
DOI: 10.2478/scjme-2025-0032, Print ISSN 0039-2472, On-line ISSN 2450-5471

Strojnícky časopis – Journal of MECHANICAL ENGINEERING,

VOL 75 (2025), NO 3, 13 - 20

VIRTUAL MODEL OF THE KYBURZ VEHICLE USING THE FMI

STANDARD

BUCHA Jozef1*, DANKO Ján1, MAGDOLEN Ľuboš1, ČULÍK Ján1

1Slovak University of Technology in Bratislava, Faculty of Mechanical Engineering, Institute of Automotive

Engineering and Design, Nám. Slobody 17,812 31 Bratislava, Slovakia, e – mail: jozef.bucha@stuba.sk

Abstract: The article deals with describing the methodology of connecting Adams/Car and Matlab/Simulink

programs using the FMI standard. To demonstrate the connection, a Kyburz vehicle model was created as a

virtual vehicle.

KEYWORDS: Adams/Car, Matlab/Simulink, Kyburz eRod, FMI standard

1 Introduction

Simulations play a key role in the modern vehicle development process. They enable

virtual testing of functionality, reliability, and safety of components before their physical

production. Thanks to simulations, development time can be significantly shortened,

prototype costs reduced, and design optimization improved. An additional advantage is the

ability to test extreme operating conditions and various configurations without the risk of

damaging real components. Simulation tools thus enhance the quality and innovation of the

final product. The FMI (Functional Mock-up Interface) standard represents an open format for

the exchange and integration of models between different simulation tools. It allows the

export of models defined as FMUs (Functional Mock-up Units), which can be used for co-

simulation in other software without the need to share source code. FMI supports modularity

and reusability of models.

2 Multibody Model of Vehicle in Adams/Car

The vehicle model used to demonstrate the functionality interconnection of the MBD

model in the Adams/Car program and the Matlab/Simulink program was the Kyburz eRod.

vehicle.

Fig. 1 Kyburz eRod

14 Volume 75, No. 3, (2025)

The Adams/Car program uses a three-level vehicle modeling system (Fig. 2).

Fig. 2 Modeling system in Adams/Car

1. Template. Templates are parametric models that define topology of models. Basic

property of every template is Major Role, which defines the functional part of the

vehicle e.g. suspension, steering, …

2. Subsystem. Subsystems are based on templates and allow users to change the

parametric data of the template as well as the definition of some components. Basic

property of every subsystem is Minor Role, which defines the functional area of the

vehicle template.

3. An assembly represents a collection of subsystems, along with optional test rig, which

when assembled forms a system that can be analyzed using Adams/Solver.

Figure 3 shows a block diagram of the vehicle assembly (green) with the used

templates (red), their respective Major Roles (yellow), subsystems (blue), and their

respective Minor Roles (pink).

Fig. 3 Block diagram of Kyburz model in Adams/Car

Figure 4 on the shows an example of one template (Major Role: Suspension), which will

be used in subsystem as front suspension (Minor Role: Front).

Fig. 4 Template of suspension

minor rolesubsytemmajor roletemplate assembly typeassembly

Volume 75, No. 3, (2025) 15

Figure 5 shows complete full vehicle assembly of Kyburz in Adams/Car.

Fig. 5 Full Vehicle Assembly of Kyburz

3 Simulation of Full Vehicle Assembly

The Driving Machine in Adams Car is a software module (a virtual driver) that controls the

entire vehicle during simulation, ensuring consistent, repeatable, and automated vehicle tests.

The Driving Machine steers the vehicle, applies the throttle and brake, and shifts gears (using

the clutch) (Fig. 6). The Driving Machine can operate in open-loop mode (without feedback)

or in closed-loop mode (with feedback). Adams SmartDriver is an advanced driver simulator

that can bring a vehicle to its dynamic limits (Closed Loop). Adams SmartDriver is not used

in this article.

An event in Adams Car is a test maneuver that defines what happens to the vehicle during

the simulation. An event is represented by an xml file that contains data for defining and

transmitting sets of command signals, feedback signals, and parameters for each of the five

control inputs: steering, throttle, brake, gear, and clutch (Fig. 7).

Fig. 6 General Description of Driving Machine

16 Volume 75, No. 3, (2025)

Fig. 7 Actuator areas on Driving Machine

Event is defined for five control signals (steering, throttle, brake, gear, and clutch)

separately; therefore, Driving Machine can be defined as Pure Open Loop (Fig. 8), Pure

Closed Loop (Fig.9) or Combination of Open and Closed Loop.

Fig. 8 Pure Open Loop Maneuver

Volume 75, No. 3, (2025) 17

Fig. 9 Pure Closed Loop Maneuver

3 Functional Mock-up Interface

The Functional Mock-up Interface is a free standard that defines a container and an

interface to exchange dynamic simulation models using a combination of XML files, binaries

and C code, distributed as a ZIP file. It is supported by 250+ tools and maintained as a

Modelica Association Project [1].

A Functional Mock-up Unit (FMU) is the executable that implements the interface defined

by the Functional Mock-up Interface (FMI) standard.

FMI standard supports two types of co-simulations:

• Model Exchange:

o The FMU (Functional Mock-up Unit) provides only the model equations (e.g.

ODEs, DAEs).

o The solver is external — it's provided by the master simulator (e.g. Simulink,

Dymola, etc.).

o The master controls Time integration, Step size, State events.

• Co-Simulation:

o The FMU includes its own solver.

o Each FMU advances independently in time over given steps.

o The master only coordinates time steps and data exchange.

MSC Adams can export and use FMU only in Co-Simulation mode, not in Model

Exchange and supports FMU v1 and FMU v2.

To incorporate MBD model of vehicle to FMU control subsystem was added to vehicle

(Fig. 10).

https://fmi-standard.org/tools/

18 Volume 75, No. 3, (2025)

Fig. 10 Control system of vehicle

Control System contains input and output state variables. Control system contains 1 input

plant Vehicle_controls_input, 2 output control plants InertFrm_CG, BodyFrm_CG. (Fig.11).

Fig. 11 Input and output state variables

Vehicle_controls_input will be receiving data from Master software (e.g. Simulink),

InertFrm_CG, BodyFrm_CG will be transmitting data to Master software. Control system

contains two markers (Fig. 12):

• EarthFixed_CS_Zdown_ground (Blue). Attached to ground. Not moving.

• EarthFixed_CS_Zdown_vehicle (Green). Attached to vehicle CG. Moving with

vehicle.

Fig. 12 Markers in control system

For full functionality of the connection and data exchange between the main software

(Master) and the FMU vehicle model (Slave), a purely open loop event is used (Fig.7), all five

control signals (steering, throttle, brake, gear, and clutch) are defined using Adams function

frontKB_front_susp.sub

rearKB_rear_susp.sub

frontKB_steering.sub

frontKB_front_tires.sub

rearKB_rear_tires.sub

anyKB_chassis.sub

rearKB_powertrain.sub

brake_system_KB_brake_system.tpl

powertrain_KB_powertrain.tpl

body_KB_rigid_chassis.tpl

wheel_KB_handling_tire.tpl

steering_KB_rack_pinion_steering.tpl

suspension_KB_double_wishbone_rear.tpl

suspension_KB_double_wishbone_front.tpl

anykb_brake_system.sub

fu
ll

_v
eh

ic
le

k
y

b
u
rz

.a
sy

antirollbar_KB_arb.tpl frontKB_arb_front

rearKB_arb_rear

anyKB_cs4fmucontrol_systemKB_control_system

K
B

_
co

n
tr

o
l_

sy
st

e
m

Steering_input

Throttle_input

Brake_input

Clutch_input

InertFrm_CG_Disp_X

InertFrm_CG_Disp_Y

InertFrm_CG_Disp_Z

InertFrm_CG_Disp_X

InertFrm_CG_Ang_phi

InertFrm_CG_Ang_theta

InertFrm_CG_Ang_psi

InertFrm_CG_Vel_Xdot

InertFrm_CG_Vel_Ydot

InertFrm_CG_Vel_Zdot

BodyFrm_CG_Vel_xdot

BodyFrm_CG_Vel_ydot

BodyFrm_CG_Vel_zdot

BodyFrm_CG_AngVel_p

BodyFrm_CG_AngVel_q

BodyFrm_CG_AngVel_r

BodyFrm_CG_Acc_xddot

BodyFrm_CG_Acc_yddot

BodyFrm_CG_Acc_zddot

Vehicle_controls_input

Gear_input

InertFrm_CG BodyFrm_CG

Volume 75, No. 3, (2025) 19

Varval, with corresponding Adams_id of each state variable used in input control plant (Fig.

10). Block diagram of this process is shown in Fig. 13.

Fig. 13 Block diagram Driving Machine used for FMU

In Adams/Car is possible to create FMU model of vehicle using Adams/Controls plugin.

As was mentioned before only valid type of FMI is Co-Simulation, not Model Exchange.

Exported FMU from Adam/Car contains full vehicle assembly represented by .adm and .acf

file, event file .xml, used road model, tires.

For master software Matlab/Simulink was used. Fig. 14 shows imported FMU of Kyburz

into Simulink. Input and output ports of FMU block is treated as Bus. Signals are unitless.

Fig. 14 Imported FMU of vehicle in Simulink

Fig. 15 shows input and output signals of FMU model of Kyburz vehicle presented in

article.

20 Volume 75, No. 3, (2025)

Fig. 15 Input and output signals of Kyburz vehicle model

CONCLUSION

This article successfully demonstrated the methodology for connecting Adams/Car and

Matlab/Simulink programs using the Functional Mock-up Interface (FMI) standard, with the

Kyburz eRod vehicle serving as a practical case study for virtual vehicle modeling. The

integration of a control system with appropriate input and output state variables enabled

seamless data exchange between the Adams/Car vehicle model (slave) and Matlab/Simulink

environment (master). The FMI standard's tool-independent nature ensures that vehicle

models can be shared and utilized across different simulation platforms. This synergistic

integration opens new possibilities for advanced automotive applications, particularly in the

rapidly evolving field of autonomous vehicles. The Adams/Car model provides highly

accurate vehicle dynamics, tire-road interactions, and suspension behaviour, while Simulink

offers comprehensive libraries for implementing advanced driver assistance systems (ADAS),

autonomous driving algorithms, machine learning models, and sensor fusion techniques. This

combination enables researchers and engineers to develop and validate complex vehicle

control strategies within a realistic vehicle dynamics environment, bridging the gap between

theoretical control algorithms and real-world vehicle behaviour.

ACKNOWLEGEMENT

This research was supported by the Slovak Research and Development Agency under

Contracts No. APVV-23-0650, APVV-20-0428. APVV-19-0401, SK-SRB-23-0024, APVV-

23-0456, APVV-24-0526.

REFERENCES

[1] Source "Functional Mock-up Interface", [online] Available at: https://fmi-standard.org/

[Accessed: date (22.5.2025)].

[2] Source " eRod - the electric sportscar made in Switzerland | KYBURZ", [online]

Available at: https://kyburz-switzerland.ch/en/erod [Accessed: date (22.5.2025)].

[3] Magdolen, Ľ., Danko, J., Milesich, T., Kevický, I., Galinský, M., Bucha, J., Skyrčák, R.

"Virtual simulation of overtaking maneuver of autonomous vehicle", Strojnícky časopis

– Journal of Mechanical engineering 71 (2), pp. 179 – 188, 2021.

[4] Adams/Solver reference manual (Version 2025). MSC Software Corporation, Santa

Ana, CA, USA, 2025.

[5] Adams/Car user's guide (Version 2025). MSC Software Corporation, Santa Ana, CA,

USA, 2025.

[6] The MathWorks, Inc., "Simulink Reference," R2025a, The MathWorks, Inc., Natick,

MA, USA, 2025.

