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ABSTRACT. The purpose of our paper is to prove the existence of the dis-
tributional solutions for anisotropic nonlinear elliptic equations with variable
exponents, which contain lower order terms dependent on the gradient of the solu-
tion and on the solution itself. The terms are weighted, and the main results rely
on the possibility of comparing the weights with each other, where the right-hand
side is a sum of the natural growth term and the datum f € L'(Q). Furthermore
the weight function () is in Vi/l’?(')(Q), with 6(-) > 0 and connected with the
coefficient b(-) € L1 (Q) of the lower order term.

1. Introduction

Our aim here is to prove the existence of distributional solutions to the
weighted anisotropic nonlinear elliptic equations whose model is

N N
= Di(0(2)| Dyul? )2 Dyu) + a(x) D ulP ) "
=1 =1

al (1)
=b(x) Z |DjulPi® + f(x) in Q,
i=1
u=20 on 0f),
where  C RY (N > 2) a bounded open set with Lipschitz boundary 052,
6(-) is in Wl’ﬁ(')(Q) such that, for some « > 0

() > a, (2)
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M. NACERI

f, a(-) and b(-) three L'(Q) functions such that, there exists 8 > 0, v > 0 :
[f(2)] < Ba(z), 3)
[b(2)] < 76(x). (4)

The existence results for a weighted elliptic equations it was given in the
works [TL3L7,T0HI2,14H16].

The main result of the paper is to prove the existence of the distributional
solution for the problem governed by equation (), which is anisotropic and
elliptic with variable exponents, and contains lower order terms dependent on
the gradient of the solution and on the solution itself. The terms are weighted
and the main results relies on the possibility of comparing the weights between
each other, where the right-hand side is a sum of the (natural growth) lower
order term and the datum f € L'(Q), furthermore the weight function 6(-) is
in the anisotropic Sobolev space with variable exponents and zero boundary
Wl’?(')(ﬁ) under the assumption (2)), and this is what distinguishes this work.
The anisotropic differential operator and the (natural growth) lower order term,
are connected by the fact that everyone 6(-) and b(-)(€ L'(Q)) be singular and
this is what appears through the assumption @) where this assumption helped
us find solutions in W1’7(')(Q), while the datum f had a relationship with
a(-) € LY(Q) and it is what is manifested in the condition (B]). The existence
results in the isotropic scalar case (i.e., p;(xz) = p), is proven in [3].

The proof requires a priori estimates for a sequence of suitable approximate
solutions (u,), which in turn is proving its existence by Leray-Schauder’s fixed
point Theorem. After that we prove the strong convergence, then we pass to the
limit in the weak formulation.

2. Preliminaries

In this section we need to provide some basics definitions and properties
about isotropic and anisotropic variable exponent Lebesgue-Sobolev spaces

(see [BLGLE]).
Let © C RY (N > 2) be a bounded open subset, we denote
C.(Q) = {continuous function p(-):Q+—R, / 1<p <p' < oo},

where
p" =maxp(z) and p~ =minp(x).
zeQ zEQ

Let p(+) € C(Q). Then the following Young’s inequality holds true for all a, b € R

and all € > 0, p
|ab| < elal?™) + c(e) b ), (5)
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where, p’(+) denotes the Sobolev conjugate of p(-) (i.e., -0 T p,l(_) = 1in Q).
In addition, for any two real a, b ((a,b) # (0,0))

22-p" | — p|P(®), if p(z) >2,
(Ja/"=2a—[b["*)=2b) (a ) > (6)
Tl et 1< p(a) < 2
b (Jal+n?—r 1 p@) <2

Variable exponent Lebesgue space with LP()(Q) defined by

LPO)(Q) := {measurable functions u : Q = R; p,y(u) < oo},
where

Pp((u) = /|u(w)|p(”) dz, the convex modular.
Q

It is a Banach space, and reflexive if p~ > 1, under the Luxemburg norm
w = Jlullpey = llull peer @y = inf {X > 0] ppey(u/A) < 1}
The Hélder type inequality

1 1
Juvda| < (= + <2 ) lulhoolly < 2l el
Q

holds true, such that p) denotes the Sobolev congugate of p;
(i.e., ﬁ + ﬁ =1).
The variable exponents Sobolev space WP()(Q) defined as fellows
WirO Q) = {u e LPO(Q) : |Du| € Lp(')(Q)} ,
it becomes a Banach space when equipped with the norm
u = flullwrse @) = [1Dullpe)-

The Banach space Wy (Q) defined by

1,p(-)
W) =@t Y,

under the norm

U= HUHW(},M»(Q) = [lullwee -

Moreover, is reflexive and separable if p(-) € C4 ().
The following results came in [5L6]. If (u,,), u € LPC)(Q), then we have

1 1 1 1
min (pp) ()77 ppy ()7 ) < il < max (ppey (W) 77, ppey ()7~ ), (7)

. - + - +
min (HUHi()a HuHi()) Spp(-)(“) < max (HuHﬁ()a HuHi()) : <8)
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Now, we will go to introduce the variable exponents anisotropic Sobolev spaces
WwhPO(Q).
Let p;(+) € C’(ﬁ, [1,+oo)), i=1,...,N, and we set for every z in Q
?(.’IJ) = (pl(x)7 s ,pN(-'I:)),

p+(2) = max pi(z), p-(r)= min p;(z),

1<i<N 1<i<N
p- = minp_(z), pl = maxp, (z),
€ €S
Np(x) —
P = g, P)={ T P
JXV: 1 +o00, for p(x) > N.
h pz(m)

The Banach space WhP ()(Q) is defined by
WhTO(Q) = {u e D0(Q), D e I#O(Q), i =1,... N},

under the norm N
lull gy = lellp, ) + > IDiwll,, .y -

i=1
The spaces W(}’?(')(Q) and Wl’ﬁ(')(Q) are defined as follow

) WL?(-)(Q)
WePO@Q) = Cr@) ,

WLPO@Q) = whPO@Q) nwl(Q).
The following embedding results given in [8],9].
Let @ € RY be a bounded domain and 7 (-) € (Cy (ﬁ))N
p*

(2)). Then the embedding

(i) If r € C4(Q) and Vz € Q, r(z) < max(p(z),
Vifl’ﬁ(')(Q) — L"(Q) is compact. (9)

(i) If we have _
Vo €D, p.(x) < 7*(2). (10)

Then the following inequality holds

N
lully, ) < C S [1Dsull ey, Yu e WEFO(Q), (11)
=1
where C' > 0 independent of u. Thus,

N
u Z | Diu||p, () is an equivalent norm on VT/L?(')(Q). (12)
i=1
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3. Statement of results and proof

DEFINITION 3.1. The function u is a distributional solution for (I if and only
if u e Wy (Q), and for every p € C°(Q),

N N
/Z 0(z)|D;ulP*®~2D;uD;p da —I—/a(x) Z JulPi®) =20 dz =
o i=1 o i=1
N
[o@) > D@ do + [1(a)e da,
Q =1 Q

The following is our main results.

THEOREM 3.2. Let P (-) € (C4 Q)N such that B(x) < N for all x € Q and
@) holds, and let f, a(-) and b(-) are in L* (), and 6(-) is in Wl’ﬁ(')(ﬁ) such
that @), @), and @) holds. Then the problem () has at least one solution
u € Wl’?(')(ﬁ) in the sense of distributions.

3.1. Existence of approximate solutions

We define " alz
fa(z) = 1+f|(f<l>| ) an(x) = 1+5(\a21:)| )
n n (13)
b(x 0(x
balz) = iy, bala) = 5k
We must first notice that: Since ©(z) = 1+ is increasing, we deduce by (B) and
@) that fa(z)
a(x
()| < ——F—— = Pan(x). 14
) < T =P (1)
0(z)
b < ———— = v0,(x). 15
on(0)] < T gy = el (15)
And note that, thanks to (@), that for all z € Q, we have
«
< Op(z) < n. 16
S <) < (16)
Also, since for all z € Q
D;6
D) = 200N
()

Then, we get that

[Dibn(z)| < |Dif()].
So, .

0,(-) € WHPO(Q).
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And since it is clear that 0 < 6,,(x) < 6(z), we get

0, is bounded in W7 ) (Q), (17)

and .
6, strongly converges to 6 in Wl’?(')(Q). (18)

Remark 1. The assumption ([3) implies that, for all z € Q
falz) < f(2), bn(z) < b(z),
an(z) < a(x), O, (x) < 0(x).

LEMMA 3.3. Let () € (C4(Q)N such that 7 < N and Q) holds, and
let f, a(-) and b(-) are in L*(Q), and 0(-) is in W1’7(')(Q) such that @), @),
and (@) holds. Then, there exists at least one weak solution u, € I;[/l’?(')(ﬂ)
to the approximated problems

fZD 2| Dsun P2 D) + an( unzw )=
:bn<$)Z|DiUnpi(m)+fn in Q,
i=1
Uy, =0 on 092,
(19)

in the sense that

N
Z/ |Du pi(z)-2 ). iun Do dx —l—/Zan |u pi(x)=2,, n do =
=1 ¢ Q =1
N
/an(xﬂDlun Pi@) oy dx —|—/fn<p dz, (20)
o =1 Q

for every ¢ € VT/L?(')(Q) N L>®(Q). Moreover,

>

i=1

Uy, pi(x)—1 < 8. (21)

Proof. We consider for X = VT/L?(')(Q) the operator
X x[0,1] — X,

(v,0) — u=T(v,0),
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where u is the only weak solution of the problem
N
- ZD ( ()| Dsu
N N
o (e 10 )
i=1

pi(@)=2p). u)
(22)

Uy =0 on 0,

verify, for all ¢ € Viﬂj(')(Q), the weak formulation

N

Z/en )| Diu

1= IQ N N
0/ (bn(x) > D[P 4 fy = an(z)v Y |@|pi<x>—2> ¢ dz.  (23)

Q =1 =1

pi(@)=2p). quD;p do =

After putting for all (v,0) € X x [0,1],

N N
g(z,v,Dv) =0 (bn(x) > D[P 4 fy — an(z)v ) |’U|pi('73)_2> 7
i=1

i=1

we note that, since v € X and by using Young’s inequality we have for all v € X
and all € > 0,

N N
/an(x) Z loPi @=L dg < nz C(e) + 5/|U|pi($) dz | <c(e),
i=1 i=1 o

Q

this implies that
N
2o Y|P e LY(Q). (24)
=1

And we also have through ([I3) (( the hypotheses on f,)) and since v € X,
we can get

N
(bn(x) _Z | D[P ) 4 fn> € LY(Q). (25)

From (24) and (25) we conclude that the right-hand side g(x,v, Dv) of (22
belongs to L(£2), then the existence of the weak solution u of the problem (22)
in WL70) (€) is directly produced by the main Theorem on monotone operators
(see [4L[13]). Let us prove the uniqueness of this solution.
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Let wui, ug € Vifl’?(')(ﬂ) be two weak solutions of (22). Considering
the weak formulation of u; and us, by choosing ¢ = u; — us as a test function,

we have

N
Z/0n|DiU1|pi(m)_2DiU1Di(ul —ug)da :/g(x,v,Dv)(u1 — uz)dz,

i=1g o
and
N

ilg Q

By subtracting ([27)) from (26]), we get that

N

Z/9n (|DiU1 Pi@=2 Doy — | Djug
=1

Putting for allt =1,..., N,

I; :/(|Diu1|pi(x)_2DiU1 - |DiU2|pi(E)_2Diu2>(Diul — Djuy) da.
Q
Then, by using ([I0), [28)), and the fact that(due (@)

P2 Diuy — | Diuy

(|DiU1 p"’(m)_2DiU2> (Dju1 — Djug) > 0,

we get foralli=1,..., N,
I, =0.
Right now, we put forallt =1,..., N,

Qzl ={z € Q,pi(x) > 2},
and
QO ={reQ1<p(r) <2}

Then, by (@) we have, for alli =1,..., N

Pi(r)'

Ii Z 22_pi/‘Di<U1 — Ug)
TH

/9n|Diu2|pi(m)_2Diu2Di(ul —ug)dx :/g(x,v,Dv)(u1 —ug)dx.

pi(m)_ZDiUQ>Di<U1 — UQ) dz = 0.

(26)

(27)

(28)

(29)

(30)

On the other hand, by Holder inequality, (6), (7), and since u1, us € Wl’?(')(Q),

we have
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/|Di(u1 — u2)|p¢(ﬂr) dx (31)
02

|Di(u1 — ug)[Pi®)

pri(z)(2—p;(z))

(|Diur| + | Djusl) 2

<2

2
L70 (02)

pi(x)(2=pi(z))

(|Dius| + | Diusl) 2

X

2
L2-7i() (Q?)

P

Dy (ur — us)[?
< 2max / [Di(u1 — ug)| de ’
(IDsur| + |Dsug|)2-Pi(@)

35
pt
2
/ / | Di(ur — ug)|? e
2— i\ T
5\ (Diwn| + [Diug))* "
2 pt

X max /(Diul + |Diu2|)pi(x) dz ,
Q

/(Diu1| + \Diuz\)pi(m) da
Q

+ 2-r

< 2cmax {(IZ)%, (I,)%} (1+ pp, (|Dsur| + |Diuszl)) 2

Py P?—
</ max{([i)T, (11)7} . (32)
By combining B0), (32), and ([29), we obtain
/Di(ul —u)|P®dz =0, i=1,...,N. (33)
Q
Then, from ([B3) and (§) we conclude that
HD1<U1 —Ug) pi(+) :0, 1= 1,,N (34)
By using (I0) and (34) we get
\|u1—u2\|7():0, 221,,N (35)
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Then, ([B3) implies that w3 = wuy and so the solution of ([22) is unique.
Moreover, for all (v,0) € X x [0,1]

ullx < p, (36)

where, p > 0 dependent on ||v||x and n.

We will now prove the continuity of W:
Let us fix n € N* and let (vy,, 04,) be a sequence of X x [0, 1] converging to (v, o)
in this space. Then, we get

Um — v, strongly in VOVI’?(')(Q), (37)
om — 0, in R. (38)

After considering the sequence (u,,) defined by u,, = U(v,,0m), m € N
we obtain for all p € W17 0)(Q)

> [ou@IDia,

i=1 Q

p”(m)_zDiumDigp do =

Pi(r)—2<p dx

N N
Om /fncp dx +Z/bn(x)|pwm pim@dx_/an(x)vmz o,
Q i:lQ Q 1=1

(39)

For v, o defined in (B7), (B8), we putting u = ¥(v,0), then we have for all
p eWLTO(Q)

N
Z/Gn(x)|Diu|pi(”)_2DiuDi<p dz =
=179,

N N
o /fnnpdx+Z/bn(x)|Div|pi(x)npdx /an(x)UZ|v|pi(x)_2npdx . (40)
o =19, i=1

Q
By (B0) and the boundedness of (vy,) in W17 ()(Q) (due @7)):

||“m||7(.) = ||\Ij(“m"7m)”?(.) =P (41)

with p > 0 independent of m.

From () we conclude that the sequence (u,,) is bounded in I/OVI’?(')(Q).
So, there exists a function w € VT/L?(')(Q) and a subsequence (still denoted
by (u,)) such that

Uy, — w  weakly in Wl’?(')(ﬁ). (42)
by ([@2)), (I0), and (@), we obtain that
U — w  strongly in LP+0) (). (43)
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Then, by passing to the limit in [89) as m — 400, we get for all ¢ € WP (),

Z/ )| DywP* @ "2 DywD;p da =

119

N
/fnga dx + Z/ z)|Dyv|Pi® o dz / x)vz P @20 dx |, (44)
r i=1

and this implies that w = ¥U(v,0).
The uniqueness of the weak solution of problem ([22]) implies that

w=u=Y(v,0).
So,
U (U, On) = Uy, —> u = ¥(v,0) strongly in X.
Which shows the continuity of .

Compactness of ¥: Let B be a bounded of X x [0,1]. Thus B is contained
in a product of the type B x [0, 1] with B a bounded of X, which can be assumed
to be a ball of center O and of radius » > 0. For v € ¥(B), we have, thanks
to (34):

||U||?(.) = p
For
uw=Y(v,0) with (v,0)€ B x[0,1]; ||U||?(_) <r

This proves that ¥ applies B in the closed ball of center O and radius p
((p depends on n and 7)) in X. Let u, be a sequence of elements of ¥(B).
Therefore, u,, = V(v,,0,) with (v,,d,) € B. Since u,, remains in a bounded
of X, then we can extract a sub-sequence u,, = ¥(vy,,,0,,) which converges
weakly to u = ¥(v,0) in X. Through (I0) and (@) we deduce that u,, converges
strongly to an element w of LP+() (). Since the existence and uniqueness of the
weak solution to the problem (22)) and the continuity of ¥, we have that w = u.
This proves that

v(B)
is compact. So, ¥ is compact.

It is clear that WU(v,0) = 0 for all v € X, because u = 0 € X the only weak
solition of the problem

ZD( ()| DyulPi@ 2Du) - 0 inQ,

uw = 0 on 0N.
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Now, let us prove that
M >0, V(v,0) € X x [0,1] : v = ¥(v,0) = |[v]|, < M.
For that, we give the estimate of elements of X such that
v="U(v,0),
then we have for all

e WHPO(q),

pi(m)_zDivDicp do =

N
0, (x)|D;v
)
N N
0/ (bn(x) > D[P 4 fy = an(z)v ) |v|pi(””)_2> odz. (45)
i=1 i=1

Q
We cosider the following functions defined as for all ¢, s € R,

OA(t) = [N — Usgn(t), A >0,
0 if [s| <k,
Gr(s) =< s—k if s>k, k>0,

s+ k if s < —k.
For fixed A > ~, using

(0 Gg)(v) = [0 —1] sgn(Gs(v),
as a test function in (#H), and after noting that
’Unq))\(ﬂ) = |U||6>‘|Gﬁ(v)‘ _ 1|’
we can obtain that

AZ/ )| DsGy () [P N g

11Q

+ U/ﬁ]an(x)HU
Q i=1

Pi(@) =1 MG (] _ | dg

N
<o /|fn||e/\Gﬁ(”) — 1| dz +/Z by, (2)|| Dyw [P @) [e’“Gﬁ(”)‘ —1]dz
Q o =t

(46)
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By using (), (I3), (T0), we get
a N
— (A = D;v
fa-02 [l
=ta

N
7 [lau(a) (Z ol @1 ﬂ) (A0 A]de <0, (47)

Q i=1

Pi(@) AGa ()] gy 4+

and (1) gives us
pi(e)=1 < 3 (48)

N
v
i=1

By the fact that 1+ |o[Pi(®) =1 > |p|P-~1 and @F), we get

v < (1 + %) = . (49)

Now, choosing the increasing function ®.(v) as test function in ([@5)), we have

WZ/ x)|D; U|p1(x)e'y|”|dx+02a ) w[Pi @200, (v) dz =

le =1

N

/(an |Dv|”1(x)+f> S(v)dz.  (50)

Then, we have

VZ/ (z)| D;v

zlﬂ

pi(z)— @, (v)dx <

pi () e’””ldx—l—UZan |U

N
/ b (@) S | DivfP @)@, (v) da + / Fal| By ()] . (51)
Q i=1 Q

After dropping the nonnegative term in (EII) due to the fact that
v®y (v) = [v]|®4 (v)],
and using the fact that (due ([9))

o, (v) < D, <<1 + %) p_11> ’
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and the fact that ¢71"l — |®,(v)| = 1, and (IH), we obtain

N 1
(z 5 p_—1
vy /9n(1’)|Dz‘U|pl( Vo < | fall oy ®a <<1+ N)

i=1 Q

) . (52)
Then, by (I8) we have

N 1
i (x ﬁ p_—1
3 1P e < (+5)7) o

On the other hand, (like [14], or [I7HI9]), we have

N
1=1¢

From (54)), and (B3) we get the existence of C' > 0 independent of n such that

(2 1 p_
mUMZ<NM&J N (54)

HUH?(.) <C (55)
It then follows from the Leray-Schauder Theorem that the operator
Uy : X — X defined by ¥q(u) = U(u,l)

has a fixed point, which shows the existence of a solution of the approximated
problems (19) in the sense of (20).
In order to prove (ZII), we can use the function

(®x 0 Gp)(un) = [Nl — 1] sgn(Gp(un)),

as a test function in (20) for fixed A > 7, and in the same ways as proof ()
we can simply get (2I)). O

Remark 2. By the fact that 1+ |u, [P®*)=1 > |u, [P-~! and @), we get
1
B\r=1
wl < (145)7

(up,) is bounded in L*°(Q). (56)

and this implies that

Remark 3. By going back to ([20) and the same way to prove (G2)) (of course,
by replacing v, by u, and taking o = 1) we can simply get

/Gn(x)|D,-un|pi(x) de<C, i=1,...,N,
Q
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through this and (IH), we obtain:

[ibm@liDse,
Q

and this implies that, forallt=1,..., N
(bn(x)|D,-un|pi(”)) is bounded in L'(€Q). (57)

i@ qr<C, i=1,...,N,

3.1.1. A priori estimates

LEMMA 3.4. Let f, a,b, 0 and p;, i =1,...,N be restricted as in Theorem [T.2

Th .
o Up 18 bounded in Wl’?(')(Q), (58)

where uy, the weak solution to the problem ([I9J) .
Proof. By choosing the increasing function ®.(u,) as test function in (20)

and the same way as proof (BI)) (of course, with replacing v,, by u,, and putting
o =1) we can get (£S). O
LEMMA 3.5. There exists a subsequence (still denoted (uy,)) such that, for all
i=1.. N D;u,, — Dju a.e. in §, (59)
where u is the weak limit of the sequence (u,) in VOVL?(')(Q).

Proof. From (G])) the sequence (u,) is bounded in Wl’?(')(ﬁ). So, there exists
a function u € Wl’?(')(Q) and a subsequence (still denoted by (uy,)) such that

u, = u weakly in Wl’?(')(Q) and a.e.in Q. (60)
Choosing 9—171@ as test function in (20)), then Vo € Wl’ﬁ(')(Q)HLC’o(Q), we obtain
N
> /\Diun Pi@)=2 Doy, Di¢p da
=19
S
- b (2)| Dy, [P g d
;/W (@)| Dittn [V da
=ha

1

/9 ( | Dy, [P*®) =2 Dy, (D6, ) dit
(T

Q

~—

N
1 1
- pi(z)—2 d — de. 1
Z/Gn(x)an(x)\un Un ¢ dz +/9n(x)fn¢ x (61)
Q Q
Then, we can write
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N

Z/|Diun Pi@)=2 Doy, Digp da :/Fn(x)d) dz, (62)
=19 Q
where,
1 N
Fn(x) = 0 (.%') Z(bn(x)u)zun'pl(z) + |Diun|pi(x)_2Diun(Di9n) -
n i=1
()t [T P, + fr).

x By (21]), we have
Pil@)=1 < aa, (). (63)

N
an () Z |un
i=1
So, from (B3)), and since a,, € L'(Q) (due Remark [I), we get

(an (2)un Z [,

* By using Young’s inequality, and since u,, € X we obtain for all € > 0,

/|D,—un|‘”i(g”)_1 dr < /(C(s) + 5|Diun|pi(z)) dz <,
Q Q

Pi<m>—2> is bounded in L'(Q),i=1,...,N. (64)

where ¢ > 0 dependent of . This implies that

| Dyt P2 Dju,, € LH(). (65)
* From (I6) we have for all x € Q
1 1 1
- < <14 —. 66
n = O,(x) ~ T (66)

So, from (64), ([€3), (57), and (66), we conclude that
(F,) is bounded in L'(f).
So, we can now apply to the sequence (u,,) the results of [2] in order to get (59)).

O
3.2. Proof of the Theorem
By (59) and (B8) we have, for alli =1,..., N
|Ditn [P )2 Dy, — [DyulP* ™) 2 Dyju weakly in LP:0)(Q), (67)
such that,
S0op() -1
From (I8)) we conclude that, for alli =1,..., N
0,(-) — 6(-) strongly in LP:()(Q). (68)
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Furthermore, through (B8), (64), and a,,(-) € L'(R2) due ([[3)), we have
N N
an(z)uy, Z |t [P1®) =2 — a(w)uz lu[P*®) =2 strongly in L'(Q).  (69)
i=1 i=1

Also, from E9), (57), and b, (-) € L1 () due ([I3J), we have

pi(z) strongly in Ll(Q)' (70)

N
by () Z |D;uy,
i=1

Then, through (69), (70), and using (67)), (68) to pass to the limit in the weak
formulation of (20)). This proves Theorem

N
Pil®) s p(x) Z |D;u
i=1
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