution

u ∈ W̊ 1,−→p (·)(Ω) in the sense of distributions.

3.1. Existence of approximate solutions

We define
fn(x) =

f(x)

1+ |f(x)|
n

, an(x) =
a(x)

1+ β|a(x)|
n

,

bn(x) =
b(x)

1+
|b(x)|
nγ

, θn(x) = θ(x)

1+
θ(x)
n

.
(13)

We must first notice that: Since Θ(x) = x
1+ x

n
is increasing, we deduce by (3) and

(4) that

|fn(x)| ≤ βa(x)

1 + β
na(x)

= βan(x). (14)

|bn(x)| ≤ γθ(x)

1 + γ
nγ θ(x)

= γθn(x). (15)

And note that, thanks to (2), that for all x ∈ Ω, we have
α

1 + α
≤ θn(x) ≤ n. (16)

Also, since for all x ∈ Ω

Diθn(x) =
Diθ(x)(
1 + θ(x)

n

)2 , i = 1, . . . , N.

Then, we get that
|Diθn(x)| ≤ |Diθ(x)|.

So,

θn(·) ∈ W̊ 1,−→p (·)(Ω).
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And since it is clear that 0 ≤ θn(x) ≤ θ(x), we get

θn is bounded in W̊ 1,−→p (·)(Ω), (17)

and
θn strongly converges to θ in W̊ 1,−→p (·)(Ω). (18)

Remark 1� The assumption (13) implies that, for all x ∈ Ω

fn(x) ≤ f(x), bn(x) ≤ b(x),

an(x) ≤ a(x), θn(x) ≤ θ(x).


���� 3.3� Let −→p (·) ∈ (C+(Ω))N such that p < N and (10) holds, and

let f , a(·) and b(·) are in L1(Ω), and θ(·) is in W̊ 1,−→p (·)(Ω) such that (2), (3),

and (4) holds. Then, there exists at least one weak solution un ∈ W̊ 1,−→p (·)(Ω)
to the approximated problems⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−
N∑
i=1

Di

(
θn(x)|Diun|pi(x)−2Diun

)
+ an(x)un

N∑
i=1

|un|pi(x)−2

= bn(x)

N∑
i=1

|Diun|pi(x) + fn in Ω,

un = 0 on ∂Ω,
(19)

in the sense that

N∑
i=1

∫
Ω

θn(x)|Diun|pi(x)−2DiunDiϕ dx +

∫
Ω

N∑
i=1

an(x)|un|pi(x)−2unϕ dx =

∫
Ω

N∑
i=1

bn(x)|Diun|pi(x)ϕ dx +

∫
Ω

fnϕ dx, (20)

for every ϕ ∈ W̊ 1,−→p (·)(Ω) ∩ L∞(Ω). Moreover,

N∑
i=1

|un|pi(x)−1 ≤ β. (21)

P r o o f. We consider for X = W̊ 1,−→p (·)(Ω) the operator

Ψ : X × [0, 1] −→ X,

(v, σ) �−→ u = Ψ(v, σ),
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where u is the only weak solution of the problem⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−
N∑
i=1

Di

(
θn(x)|Diu|pi(x)−2Diu

)

= σ

(
bn(x)

N∑
i=1

|Div|pi(x) + fn − an(x)v

N∑
i=1

|v|pi(x)−2

)
in Ω,

un = 0 on ∂Ω,

(22)

verify, for all ϕ ∈ W̊ 1,−→p (·)(Ω), the weak formulation

N∑
i=1

∫
Ω

θn(x)|Diu|pi(x)−2DiuDiϕ dx =

σ

∫
Ω

(
bn(x)

N∑
i=1

|Div|pi(x) + fn − an(x)v

N∑
i=1

|v|pi(x)−2

)
ϕ dx. (23)

After putting for all (v, σ) ∈ X × [0, 1],

g(x, v,Dv) = σ

(
bn(x)

N∑
i=1

|Div|pi(x) + fn − an(x)v

N∑
i=1

|v|pi(x)−2

)
,

we note that, since v ∈ X and by using Young’s inequality we have for all v ∈ X
and all ε > 0,∫

Ω

an(x)

N∑
i=1

|v|pi(x)−1 dx ≤ n

N∑
i=1

⎛
⎝C(ε) + ε

∫
Ω

|v|pi(x) dx

⎞
⎠ ≤ c(ε),

this implies that

an(x)v

N∑
i=1

|v|pi(x)−2 ∈ L1(Ω). (24)

And we also have through (13) (( the hypotheses on fn)) and since v ∈ X,
we can get (

bn(x)

N∑
i=1

|Div|pi(x) + fn

)
∈ L1(Ω). (25)

From (24) and (25) we conclude that the right-hand side g(x, v,Dv) of (22)
belongs to L1(Ω), then the existence of the weak solution u of the problem (22)

in W̊ 1,−→p (·)(Ω) is directly produced by the main Theorem on monotone operators
(see [4,13]). Let us prove the uniqueness of this solution.
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Let u1, u2 ∈ W̊ 1,−→p (·)(Ω) be two weak solutions of (22). Considering
the weak formulation of u1 and u2, by choosing ϕ = u1 − u2 as a test function,
we have

N∑
i=1

∫
Ω

θn|Diu1|pi(x)−2Diu1Di(u1 − u2) dx =

∫
Ω

g(x, v,Dv)(u1 − u2) dx, (26)

and
N∑
i=1

∫
Ω

θn|Diu2|pi(x)−2Diu2Di(u1 − u2) dx =

∫
Ω

g(x, v,Dv)(u1 − u2) dx. (27)

By subtracting (27) from (26), we get that

N∑
i=1

∫
Ω

θn

(
|Diu1|pi(x)−2Diu1 − |Diu2|pi(x)−2Diu2

)
Di(u1 − u2) dx = 0. (28)

Putting for all i = 1, . . . , N ,

Ii =

∫
Ω

(
|Diu1|pi(x)−2Diu1 − |Diu2|pi(x)−2Diu2

)
(Diu1 −Diu2) dx.

Then, by using (16), (28), and the fact that(due (6))(
|Diu1|pi(x)−2Diu1 − |Diu2|pi(x)−2Diu2

)
(Diu1 −Diu2) ≥ 0,

we get for all i = 1, . . . , N ,

Ii = 0. (29)

Right now, we put for all i = 1, . . . , N ,

Ω1
i = {x ∈ Ω, pi(x) ≥ 2},

and

Ω2
i = {x ∈ Ω, 1 < pi(x) < 2}.

Then, by (6) we have, for all i = 1, . . . , N

Ii ≥ 22−p+
+

∫
Ω1

i

|Di(u1 − u2)|pi(x). (30)

On the other hand, by Hölder inequality, (6), (7), and since u1, u2 ∈ W̊ 1,−→p (·)(Ω),

we have
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Ω2

i

|Di(u1 − u2)|pi(x) dx (31)

≤ 2

∥∥∥∥∥ |Di(u1 − u2)|pi(x)

(|Diu1|+ |Diu2|)
pi(x)(2−pi(x))

2

∥∥∥∥∥
L

2
pi(·) (Ω2

i )

×
∥∥∥∥(|Diu1|+ |Diu2|)

pi(x)(2−pi(x))
2

∥∥∥∥
L

2
2−pi(·) (Ω2

i )

≤ 2max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎝∫

Ω2
i

|Di(u1 − u2)|2
(|Diu1|+ |Diu2|)2−pi(x)

dx

⎞
⎟⎠

p
−
i
2

,

∫
Ω

⎛
⎜⎝∫

Ω2
i

|Di(u1 − u2)|2
(|Diu1|+ |Diu2|)2−pi(x)

dx

⎞
⎟⎠

p
+
i
2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

×max

⎧⎪⎪⎨
⎪⎪⎩
⎛
⎝∫

Ω

(|Diu1|+ |Diu2|
)pi(x)

dx

⎞
⎠

2−p
+
i

2

,

⎛
⎝∫

Ω

(|Diu1|+ |Diu2|
)pi(x)

dx

⎞
⎠

2−p
−
i

2

⎫⎪⎪⎬
⎪⎪⎭

≤ 2cmax

{
(Ii)

p
−
i
2 , (Ii)

p
+
i
2

}(
1 + ρpi

(|Diu1|+ |Diu2|)
) 2−p

−
−

2

≤ c′ max

{
(Ii)

p
−
i
2 , (Ii)

p
+
i
2

}
. (32)

By combining (30), (32), and (29), we obtain∫
Ω

|Di(u1 − u2)|pi(x) dx = 0, i = 1, . . . , N. (33)

Then, from (33) and (8) we conclude that

‖Di(u1 − u2)‖pi(·) = 0, i = 1, . . . , N. (34)

By using (10) and (34) we get

‖u1 − u2‖−→p (·) = 0, i = 1, . . . , N. (35)
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Then, (35) implies that u1 = u2 and so the solution of (22) is unique.
Moreover, for all (v, σ) ∈ X × [0, 1]

‖u‖X ≤ ρ, (36)

where, ρ > 0 dependent on ‖v‖X and n.

We will now prove the continuity of Ψ:
Let us fix n ∈ N

∗, and let (vm, σm) be a sequence of X× [0, 1] converging to (v, σ)
in this space. Then, we get

vm −→ v, strongly in W̊ 1,−→p (·)(Ω), (37)

σm −→ σ, in R. (38)

After considering the sequence (um) defined by um = Ψ(vm, σm), m ∈ N
∗,

we obtain for all ϕ ∈ W̊ 1,−→p (·)(Ω)

N∑
i=1

∫
Ω

θn(x)|Dium|pi(x)−2DiumDiϕ dx =

σm

⎛
⎝∫

Ω

fnϕdx+

N∑
i=1

∫
Ω

bn(x)|Divm|pi(x)ϕdx−
∫
Ω

an(x)vm

N∑
i=1

|vm|pi(x)−2ϕ dx

⎞
⎠ .

(39)

For v, σ defined in (37), (38), we putting u = Ψ(v, σ), then we have for all

ϕ ∈ W̊ 1,−→p (·)(Ω)

N∑
i=1

∫
Ω

θn(x)|Diu|pi(x)−2DiuDiϕ dx =

σ

⎛
⎝∫

Ω

fnϕdx+

N∑
i=1

∫
Ω

bn(x)|Div|pi(x)ϕ dx −
∫
Ω

an(x)v

N∑
i=1

|v|pi(x)−2ϕ dx

⎞
⎠ . (40)

By (36) and the boundedness of (vm) in W̊ 1,−→p (·)(Ω) (due (37)):∥∥um

∥∥−→p (·) =
∥∥Ψ(vm, σm)

∥∥−→p (·) ≤ ρ, (41)

with ρ > 0 independent of m.

From (41) we conclude that the sequence (um) is bounded in W̊ 1,−→p (·)(Ω).
So, there exists a function w ∈ W̊ 1,−→p (·)(Ω) and a subsequence (still denoted
by (um)) such that

um ⇀ w weakly in W̊ 1,−→p (·)(Ω). (42)

by (42), (10), and (9), we obtain that

um −→ w strongly in Lp+(·)(Ω). (43)
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Then, by passing to the limit in (39) asm −→ +∞, we get for all ϕ ∈ W̊ 1,−→p (·)(Ω),

N∑
i=1

∫
Ω

θn(x)|Diw|pi(x)−2DiwDiϕ dx =

σ

⎛
⎝∫

Ω

fnϕdx+

N∑
i=1

∫
Ω

bn(x)|Div|pi(x)ϕ dx−
∫
Ω

an(x)v

N∑
i=1

|v|pi(x)−2ϕ dx

⎞
⎠ , (44)

and this implies that w = Ψ(v, σ).

The uniqueness of the weak solution of problem (22) implies that

w = u = Ψ(v, σ).

So,
Ψ(vm, σm) = um −→ u = Ψ(v, σ) strongly in X.

Which shows the continuity of Ψ.

Compactness of Ψ: Let B̃ be a bounded of X × [0, 1]. Thus B̃ is contained
in a product of the type B× [0, 1] with B a bounded of X, which can be assumed

to be a ball of center O and of radius r > 0. For u ∈ Ψ(B̃), we have, thanks
to (36): ∥∥u∥∥−→p (·) ≤ ρ.

For

u = Ψ(v, σ) with (v, σ) ∈ B × [0, 1];
∥∥v∥∥−→p (·) ≤ r.

This proves that Ψ applies B̃ in the closed ball of center O and radius ρ
((ρ depends on n and r)) in X. Let un be a sequence of elements of Ψ(B̃).

Therefore, un = Ψ(vn, σn) with (vn, δn) ∈ B̃. Since un remains in a bounded
of X, then we can extract a sub-sequence unk

= Ψ(vnk
, δnk

) which converges
weakly to u = Ψ(v, σ) in X. Through (10) and (9) we deduce that unk

converges

strongly to an element w of Lp+(·)(Ω). Since the existence and uniqueness of the
weak solution to the problem (22) and the continuity of Ψ, we have that w = u.
This proves that

Ψ(B̃)
X

is compact. So, Ψ is compact.

It is clear that Ψ(v, 0) = 0 for all v ∈ X, because u = 0 ∈ X the only weak
solition of the problem⎧⎪⎪⎨

⎪⎪⎩
−

N∑
i=1

Di

(
θn(x)|Diu|pi(x)−2Diu

)
= 0 in Ω,

u = 0 on ∂Ω.
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Now, let us prove that

∃M > 0, ∀(v, σ) ∈ X × [0, 1] : v = Ψ(v, σ) ⇒ ∥∥v∥∥
X

≤ M.

For that, we give the estimate of elements of X such that

v = Ψ(v, σ),

then we have for all

ϕ ∈ W̊ 1,−→p (·)(Ω),

N∑
i=1

∫
Ω

θn(x)|Div|pi(x)−2DivDiϕ dx =

σ

∫
Ω

(
bn(x)

N∑
i=1

|Div|pi(x) + fn − an(x)v

N∑
i=1

|v|pi(x)−2

)
ϕ dx. (45)

We cosider the following functions defined as for all t, s ∈ R,

Φλ(t) = [eλ|t| − 1]sgn(t), λ > 0,

Gk(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if |s| ≤ k,

s− k if s > k, k > 0,

s+ k if s < −k.

For fixed λ > γ, using

(Φλ ◦Gβ)(v) =
[
eλ|Gβ(v)| − 1

]
sgn
(
Gβ(v)

)
,

as a test function in (45), and after noting that

vnΦλ(v) = |v|∣∣eλ|Gβ(v)| − 1
∣∣,

we can obtain that

λ

N∑
i=1

∫
Ω

θn(x)|DiGβ(v)|pi(x)eλ|Gβ(v)| dx

+ σ

∫
Ω

N∑
i=1

|an(x)||v|pi(x)−1|eλ|Gβ(v)| − 1| dx

≤ σ

⎛
⎝∫

Ω

|fn||eλ|Gβ(v)| − 1|dx +

∫
Ω

N∑
i=1

|bn(x)||Div|pi(x)
[
eλ|Gβ(v)| − 1

]
dx

⎞
⎠ .

(46)
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By using (14), (15), (16), we get

α

1 + α
(λ− γ)

N∑
i=1

∫
Ω

|Div|pi(x)eλ|Gβ(v)| dx+

σ

∫
Ω

|an(x)|
(

N∑
i=1

|v|pi(x)−1 − β

)[
eλ|Gβ(v)| − 1

]
dx ≤ 0, (47)

and (47) gives us
N∑
i=1

|v|pi(x)−1 ≤ β. (48)

By the fact that 1 + |v|pi(x)−1 ≥ |v|p−
−−1 and (48), we get

|v| ≤
(
1 +

β

N

) 1

p
−
−−1

. (49)

Now, choosing the increasing function Φγ(v) as test function in (45), we have

γ

N∑
i=1

∫
Ω

θn(x)|Div|pi(x)eγ|v| dx+ σ

N∑
i=1

an(x)|v|pi(x)−2vΦγ(v) dx =

σ

∫
Ω

(
N∑
i=1

bn(x)|Div|pi(x) + fn

)
Φγ(v) dx. (50)

Then, we have

γ

N∑
i=1

∫
Ω

θn(x)|Div|pi(x)eγ|v| dx+ σ

N∑
i=1

an(x)|v|pi(x)−2vΦγ(v) dx ≤

∫
Ω

|bn(x)|
N∑
i=1

|Div|pi(x)|Φγ(v)| dx +

∫
Ω

|fn||Φγ(v)| dx. (51)

After dropping the nonnegative term in (51) due to the fact that

vΦγ(v) = |v||Φγ(v)|,
and using the fact that (due (49))

Φγ(v) ≤ Φγ

((
1 +

β

N

) 1

p
−
−−1

)
,
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and the fact that eγ|v| − |Φγ(v)| = 1, and (15), we obtain

γ

N∑
i=1

∫
Ω

θn(x)|Div|pi(x) dx ≤ ∥∥fn∥∥L1(Ω)
Φγ

((
1 +

β

N

) 1

p
−
−−1

)
. (52)

Then, by (16) we have

γα

1 + α

N∑
i=1

∫
Ω

|Div|pi(x) dx ≤ ∥∥f∥∥
L1(Ω)

Φγ

((
1 +

β

N

) 1

p
−
−−1

)
. (53)

On the other hand, (like [14], or [17–19]), we have

N∑
i=1

∫
Ω

|Div|pi(x) dx ≥
(

1

N

∥∥v∥∥−→p (·)

)p−
−
−N. (54)

From (54), and (53) we get the existence of C > 0 independent of n such that∥∥v∥∥−→p (·) ≤ C. (55)

It then follows from the Leray-Schauder Theorem that the operator

Ψ1 : X −→ X defined by Ψ1(u) = Ψ(u, 1)

has a fixed point, which shows the existence of a solution of the approximated
problems (19) in the sense of (20).

In order to prove (21), we can use the function

(Φλ ◦Gβ)(un) = [eλ|Gβ(un)| − 1] sgn(Gβ(un)),

as a test function in (20) for fixed λ > γ, and in the same ways as proof (48)
we can simply get (21). �

Remark 2� By the fact that 1 + |un|pi(x)−1 ≥ |un|p
−
−−1 and (21), we get

|un| ≤
(
1 +

β

N

) 1

p
−
−−1

,

and this implies that

(un) is bounded in L∞(Ω). (56)

Remark 3� By going back to (20) and the same way to prove (52) (of course,
by replacing vn by un and taking σ = 1) we can simply get∫

Ω

θn(x)|Diun|pi(x) dx ≤ C, i = 1, . . . , N,
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through this and (15), we obtain:∫
Ω

|bn(x)||Diun|pi(x) dx ≤ C, i = 1, . . . , N,

and this implies that, for all i = 1, . . . , N(
bn(x)|Diun|pi(x)

)
is bounded in L1(Ω). (57)

3.1.1. A priori estimates


���� 3.4� Let f, a, b, θ and pi, i = 1, . . . , N be restricted as in Theorem 3.2.
Then

un is bounded in W̊ 1,−→p (·)(Ω), (58)

where un the weak solution to the problem (19) .

P r o o f. By choosing the increasing function Φγ(un) as test function in (20)
and the same way as proof (55) (of course, with replacing vn by un and putting
σ = 1) we can get (58). �

���� 3.5� There exists a subsequence (still denoted (un)) such that, for all
i = 1, . . . , N

Diun −→ Diu a.e. in Ω, (59)

where u is the weak limit of the sequence (un) in W̊ 1,−→p (·)(Ω).

P r o o f. From (58) the sequence (un) is bounded in W̊ 1,−→p (·)(Ω). So, there exists
a function u ∈ W̊ 1,−→p (·)(Ω) and a subsequence (still denoted by (un)) such that

un ⇀ u weakly in W̊ 1,−→p (·)(Ω) and a.e. in Ω. (60)

Choosing 1
θn
ϕ as test function in (20), then ∀ϕ ∈ W̊ 1,−→p (·)(Ω)∩L∞(Ω), we obtain

N∑
i=1

∫
Ω

|Diun|pi(x)−2DiunDiφ dx

=

N∑
i=1

∫
Ω

1

θn(x)
bn(x)|Diun|pi(x)φ dx

+

N∑
i=1

∫
Ω

1

θn(x)
|Diun|pi(x)−2Diun(Diθn)φdx

−
N∑
i=1

∫
Ω

1

θn(x)
an(x)|un|pi(x)−2unφ dx +

∫
Ω

1

θn(x)
fnφ dx. (61)

Then, we can write
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N∑
i=1

∫
Ω

|Diun|pi(x)−2DiunDiφ dx =

∫
Ω

Fn(x)φ dx, (62)

where,

Fn(x) =
1

θn(x)

N∑
i=1

(
bn(x)|Diun|pi(x) + |Diun|pi(x)−2Diun(Diθn)−

an(x)|un|pi(x)−2un + fn
)
.

∗ By (21), we have

an(x)

N∑
i=1

|un|pi(x)−1 ≤ αan(x). (63)

So, from (63), and since an ∈ L1(Ω) (due Remark 1), we get(
an(x)un

N∑
i=1

|un|pi(x)−2

)
is bounded in L1(Ω), i = 1, . . . , N. (64)

∗ By using Young’s inequality, and since un ∈ X we obtain for all ε > 0,∫
Ω

|Diun|pi(x)−1 dx ≤
∫
Ω

(
C(ε) + ε|Diun|pi(x)

)
dx ≤ c,

where c > 0 dependent of ε. This implies that

|Diun|pi(x)−2Diun ∈ L1(Ω). (65)

∗ From (16) we have for all x ∈ Ω

1

n
≤ 1

θn(x)
≤ 1 +

1

α
. (66)

So, from (64), (65), (57), and (66), we conclude that

(Fn) is bounded in L1(Ω).

So, we can now apply to the sequence (un) the results of [2] in order to get (59).
�

3.2. Proof of the Theorem 3.2:

By (59) and (58) we have, for all i = 1, . . . , N

|Diun|pi(x)−2Diun ⇀ |Diu|pi(x)−2Diu weakly in Lp′
i(·)(Ω), (67)

such that,

p′i(·) =
pi(·)

pi(·)− 1
.

From (18) we conclude that, for all i = 1, . . . , N

θn(·) −→ θ(·) strongly in Lpi(·)(Ω). (68)
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Furthermore, through (56), (64), and an(·) ∈ L1(Ω) due (13), we have

an(x)un

N∑
i=1

|un|pi(x)−2 −→ a(x)u

N∑
i=1

|u|pi(x)−2 strongly in L1(Ω). (69)

Also, from (59), (57), and bn(·) ∈ L1(Ω) due (13), we have

bn(x)

N∑
i=1

|Diun|pi(x) −→ b(x)

N∑
i=1

|Diu|pi(x) strongly in L1(Ω). (70)

Then, through (69), (70), and using (67), (68) to pass to the limit in the weak
formulation of (20). This proves Theorem 3.2.
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