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Abstract

The integer sequence π = π1 · · ·πn is said to be an inversion sequence if 0 ≤ πi ≤ i− 1
for all i. Let In denote the set of inversion sequences of length n, represented using positive
instead of non-negative integers. We consider here two new statistics defined on the bargraph
representation b(π) of an inversion sequence π which record the number of unit squares
touching the boundary of b(π) and that are either exterior or interior to b(π). We denote
these statistics on In recording the number of outer and inner perimeter squares respectively
by oper and iper. In this paper, we study the distribution of oper and iper on In and also on
members of In that end in a particular letter. We find explicit formulas for the maximum
and minimum values of oper and iper achieved by a member of In as well as for the average
value of these parameters. We make use of both algebraic and combinatorial arguments in
establishing our results.
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1 Introduction
Let σ = σ1 · · ·σn be a permutation of [n] = {1, . . . , n}, represented using the one-line notation.
Define the sequence a = a1 · · · an, where ai records the number of elements of [i − 1] occurring
to the right of the letter i in σ for 1 ≤ i ≤ n. Then a is called the inversion sequence (or
inversion table) of σ (see, e.g., [20, p. 21]). For example, σ = 364215 ∈ S6 has inversion sequence
a = 012204; note that 0 ≤ ai ≤ i − 1 for all i. Conversely, starting with a, one can easily
reconstruct the corresponding permutation σ. For our purposes, we will add 1 to each entry
of a since it will be more convenient to represent the resulting sequence geometrically. The
enumeration of inversion sequences satisfying various restrictions has been an ongoing object of
interest in combinatorics. For example, the pattern avoidance problem on inversion sequences
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has been studied from several perspectives, initiated in the papers [14] and [7] concerning the
classical avoidance of a single permutation or word pattern of length three, in analogy with the
comparable problem on permutations. For extensions of this work in various directions, see, e.g.,
[6, 8, 9, 10, 18, 21, 22].

Recall that a bargraph is a self-avoiding random walk in the first quadrant starting at the
origin and ending at (n, 0) consisting of up (0, 1), down (0,−1) and horizontal (1, 0) steps.
The bargraph representation b(τ) of a sequence τ = τ1 · · · τn of positive integers is obtained by
requiring that the number of unit squares in the i-th column of b(τ) be given by τi for 1 ≤ i ≤ n
(i.e., the height above the x-axis of the i-th horizontal step of b(τ) equals τi). Many different
parameters have been considered on bargraphs representing various kinds of sequences τ ; see,
for example, the review paper [13] and references contained therein. Let In denote the set of
inversion sequences π = π1 · · ·πn of length n, represented using positive integers (i.e., 1 ≤ πi ≤ i
for all i). Here, we wish to consider some new parameters on In that are defined geometrically
in terms of b(π). For other recent parameters considered on In, see, e.g., [1, 4, 15, 16].

Given π ∈ In, define the outer (site-) perimeter as the number of unit squares exterior to b(π)
that have at least one side which borders the boundary of b(π) (including possibly the bottom
boundary of b(π) flush with the x-axis). We define the inner (site-) perimeter in the same way
as the outer except that the squares in question are contained within the bargraph b(π). Denote
by oper(π) and iper(π) the outer and inner perimeter, respectively, of π ∈ In. For example, if
π = 121345283419 ∈ I12, then we have oper(π) = 51 and iper(π) = 38; see Figure 1 below, where
the outer and inner perimeter squares of π are shaded or indicated by a circle. The oper statistic
was originally considered on arbitrary bargraphs (which are synonymous with compositions) in
[5], where it is referred to as just the site-perimeter, and was later studied on k-ary words [3] and
finite set partitions [12] both represented geometrically as bargraphs, the latter via restricted
growth sequences. The iper distribution on compositions was studied in [2] where a generating
function formula was found, a result which was refined in [11]. We use here the descriptors outer
and inner to distinguish further the oper and iper parameters on In.
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Figure 1: The outer and inner perimeter of π = 121345283419 ∈ I12

Let per(π) and area(π) denote the perimeter and area of b(π) for π = π1 · · ·πn ∈ In whose
distributions on In were studied in [15]. Then, by the definitions, we have oper(π) ≤ per(π) and
iper(π) ≤ area(π) for all π ∈ In, with equality in the first inequality only when π = 11 · · · 1 and
equality in the second only when min{πi, πi+1, πi+2} = 1 or 2 for all 1 ≤ i ≤ n−2, where πi+1 = 2
if the minimum is 2. Further, by an induction on j, where j denotes the greatest column height
within a member of In, one can show iper(π) + 4 ≤ oper(π) for all π ∈ In and n ≥ 2. Note that
equality is achieved in the last inequality when π = 12n−1 (among other sequences), and hence
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c = 4 is best possible among all constants c in inequalities of the form iper(π) + c ≤ oper(π) for
all π.

The organization of this paper is as follows. In the next section, we study the distribution
of the oper statistic on In and also on members of In ending in a particular letter. To do
so, we consider auxiliary generating functions for the distribution of oper on certain subsets of
In, namely, those obtained by considering whether the last letter of a member of In is greater
than, less than or equal to its predecessor. This enables one to translate the recurrences for
the distribution into a system of functional equations satisfied by the generating functions. As
corollaries of this analysis, one obtains explicit formulas for the maximum, minimum and average
values of oper on In as well as for the sign balance (corresponding to the case q = −1). Direct
combinatorial proofs can then be given for these explicit formulas which do not make use of
recurrences or generating functions. A comparable treatment is provided for the iper parameter
on In in the third section. The final section is an appendix devoted to establishing a functional
equation for a generating function related to the oper distribution on In.

2 Distribution of outer perimeter

Given n ≥ 2 with 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ n, let In,i,j denote the subset of In whose members
end in i, j and let In,j = ∪n−1

i=1 In,i,j . Let a(n, i, j) denote the distribution of the outer perimeter
statistic on In,i,j and let a(n, j) =

∑n−1
i=1 a(n, i, j) for n ≥ 2 be the corresponding distribution

on In,j , with a(1, 1) = q4. Let a(n, i, j) = a(n, j) = 0 in all cases where the set over which
the distribution is taken is empty. Throughout, we will represent π ∈ In as a bargraph and
frequently write π in place of b(π), by a slight abuse of notation.

For example, when n = 4, we have a(4, 1) = 4q10 + q11 + q12, a(4, 2) = 5q11 + q12, a(4, 3) =
3q12 +3q13 and a(4, 4) = q13 +3q14 +2q15; see Figure 2, which gives the outer perimeter of each
member of I4.
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Figure 2: The outer perimeter of inversion sequences of length 4

It is possible to determine the a(n, i, j), and hence the a(n, j), recursively as follows.
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Lemma 1 If n ≥ 3, then

a(n, i, j) = qa(n− 1, i), 1 ≤ j < i ≤ n− 1, (1)
a(n, i, i) = q2a(n− 1, i), 1 ≤ i ≤ n− 1, (2)

a(n, i, j) =

i∑
k=1

q2j−2i+1a(n− 1, k, i) +

j−1∑
k=i+1

a2j−k−i+2a(n− 1, k, i) +

n−2∑
k=j

qj−i+2a(n− 1, k, i),

(3)

for 1 ≤ i < j ≤ n, with initial values a(1, 1) = q4, a(2, 1) = a(2, 1, 1) = q6 and a(2, 2) =
a(2, 1, 2) = q7.

Proof. The initial conditions for n = 1, 2 are easily verified, so assume n ≥ 3. Before proceeding
further, we define the following terms. Let us refer to the set of j outer perimeter squares directly
to the right of the n-th column of σ ∈ In,j as the set of right lateral squares of σ, denoted by
rlat(σ). Further, we refer to a square lying directly above or below some column of σ as a high
or low boundary square of σ, respectively. Suppose π ∈ In,i,j is obtained from ρ ∈ In−1,i by
appending a column of size j to ρ. We consider cases based on the relative sizes of i and j,
first assuming i > j. Note in this case that appending a column of size j to ρ has the effect of
replacing the j lowest squares of rlat(ρ) by those of rlat(π), with the i− j top squares in rlat(ρ)
still part of the outer perimeter of π. Taking into account the low boundary square in the last
column of π, we get oper(π) = oper(ρ) + 1 for all π and ρ, which implies (1). If i = j, then
rlat(ρ) is completely replaced by rlat(π), with only the high and low boundary squares in the
last column of π accounting for the difference in oper parameter values, which implies (2).

To prove (3), assume i < j and we consider cases based on the penultimate letter k of ρ,
where 1 ≤ k ≤ n− 2. If 1 ≤ k ≤ i, then appending a column of size j to ρ results in their being
j − i − 1 new outer perimeter squares in column n − 1 lying directly above the high boundary
square in that column. Further, taking into account the high and low boundary squares of π
in column n and the fact that π has j − i more right lateral squares than ρ as j > i, we get
oper(π)− oper(ρ) = 2j − 2i+1 for all π and ρ, regardless of the value of k ∈ [i]. Considering all
possible k then yields a contribution of

∑i
k=1 q

2j−2i+1a(n− 1, k, i) towards a(n, i, j) in this case.
If i+ 1 ≤ k ≤ j − 1, then the difference oper(π)− oper(ρ) can be attributed to outer perimeter
squares of the following three types: (i) those that arise from the top j − k squares in column
n of π, each of which contributes two new outer perimeter squares (to its left and right), (ii)
the ones that arise from the k − i squares of π lying directly below those in (i), each of which
contributes a single new square (to its right), and (iii) the high and low boundary squares in the
final column of π. Combining these cases gives

oper(π)− oper(ρ) = 2(j − k) + k − i+ 2 = 2j − k − i+ 2,

for each π and ρ, and considering all k yields a contribution of
∑j−1

k=i+1 a
2j−k−i+2a(n − 1, k, i).

Finally, if j ≤ k ≤ n − 2, then the difference in oper parameter values comes about from the
top j− i right lateral squares of π, together with the high and low boundary squares in the final
column. This gives oper(π) − oper(ρ) = j − i + 2 for all π and ρ in this case. Considering all
possible k then yields the third summation on the right side of (3) and completes the proof. �

Let a(n) =
∑n−1

i=1

∑n
j=1 a(n, i, j) =

∑n
j=1 a(n, j) for n ≥ 2, with a(1) = q4. Then a(n) gives

the distribution on all of In for the outer perimeter statistic. For example, from the formulas
above for a(4, j), we have

a(4) =

4∑
j=1

a(4, j) = 4q10 + 6q11 + 5q12 + 4q13 + 3q14 + 2q15.
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Note that a(n) = n! for all n ≥ 1 when q = 1. We wish to determine the (ordinary) generating
function for a(n). In order to do so, we consider the following three auxiliary generating functions:

AE(x, v) =
∑
n≥2

n−1∑
i=1

a(n, i, i)xnvi−1,

AN(x, v, u) =
∑
n≥3

n−2∑
j=1

n−1∑
i=j+1

a(n, i, j)xnvi−1ui−j−1,

AP (x, v, u) =
∑
n≥2

n∑
j=2

j−1∑
i=1

a(n, i, j)xnvi−1uj−i,

which are introduced so that one can translate the recurrences in Lemma 1. Note that the
distribution for oper on In for n ≥ 1 then has generating function given by q4x + AE(x, 1) +
AN(x, 1, 1) +AP (x, 1, 1).

We have the following functional equation satisfied AE(x, v) for general q and v, which is
derived in the appendix.

Theorem 1 The generating function AE(x, v) satisfies

(1− v)(1− q2v) + q(1− q)(q2v2 − q2v + qv + 1)x+ q5vx2

1− v
AE(x, v)

=
qx(q6vx− q2 + 1)

q2 − 1
AE(q2vx,

1

q2
) +

qx(q4(1− q)v2x+ (1− q2v)(1− qv))

(1− qv)(1− v)
AE(x, 1)

+
q6vx2

1− q
AE(q2vx,

1

q
)− q6vx2

1− q2
AE(q2vx, 1) +

q5vx2

1− qv
AE(x, qv) + q6x2(1− q2v). (4)

It is also shown in the appendix that AN(x, v, u) and AP (x, v, u) may both be expressed in
terms of AE(x, v) (see Theorem 7 below). Hence, finding a formula for the generating function
of the oper distribution on In for n ≥ 1 is equivalent to finding AE(x, v) when v = 1. Though
it does not seem likely that one can solve for AE(x, v) or AE(x, 1) in (4) explicitly for general
q, it is possible nonetheless to deduce the following further properties of the outer perimeter
distribution on bargraphs of inversion sequences.

2.1 The case q = −1

Using (4), one can show

AE(x, v) |q=−1=
x2(1− x− vx)

1− 2x
.

Thus, by Theorem 7, we have

AN(x, v, u) |q=−1=
vx3

1− 2x
and AP (x, v, u) |q=−1= −ux2(2ux2 − ux− vx− x+ 1)

(1− 2x)(1− 2ux)
.

Taking u = v = 1 shows that AE(x, 1)+AN(x, 1, 1)+AP (x, 1, 1) at q = −1 is zero and thus
yields the following sign-balance result for the oper statistic on In.

Corollary 1 For all n ≥ 2, the number of inversion sequences of length n with odd outer
perimeter is the same as the number with even outer perimeter.

One can also explain bijectively the prior result.
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Bijective proof of Corollary 1: Let π = π1 · · ·πn ∈ In. We define an involution on In that
reverses the parity of oper(π) for all π. First suppose π contains at least one entry ≥ 3 and let
` be the smallest index such that π` ≥ 3. Then ` ≥ 3 and π`−1 ∈ {1, 2}. Consider switching
π`−1 to the other option, which changes the value of oper(π) by one, and hence reverses the oper
parity. This follows from π`−2 ∈ {1, 2} and the fact that all squares lying above the (` − 1)-st
column of π up to height π` belong to the outer perimeter as they border the `-th column of π
on its left. On the other hand, if no such ` exists, then π is binary (on {1, 2}) and switching
πn to the other option is seen to reverse the parity. Combining the two operations above then
yields the desired involution on In. �

Remarks: The preceding involution φ can be used to establish the formulas given above for
AN = AN(x, v, u) and AE = AE(x, v) evaluated at q = −1, when restricted to the subsets of In
enumerated by AN or AE. For the first formula, note that the restriction of φ to members of In
enumerated by AN is not defined on the binary members of In,2,1. For changing the last entry
to 2 as described would result in a member of In,2,2, which is enumerated by AE, and not AN .
Further, it is seen that the restriction of φ is defined on all other members of In enumerated by
AN , as in this case there would exist a smallest index ` such that π` ≥ 3 with ` ≤ n− 1. Thus,
the sum of the (signed) weights of the survivors of the involution is given by 2n−3v for n ≥ 3
and the formula for AN at q = −1 follows. On the other hand, the restriction of φ is not defined
on the binary members of In enumerated by AE, which must end in either 11 or 22. Then the
survivors of the involution in this case have weight given by 2n−3(1− v) if n ≥ 3 and 1 if n = 2,
which implies the formula for AE. A comparable argument though it involves more cases can
also be given for the formula above for AP (x, v, u) at q = −1.

2.2 Maximum and minimum outer perimeter
Let d(p) denote the degree of a polynomial p = p(q) in the indeterminate q. In Table 1 below
are given d(a(n, i, j)) for all i and j, where 2 ≤ n ≤ 5.

n i j = 1 j = 2 j = 3 j = 4 j = 5

2 1 6 7
3 1 8 9 11

2 8 9 10
4 1 10 11 13 15

2 10 11 12 14
3 12 12 13 14

5 1 14 15 16 18 20
2 13 14 15 17 19
3 14 14 15 16 18
4 16 16 16 17 18

Table 1: Degrees of the polynomials a(n, i, j) for 2 ≤ n ≤ 5

By Lemma 1 and induction on n = 3m + k where m ≥ 2 and k = 0, 1, 2, one can prove the
following general formula for d(a(n, i, j)).
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Theorem 2 For all m ≥ 2,

d(a(3m, i, j)) =



3m2 +m+ 4− i+ j, 1 ≤ i ≤ j ≤ 2m− 1,
3m2 −m+ 4− i+ 2j, 1 ≤ i ≤ 2m− 1, 2m ≤ j ≤ 3m,
3m2 − 3m+ 5 + 2j, 2m ≤ i ≤ j − 1, 2m ≤ j ≤ 3m,
3m2 − 3m+ 6 + 2i, 2m ≤ i = j ≤ 3m− 1,
3m2 +m+ 3, 1 ≤ j ≤ 2m− 2, j + 1 ≤ i ≤ 2m− 1,
3m2 − 3m+ 5 + 2i, 1 ≤ j ≤ 2m− 1, 2m ≤ i ≤ 3m− 1,
3m2 − 3m+ 5 + 2i, 2m ≤ j ≤ 3m, j + 1 ≤ i ≤ 3m− 1,

d(a(3m+ 1, i, j)) =



3m2 + 3m+ 5− i+ j, 1 ≤ i ≤ j ≤ 2m,
3m2 +m+ 4− i+ 2j, 1 ≤ i ≤ 2m, 2m+ 1 ≤ j ≤ 3m+ 1,
3m2 −m+ 4 + 2j, 2m+ 1 ≤ i ≤ j − 1, 2m+ 1 ≤ j ≤ 3m+ 1,
3m2 −m+ 5 + 2i, 2m ≤ i = j ≤ 3m,
3m2 + 3m+ 4, 1 ≤ j ≤ 2m− 1, j + 1 ≤ i ≤ 2m,
3m2 −m+ 4 + 2i, 1 ≤ j ≤ 2m− 1, 2m ≤ i ≤ 3m,
3m2 −m+ 4 + 2i, 2m ≤ j ≤ 3m+ 1, j + 1 ≤ i ≤ 3m,

and

d(a(3m+ 2, i, j)) =



3m2 + 5m+ 6− i+ j, 1 ≤ i ≤ j ≤ 2m,
3m2 + 3m+ 5− i+ 2j, 1 ≤ i ≤ 2m, 2m+ 1 ≤ j ≤ 3m+ 2,
3m2 +m+ 4 + 2j, 2m+ 1 ≤ i ≤ j − 1, 2m+ 1 ≤ j ≤ 3m+ 2,
3m2 +m+ 5 + 2i, 2m+ 1 ≤ i = j ≤ 3m+ 1,
3m2 + 5m+ 5, 1 ≤ j ≤ 2m− 1, j + 1 ≤ i ≤ 2m,
3m2 +m+ 4 + 2i, 1 ≤ j ≤ 2m, 2m+ 1 ≤ i ≤ 3m+ 1,
3m2 +m+ 4 + 2i, 2m ≤ j ≤ 3m+ 2, j + 1 ≤ i ≤ 3m+ 1.

Note that the result above is seen also to hold for n = 5, which could serve as the basis of
an inductive argument. When 1 ≤ i ≤ 2m − 1, the preceding formula may be written more
compactly for all m ≥ 2 and k = 0, 1, 2 as

d(a(3m+ k, i, j)) =

 3m2 + (2k + 1)m+ 3 + k, 1 ≤ j ≤ i− 1,
3m2 + (2k + 1)m+ 4 + k − i+ j, i ≤ j ≤ 2m,
3m2 + (2k − 1)m+ 4 + k − i+ 2j − δk∈{1,2}, 2m+ 1 ≤ j ≤ 3m+ k,

where δX = 1 or 0 depending on the truth or falsity of the statement X.
By considering the largest value of d(a(n, i, j)) over all i and j for a fixed n in Theorem 2,

we obtain the following result for d(a(n)).

Corollary 2 Let d
(k)
m denote the maximum outer perimeter of a member of I3m+k. Then we

have d
(k)
m = 3m2 + (2k + 5)m+

(
k+2
2

)
+ 2 for k = 0, 1, 2 and all m ≥ 1.

One can provide a direct explanation of this result as follows.

Combinatorial proof of Corollary 2: Let e(k)m denote the number of members of I3m+k such
that oper(π) = d

(k)
m . We will establish the formula for d

(k)
m in Corollary 2 and at the same time

show further that
e(0)m = e(1)m = 3 and e(2)m = 1, m ≥ 2,
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with e
(0)
1 = e

(2)
1 = 1 and e

(1)
1 = 2. By a maximal member of In, we mean one where the

maximum oper value, which we denote by dn, is achieved. Let en denote the number of maximal
members of In. One may verify e3 = 1, e4 = 2, e5 = 1 and e6 = e7 = 3, with the corresponding
sets of maximal sequences given by {113}, {1114, 1214}, {11315}, {111416, 113116, 121416} and
{1131517, 1214117, 1114117}, respectively, which implies d3 = 11, d4 = 15, d5 = 20, d6 = 25 and
d7 = 31.

We proceed to establish the formulas for dn and en by induction on n, assuming n ≥ 8.
Henceforth, let π = π1 · · ·πn ∈ In. If πn < n, then we may replace πn with n to obtain
a member of In with (strictly) larger outer perimeter. Further, if πn = n and πn−1 > 1,
then replacing πn−1 with 1 is seen to increase the outer perimeter. Applying Lemma 2 below,
repeatedly if necessary, it follows that if π is maximal, then we must have πi ∈ {1, i} for all
i ∈ [n], with πn−1 = 1 and πn = n. Clearly, the sequences 11 · · · 1n and 121 · · · 1n cannot be
maximal as n ≥ 8, so consider the largest index s ∈ [3, n − 2] such that πs = s. If s ≤ n − 4,
then such π cannot be maximal, as replacing πn−2 = 1 with n − 2 is seen to increase the oper
value, whence s ∈ {n− 2, n− 3}. It follows that the maximal members of In must belong to the
subset {π ∈ In : π = τ1n or ρ11n}, where τ and ρ denote maximal members of In−2 and In−3,
respectively. Then we have oper(π) = dn−2 + n + 4 if π = τ1n and oper(π) = dn−3 + 2n + 2 if
π = ρ11n, where dn−2 and dn−3 are given by the appropriate formula for d

(k)
m above based on

the value of n mod 3, by the induction hypothesis.
One may verify for all cases of n mod 3 that dn−3+n−2 > dn−2 for n ≥ 8, i.e., dn+n+1 > dn+1

for n ≥ 5, and hence only members of In of the form π = ρ11n are maximal when n ≥ 8. Further,
we get d

(k)
m = d

(k)
m−1 + 2(3m+ k + 1) and e

(k)
m = e

(k)
m−1 if 3m+ k ≥ 8, which implies by induction

the d
(k)
m and e

(k)
m formulas for k = 0, 1, 2 and all m ≥ 1. Note that if n = 6 or 7, then we get

dn−3 + n− 2 = dn−2, which accounts for the formulas in these cases. �

Lemma 2 Let n ≥ 5 and π = π1 · · ·πn ∈ In ending in 1n. Suppose that there exists at least one
index i ∈ [3, n− 2] such that πi /∈ {1, i} and let t be the largest such index. If t ≥ 4, then oper(π)
can be increased by replacing πt with 1 or t (possibly both). The same applies if t = 3, unless π
starts with 12215, in which case one can replace 22 with 13 to increase oper(π).

Proof. Given i ∈ [n] and 1 ≤ ` ≤ i, let π(i,`) denote the member of In obtained from π
by replacing πi with `. Let Π(i) denote the sequence of oper statistic values (oper(π(i,`)))i`=1,
starting with ` = 1. We will use the terms descent, level and ascent in the usual way to indicate
the relative sizes of a pair of adjacent entries in the sequence Π(i). First suppose πt+1 = t + 1.
Then one may verify that the sequence Π(t) is weakly decreasing and starts with a descent, which
implies oper(π) is increased by replacing 1 < πt < t with 1. Now suppose πt+1 = 1, πt+2 = t+2.
Then it can be shown that Π(t) in this case starts with zero or more descents, followed by one
or more levels, followed by zero or more ascents, where there must be at least one descent or
ascent. Indeed, if t ≥ 4, then Π(t) must contain at least one ascent if πt−1 = 1 or 2 and at least
one descent if πt−1 ≥ 3. In either case, we have oper(π) < max{oper(π(t,1)), oper(π(t,t))}. If
t = 3, then π starts either as 11215 or 12215, and one can make the replacements 2 by 3 or 22
or 13, respectively, to increase oper(π). Finally, if πt+1 = πt+2 = 1, then Π(t) starts with zero or
one descents, followed by zero or more levels, followed by one or more ascents, where there are
at least two ascents if Π(t) starts with a descent. Thus, replacing πt with t always increases the
outer perimeter in cases where πt+1 = πt+2 = 1, which completes the proof. �

Determining the greatest value of d(a(n, i, j)) amongst all i where n and j are fixed in Theorem
2 yields the following formula for d(a(n, j)).
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Corollary 3 Let n ≥ 4 and 1 ≤ j ≤ n. Then we have

d(a(n, j)) =


3m2 + 3 +max{2j −m, 3m}, if n = 3m;

3m2 + 2m+ 4 +max{2j −m− 1, 3m}, if n = 3m+ 1;

3m2 + 4m+ 6 +max{2j −m− 2, 3m}, if n = 3m+ 2.

One may extend the combinatorial argument given for Corollary 2 to explain the formula for
d(a(n, j)) as well.

Combinatorial proof of Corollary 3: The formula can be verified directly for n = 4 and
n = 5, so we may assume n ≥ 6. Let Π(i) be as in the proof of Lemma 2. Then it can be shown
that no descents or levels can occur anywhere to the right of the first ascent (if it exists) of Π(i)

for 3 ≤ i ≤ n − 1. Thus, when determining d(a(n, j)), i.e., the maximum outer perimeter of
a member of In,j , one may restrict attention to π = π1 · · ·πn ∈ In,j such that πi ∈ {1, i} for
1 ≤ i ≤ n− 1. Note that if πn−3 = πn−2 = πn−1 = 1, then replacing πn−2 = 1 with n− 2 is seen
to increase the oper value. Therefore, in finding d(a(n, j)), we need only consider π having one
of the following three forms: (i) π = α(n− 1)j, (ii) π = β(n− 2)1j or (iii) π = γ(n− 3)11j.

Let dn denote the maximum outer perimeter achieved by a member of In. Recall that
maximal members of In necessarily end in n for all n ≥ 1. Let 1 ≤ j ≤ n − 2. Then the
maximum oper value achieved by a member of In,j of the form (i), (ii) or (iii) above is given by
(a) dn−1 + 1, (b) dn−2 + j + 2 or (c) dn−3 + 2j + 2, respectively. If j = n− 1, then one gets for
these maximum values dn−1 + 2, dn−2 + n+ 2 and dn−3 + 2n instead. If j = n, then clearly the
maximum is given by dn. We then need to determine the largest of (a), (b) and (c) for each j.
To do so, we consider cases on n mod 3 and make use of the formula from Corollary 2.

If n = 3m, where m ≥ 2, then we need to compare (a) d3(m−1)+2 + 1 = 3m2 + 3m + 3, (b)
d3(m−1)+1 + j +2 = 3m2 +m+ j +3 and (c) d3(m−1) +2j +2 = 3m2 −m+2j +3. Note that if
1 ≤ j ≤ 2m, then (a)≥(b)≥(c), whereas if 2m + 1 ≤ j ≤ 3m − 2, then (c)>(b)>(a). Hence, we
have

d(a(3m, j)) =

{
3m2 + 3m+ 3, 1 ≤ j ≤ 2m,

3m2 −m+ 2j + 3, 2m+ 1 ≤ j ≤ 3m− 2.

Note that this may be written as a single formula as d(a(3m, j)) = 3m2 + 3+max{2j −m, 3m}
for 1 ≤ j ≤ 3m − 2. If j = 3m − 1, then we must compare 3m2 + 3m + 4, 3m2 + 4m + 3
and 3m2 + 5m + 1, with the last of these quantities being the greatest as m ≥ 2. If j = 3m,
then the maximum possible oper value is d3m = 3m2 + 5m + 3. Thus, the preceding formula
for d(a(3m, j)) where 1 ≤ j ≤ 3m − 2 is seen to hold also for j = 3m − 1, 3m. This completes
the proof of the formula for d(a(n, j)) when n = 3m. The arguments for the n = 3m + 1 and
n = 3m+ 2 cases are similar, which we leave to the reader. �

Remarks: It is possible to extend the combinatorial proof of Corollary 3 and obtain the for-
mulas for d(a(n, i, j)) given in Theorem 2 for any i and j, though several cases are required based
on the modular class of n mod 3 and the relative sizes of i and j. Note that when i ≥ j, there
are the following simple relations between d(a(n, i, j)) and d(a(n, j)):

d(a(n, i, j)) = d(a(n− 1, i)) + 1, i > j, and d(a(n, i, i)) = d(a(n− 1, i)) + 2,

which are easily realized directly.
We now consider members of In for which the outer perimeter is a minimum. Inspection

of the terms of a(n) for the first several values of n suggests that the coefficient corresponding
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to the smallest term q2n+2 is given by Mn−1, the (n − 1)-st Motzkin number (see A001006 in
[19]). Though we do not have a complete analytic proof of this result, a simple combinatorial
explanation can be given.

Proposition 1 There are Mn−1 members of In for n ≥ 1 for which the minimum outer perime-
ter of 2n + 2 is achieved. Moreover, the number of members of In,j where 1 ≤ j ≤ n for which
the minimum outer perimeter value of 2n + j + 1 on In,j is achieved corresponds to the array
A064189[n− 1, j − 1].

Proof. One may verify that in order for π = π1 · · ·πn ∈ In to achieve the minimum possible oper
value of 2n+2, it is necessary and sufficient for the πi to satisfy |πi+1−πi| ≤ 1 for 1 ≤ i ≤ n−1,
with πn = 1. Upon putting an up step u = (1, 1), a down step d = (1,−1) or a horizontal
step h = (1, 0) according to if πi+1 − πi equals 1, −1 or 0, respectively, one sees that members
of In for which the minimum oper is achieved are in one-to-one correspondence with the set of
Motzkin paths of length n−1, which establishes the first statement. Further, this bijection shows
that the minimal members of In,j are synonymous with first quadrant lattice paths containing
u, d and h steps and ending at the point (n− 1, j − 1), and hence are enumerated by the array
A064189[n− 1, j − 1] from [19]. �

Remark: The subset of In whose members satisfy |πi+1−πi| ≤ 1 for 1 ≤ i ≤ n−1 are studied
in greater detail in [17], where they are referred to as smooth inversion sequences.

2.3 Average outer perimeter
In this subsection, we find an explicit formula for the average outer perimeter of a member
of In. To do so, let AEy(x, v) = ∂

∂yAE(x, v) |q=1, ANy(x, v, u) = ∂
∂yAN(x, v, u) |q=1 and

APy(x, v, u) =
∂
∂yAP (x, v, u) |q=1, where y denotes either the q, x or v variable. By differentiating

both sides of (4) with respect to q, and setting q = 1, we obtain

AEq(x, v) = 2(3− 10v + 11v2 − 4v3)x2 + ((v − 1)3 + 1− (1− v)2x)AEq(xv, 1)

+ x(1− v)2AEq(x, 1) + 2x(1− v)2AEv(xv, 1) + v2x2(1− v)AEv(x, v)

+ (2v(1− v)2 + (v2x− v3 + v2 − v + 1)x)AE(x, v)− x(1− v)2AE(xv, 1)

+ x((1− 3v)(1− v)− v2x)AE(x, 1)− 2vx2(1− v)2AEx(xv, 1)

+
1

2
vx2(1− v)2AEvv(vx, 1), (5)

where AEvv(x, 1) =
∂2

∂v2AE(x, v) |q=v=1 and AE(x, v) is used here to denote AE(x, v) |q=1. To
solve the functional equation (5) for AEq(x, v), we use the fact

AE(x, v) |q=1=
∑
n≥2

(n− 1)!
1− vn−1

1− v
xn,

which follows from the definitions, and further, make a guess that

AEq(x, 1) = 6x2 +
∑
n≥3

(n− 2)!

(
n3 + 12n2 − 9n+ 4

8
+ (n− 1)Hn−1

)
xn,

where Hn =
∑n

k=1
1
k is the n-th harmonic number.
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Then, by (5), we obtain the following general formula for AEq(x, v):

AEq(x, v) = 6x2 − (11v2 + v − 8)x3

1− v
+
∑
n≥3

(n− 1)!Hnx
n+1 1− vn

1− v

+
∑
n≥3

(n− 2)!xn

(
x(n3 + 4n2 + 23n− 20)

8(v − 1)
− vx2(n− 1)(n− 2)(n− 3)

6(v − 1)

+
an(x, v)v

n−1 + 3bn(x, v)

24(1− v)4

)
,

where

an(x, v) = 24v5x2 − 72v4x2 − 60v4x+ 72v3x2 + 204v3x− 96v2x2 − 48v3 − 204v2x+ 24vx2

+ 96v2 + 84vx− 48v − 24x

− vx(v − 1)(44v3x− 88v2x− 21v2 + 44vx+ 42v − 24x− 21)n

+ 12vx(v − 1)3(2vx+ 5)n2 − vx(v − 1)3(4vx− 3)n3,

bn(x, v) = −8v3x2 + 12v3x+ 24v2x2 + 16v3 − 36v2x− 32v2 + 20vx+ 16v + 4x

+ x(v − 1)(8v2x− 15v2 + 14v + 1)n− 12x(v − 1)3n2 − x(v − 1)3n3.

This formula for AEq(x, v) can be shown to yield the expression that we guessed above for
AEq(x, 1), as required, upon taking the limit as v approaches 1. By Theorem 7, one can find
explicit formulas for ANq(x, v, u), APq(x, v, v) and APq(x, v, u) (as the expressions are rather
lengthy, we omit them), which implies the following result.

Theorem 3 We have

AEq(x, 1) +ANq(x, 1, 1) +APq(x, 1, 1) =
∑
n≥2

n!

(
n2 + 15n+ 2

8
+Hn +

1

n

)
xn.

That is, the average outer perimeter of members of In for n ≥ 2 is given by

n2 + 15n+ 2

8
+Hn +

1

n
.

It is also possible to explain the foregoing result directly without recourse to recurrences or
generating functions.

Combinatorial proof of Theorem 3: We may assume n ≥ 4, as the formula is apparent for
n = 2, 3. Throughout, let π = π1 · · ·πn ∈ In. In analogy to a right lateral square defined in the
proof of Lemma 1 above, a left lateral square will refer to the one bordering the left side of the
first column of π. Note first that there are n! left lateral, (n − 1)!(1 + 2 · · · + n) = (n+1)!

2 right
lateral and (2n)n! boundary squares (high and low) altogether within the members of In. We
now count two additional classes of squares that are defined as follows. By a right (left) border
outer perimeter square, we mean one that is neither a right (left) lateral nor high boundary
square and that borders the right (left) side of some column. Note that it is possible for a square
in column i of π for some 2 ≤ i ≤ n − 1 to be both a right and left border square, provided
πi +1 < m = min{πi−1, πi+1}, in which case there are m−πi − 1 such squares in column i. Our
strategy will be to find separate expressions for the totals of the right and left border squares
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taken over all the members of In and then subtract from the sum of these expressions the number
of squares that are both right and left border to correct for double counting.

To find the average number of right border squares, suppose π = π1 · · ·πn has a right border
square in column i occurring at height `. Then it is necessary and sufficient that 4 ≤ i ≤ n,
3 ≤ ` ≤ i− 1, 1 ≤ πi ≤ `− 2 and ` ≤ πi−1 ≤ i− 1. It is seen that the probability that there is
a right border square in column i at height ` within a randomly chosen member of In is given
by `−2

i

(
1− `−1

i−1

)
. Summing over 3 ≤ ` ≤ i gives

∑i
`=3

`−2
i

(
1− `−1

i−1

)
right border squares on

average lying in column i within the members of In. Note that

i∑
`=3

`− 2

i

(
1− `− 1

i− 1

)
=

1

i

i−2∑
`=1

`− 1

i(i− 1)

i−2∑
`=1

`(`+ 1) =

(
1

i
− 1

i(i− 1)

) i−2∑
`=1

`− 1

i(i− 1)

i−2∑
`=1

`2

=
i− 2

i(i− 1)
· (i− 1)(i− 2)

2
− 1

i(i− 1)
· (i− 1)(i− 2)(2i− 3)

6
=

(i− 2)(i− 3)

6i
.

Summing over 4 ≤ i ≤ n then yields
n∑

i=4

(i− 2)(i− 3)

6i
=

1

6

n∑
i=2

(
i− 5 +

6

i

)
=

n2 − 9n− 4

12
+Hn

right border squares on average in members of In for all n ≥ 4.
We now count left border squares in In. Note that a left border square occurs in column i of

π at height ` if and only if 2 ≤ i ≤ n−1, 3 ≤ ` ≤ i+1, 1 ≤ πi ≤ `−2 and ` ≤ πi+1 ≤ i+1. Thus,
the probability that there is a left border square in column i at height ` is given by `−2

i

(
1− `−1

i+1

)
.

Summing over 3 ≤ ` ≤ i+ 1 gives

i+1∑
`=3

`− 2

i

(
1− `− 1

i+ 1

)
=

1

i

i−1∑
`=1

`− 1

i(i+ 1)

i−1∑
`=1

`(`+ 1) =
1

i+ 1

(
i(i− 1)

2
− (i− 1)(2i− 1)

6

)
=

i− 1

6
,

and hence there are an average of
∑n−1

i=2
i−1
6 = (n−1)(n−2)

12 left border squares in members of In.
Finally, observe that a square in column i of π at height ` is both a right and left border

square if and only if 4 ≤ i ≤ n − 1, 3 ≤ ` ≤ i − 1, 1 ≤ πi ≤ ` − 2, ` ≤ πi−1 ≤ i − 1 and
` ≤ πi+1 ≤ i+1. Considering all possible ` then gives on average

∑i−1
`=3

`−2
i

(
1− `−1

i−1

)(
1− `−1

i+1

)
squares in column i in members of In that are both right and left border. Note that

i−1∑
`=3

`− 2

i

(
1− `− 1

i− 1

)(
1− `− 1

i+ 1

)

=
1

i

i∑
`=3

(`− 2)− 2

i2 − 1

i∑
`=3

(`− 1)(`− 2) +
1

i(i2 − 1)

i∑
`=3

(`− 1)2(`− 2)

=
1

i

i−2∑
`=1

`− 2

i2 − 1

i−2∑
`=1

`(`+ 1) +
1

i(i2 − 1)

i−2∑
`=1

`(`+ 1)2

=
1

i(i+ 1)
+

1

i(i2 − 1)

i−1∑
`=1

(
(i2 − 2i)`− 2(i− 1)`2 + `3

)
=

1

i(i+ 1)
+

i− 4

12
,



ENUMERATION OF INVERSION SEQUENCES 43

and summing over 4 ≤ i ≤ n− 1 gives on average

n−1∑
i=4

1

i(i+ 1)
+

n−1∑
i=4

i− 4

12
=

1

4
− 1

n
+

(n− 4)(n− 5)

24
=

n2 − 9n+ 26

24
− 1

n

squares in members of In for n ≥ 2 that are both right and left border. Combining the formulas
found above, we have that the average outer perimeter on In is given by

1 +
n+ 1

2
+ 2n+

n2 − 9n− 4

12
+Hn +

(n− 1)(n− 2)

12
−
(
n2 − 9n+ 26

24
− 1

n

)
=

n2 + 15n+ 2

8
+Hn +

1

n
,

as desired. �

3 Distribution of inner perimeter
Let b(n, i, j) denote the distribution of the inner perimeter statistic on In,i,j and let b(n, j) =∑n−1

i=1 b(n, i, j) for n ≥ 2 be the corresponding distribution on In,j , with b(1, 1) = q. Let
b(n, i, j) = b(n, j) = 0 in all cases where the set over which the distribution is taken is empty.

Then the b(n, i, j) satisfy the following recurrence relations.

Lemma 3 If n ≥ 2, then

b(n, i, j) =

j−1∑
k=1

qj−k+1b(n− 1, k, i) + q

n−2∑
k=j

b(n− 1, k, i), 1 ≤ j < i ≤ n− 1, (6)

b(n, 1, j) = qjb(n− 1, 1), 1 ≤ j ≤ n, (7)

b(n, i, j) =

i−1∑
k=1

qj−k+1b(n− 1, k, i) +

n−2∑
k=i

qj−i+2b(n− 1, k, i), 2 ≤ i ≤ j ≤ n, (8)

with initial value b(1, 1) = q.

Proof. In each case, we append a column of size j to ρ ∈ In−1,k,i to obtain π = π1 · · ·πn ∈ In,i,j .
First suppose n ≥ 3 and 2 ≤ i ≤ j ≤ n, with i < n. If 1 ≤ k ≤ i − 1, then in going from ρ to
π, one introduces j inner perimeter squares (i.e., those in the appended column), while at the
same time, taking away from the inner perimeter the k − 1 squares in the final column of ρ at
heights 2, 3, . . . , k. Thus, we get a contribution of qj−k+1b(n − 1, k, i) for such π and summing
over k ∈ [i− 1] accounts for the first summation on the right side of (8). On the other hand, if
i ≤ k ≤ n− 2, then appending a column of size j to ρ always results in their being a net increase
of j − (i − 2) in the iper value, as the middle i − 2 squares in the final column of ρ cease to be
part of the inner perimeter. Considering all i ≤ k ≤ n − 2 yields the second sum on the right
side and completes the proof of (8). On the other hand, if i = 1, then no inner perimeter squares
of ρ are lost when j is appended, regardless of the value of k, which implies (7). Now assume
1 ≤ j < i ≤ n − 1. If 1 ≤ k ≤ j − 1, then reasoning as in the first part of the proof above of
(8) yields the first sum on the right side of (6). On the other hand, if j ≤ k ≤ n − 2, then the
squares at heights 2, 3, . . . , j in the final column of ρ are lost from the inner perimeter when j
is appended, resulting in their being an increase of 1 in the iper value. This accounts for the
second part of formula (6) and completes the proof. �
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Analogous to before, we define the following generating functions

BN(x, v, u, q) =
∑
n≥3

n−2∑
j=1

n−1∑
i=j+1

b(n, i, j)xnvi−1ui−j−1

and

BP (x, v, u, q) =
∑
n≥2

n∑
j=1

j∑
i=1

b(n, i, j)xnvi−1uj−i.

Let b(n) =
∑n−1

i=1

∑n
j=1 b(n, i, j) =

∑n
j=1 b(n, j) for n ≥ 2, with b(1) = q. Then b(n) gives the

distribution on all of In for the inner perimeter statistic. Note that the generating function of
b(n) for n ≥ 1 is given by qx+BN(x, 1, 1, q) +BP (x, 1, 1, q).

By rewriting (6)–(8) in terms of generating functions (we omit the details), we obtain the
following system of functional equations.

Theorem 4 We have

BN(x, v, u, q) =
qx

u− q

( q
u
BP (x, v, uv, q)−BP (x, v, qv, q)

)
+

qx

1− u

(
1

u
BP (x, v, vu, q)−BP (x, vu, vu, q) +

1

vu2
BN(x, v,

1

vu
, q)

− 1

vu
BN(x, vu,

1

vu
, q)

)
+

qx

vu2(1− u)

(
u2BN(x, v,

1

v
, q)−BN(x, v,

1

vu
, q)

)
,

BP (x, v, u, q) = q2(qu+ 1)x2 +
qx

1− qu

(
BP (x, v, qv, q)− quBP (qux,

v

qu
,
v

u
, q)

)
− q(1− q)x

1− qu

(
BP (x, v, 0, q)− quBP (qux,

v

qu
, 0, q)

)
+

q2x

v(1− qu)

(
BN(x, v,

1

v
, q)− q2u2BN(qux,

v

qu
,
qu

v
, q)

)
+

q(1− q)x

1− qu
(C(x, q)− quC(qux, q))

+
q(1− q)x

1− qu
(BP (x, 0, 0, q)− quBP (qux, 0, 0, q)),

where C(x, q) denotes the free coefficient of u in the generating function uBN(x, 1
u , u, q).

We are unable to solve the preceding system explicitly for BN(x, v, u, q) and BP (x, v, u, q).
Further, the inner perimeter statistic, unlike the outer, is not sign-balanced on the set In for
n ≥ 2, since taking u = v = 1 and q = −1 gives the series expansion∑

n≥2

b(n) |q=−1 xn = −2x4 + 6x5 − 16x6 + 40x7 − 76x8 + 148x9 − 1232x11 + 8776x12 + · · · .

We remark that we did not find this sequence (or its absolute value) in the OEIS [19] nor have
we found an explicit expression for it. In the next two subsections, we consider the degree and
minimum q-exponent of the polynomial b(n), the first and last coefficients of b(n) and the value
of the derivative of b(n) evaluated at q = 1.
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3.1 Maximum and minimum inner perimeter
By induction on n and Lemma 3, we have the following formula for d(b(n, i, j)).

Theorem 5 For all m ≥ 1,

d(b(3m, i, j)) =


3m2 −m+ j, i = 1 ≤ j ≤ 3m,
3m2 −m+ 1, 2 ≤ i ≤ m, 1 ≤ j ≤ i− 1,
3m2 −m+ 2 + j − i, 2 ≤ i ≤ m, i ≤ j ≤ 3m,
3m2 − 2m+ 1 + i, m+ 1 ≤ i ≤ 3m− 1, 1 ≤ j ≤ m,
3m2 − 3m+ 1 + j + i, m+ 1 ≤ i ≤ 3m− 1, m+ 1 ≤ j ≤ 3m,

d(b(3m+ 1, i, j)) =



3m2 +m+ j, i = 1 ≤ j ≤ 3m+ 1,
3m2 +m+ 1, 2 ≤ i ≤ m, 1 ≤ j ≤ i− 1,
3m2 +m+ 2 + j − i, 2 ≤ i ≤ m, i ≤ j ≤ 3m+ 1,
3m2 + 1 + i, m+ 1 ≤ i ≤ 3m, 1 ≤ j ≤ m,
3m2 −m+ 1 + j + i, i = m+ 1 ≤ j ≤ 3m+ 1,
3m2 −m+ j + i, m+ 2 ≤ i ≤ 3m, m+ 1 ≤ j ≤ 3m+ 1,

and

d(b(3m+ 2, i, j)) =


3m2 + 3m+ 1 + j, i = 1 ≤ j ≤ 3m+ 2,
3m2 + 3m+ 2, 2 ≤ i ≤ m+ 1, 1 ≤ j ≤ i− 1,
3m2 + 3m+ 3 + j − i, 2 ≤ i ≤ m+ 1, i ≤ j ≤ 3m+ 2,
3m2 + 2m+ 1 + i, m+ 2 ≤ i ≤ 3m+ 1, 1 ≤ j ≤ m+ 1,
3m2 +m+ j + i, m+ 2 ≤ i ≤ 3m+ 1, m+ 2 ≤ j ≤ 3m+ 2.

Concerning the degree of the polynomial b(n), which corresponds to the maximum iper value
of a member of In, we have the following result which is a consequence of Theorem 5.

Corollary 4 Let u
(k)
m denote the maximum inner perimeter of a member of I3m+k. Then we

have u
(k)
m = 3m2 + (2k + 3)m+

(
k+1
2

)
for k = 0, 1, 2 and all m ≥ 1.

Combinatorial proof of Corollary 4: Let v
(k)
m denote the number of members of I3m+k

such that oper(π) = u
(k)
m . We will establish the formula for u

(k)
m in Corollary 4 and at the same

time show further that
v(0)m = 1, v(1)m = 3 and v(2)m = 2, m ≥ 1.

By a maximal member of In, we mean here one for which the greatest value of the inner perimeter
on In is achieved. Let I∗

n denote the set of maximal members of In, with vn = |I∗
n|. Then for

3 ≤ n ≤ 5, we have v3 = 1, v4 = 3 and v5 = 2, with the corresponding sets I∗
n given by {123},

{1134, 1224, 1234} and {12145, 12245}. Note that members of I∗
n must end in n, as the sequence

of iper values of π(n,`) for 1 ≤ ` ≤ n is seen to be weakly increasing, ending in an ascent. Consider
forming π = π1 · · ·πn ∈ In from π′ = π1 · · ·πn−3 ∈ In−3 where n ≥ 6 by appending πn−2πn−1πn.
Then we have d := iper(π)− iper(π′) ≤ 2n for all π ∈ In. To prove this, we may assume πn = n
and consider two general cases as follows. First suppose that at most two out of three squares in
columns n− 2, n− 1 and n at height ` for each ` ∈ [2, n− 2] belong to the inner perimeter of π.
Further, the three squares at height 1 in these columns are always part of the inner perimeter,
as are the top two squares in column n since πn = n and the top square in column n − 1 if
πn−1 = n− 1. Then the maximum possible value of d is given by 2(n− 3) + 6 = 2n in this case.
Note that such a difference is indeed achieved when πn−2 = 1, πn−1 = n − 1 and πn = n. Now
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suppose for some ` ∈ [2, n − 2] that the three squares in columns n − 2, n − 1 and n at height
` all belong to the inner perimeter of π. Then it is seen that there is only one such ` and it
must correspond to min{πn−1, πn−2} when it exists. Further, the existence of such an ` implies
πn−1 < n− 1. But then the top square in column n− 1 fails to belong to the inner perimeter of
π and d ≤ 2n once again.

We now claim that if πn−1 < n − 1 within π ∈ In where n ≥ 5, then π cannot be maximal.
To prove this, we may assume πn = n and π′ ∈ I∗

n−3, for if either fails to hold, then π cannot
be maximal, as either condition failing to hold would imply that iper(π) is strictly less than
the iper value of the member of In obtained by appending 1(n − 1)n to a member of I∗

n−3. If
min{πn−1, πn−2} = 1, then no such ` ∈ [2, n− 2] as described above exists. Then πn−1 < n− 1
implies d < 2n and thus π cannot be maximal. So assume πn−1, πn−2 ≥ 2. If πn−2 = 2 and
πn−1 = n − 2, then n ≥ 5 and πn = n implies the square at height two in column n − 1 is not
counted in iper(π). Then no height ` as described above would exist in this case and once again
d < 2n. If πn−2 = 2 and πn−1 < n − 2, then such a height ` may exist in this case, but this is
offset by the fact that there would be at least one height (namely, n− 2) where only one of the
final three squares at that height is counted in iper(π), and hence d < 2n in this case also. On
the other hand, if πn−2 ≥ 3, then πn−1 ≥ 2 and π′ ending in n− 3 (being maximal) would imply
that the square at height two in column n−2 is not part of the inner perimeter of π. Considering
separately when πn−1 = 2 or πn−1 > 2 leads again to the conclusion that d < 2n in either case,
which completes the proof of the claim.

Then each π ∈ I∗
n for n ≥ 6 is obtained by appending a(n− 1)n to π′ ∈ I∗

n−3 for some a ≥ 1.
If a > 1, then the square at height two in the final column of π′ would cease to be part of the
inner perimeter after a(n − 1)n is appended, as n ≥ 6 implies the penultimate letter of π′ is at
least two. This would cause for π not to be maximal, so we must have a = 1. Thus, all members
of I∗

n for n ≥ 6 arise by appending 1(n − 1)n to members of I∗
n−3. This implies vn = vn−3 for

n ≥ 6, which yields the second statement. Further, we have that members of I∗
n for n ≥ 6 are of

the form π = ρ1(`− 1)` · · · 1(n− 1)n, where ` ∈ {6, 7, 8} with n ≡ ` (mod 3) and ρ ∈ I∗
3 , I∗

4 or
I∗
5 , whichever is appropriate. Computing the inner perimeter of the maximal π in each case of

n mod 3 yields the formula given for u
(k)
n and completes the proof. �

By Theorem 5, we obtain the following formula for d(b(n, j)).

Corollary 5 Let n ≥ 1 and 1 ≤ j ≤ n. Then we have

d(b(n, j)) =


3m2 +max{m, j}, if n = 3m;

3m2 + 2m+max{m+ 1, j}, if n = 3m+ 1;

3m2 + 4m+ 1 +max{m+ 1, j}, if n = 3m+ 2.

Combinatorial proof of Corollary 5: We may assume n ≥ 5, as the formula may be verified
directly for 1 ≤ n ≤ 4. Given π = π1 · · ·πn ∈ In, let π(i,`) be as in the proof of Lemma 2 above
and Π̃(i) = (iper(π(i,`))i`=1 denote the corresponding sequence of iper values, starting with ` = 1.
Note that Π̃(i) where 3 ≤ i ≤ n starts with an ascent, i.e., iper(π(i,1)) < iper(π(i,2)), if and only
if min{πi−1, πi−2} = 1 or 2 and min{πi+1, πi+2} = 1 or 2, where we take πn+1 = πn+2 = 1 when
i = n or n − 1 and a minimum of 2 can occur in either case only when πi−1 = 2 or πi+1 = 2.
Further, Π̃(i) has an ascent at index ` ≥ 2, i.e., iper(π(i,`)) < iper(π(i,`+1)) for some ` ∈ [2, i− 1],
if and only if ` > min{πi−1, πi+1} and either (I) ` ≥ M − 1, where M = max{πi−1, πi+1}, or
(II) ` ≤ M − 2 and increasing the i-th entry of π from ` to ` + 1 does not eliminate from the
inner perimeter a square at height ` + 1 in either column i − 1 or i + 1. From the preceding
characterizations for when an ascent occurs, it is seen that Π̃(i) cannot contain a descent anywhere
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to the right of its first ascent (if it exists). Moreover, if an ascent in Π̃(i) occurs at index ` for
some ` ≥ 2, then such an ascent must be followed by another ascent. Thus, the maximum value
of Π̃(i) is always achieved at ` = 1 or ` = i (possibly both).

Let π = π1 · · ·πn ∈ In,j , where n ≥ 5 and 1 ≤ j ≤ n. By the preceding, in determining the
maximum inner perimeter achieved by a member of In,j , we may restrict attention to those π
such that πi ∈ {1, i} for 1 ≤ i ≤ n − 1. Note that if π is of the form π = π′1(n − 2)(n − 1)j,
then the sequence Π̃(n−3) is (weakly) decreasing, as increasing the (n − 3)-rd entry of π from `
to ` + 1 would eliminate from the inner perimeter the square at height ` + 1 in column n − 2.
Thus, we may assume πn−3 = 1 if πn−2 = n − 2 and πn−1 = n − 1 within π ∈ In,j when
maximizing the inner perimeter of π. Therefore, in order to ascertain d(b(n, j)), one need only
consider π ∈ In,j having one of the following three forms: (i) π = α1j, (ii) π = β1(n − 1)j or
(iii) π = γ1(n−2)(n−1)j. Clearly, we may take α, β and γ to be maximal in order to maximize
iper(π) in each case.

Let un = d(b(n)) denote the largest inner perimeter of a member of In. Clearly, if j = 1 or
j = n, then we have d(b(n, 1)) = un−1 + 1 and d(b(n, n)) = un in these cases, so we may assume
2 ≤ j ≤ n − 1. Then the maximum value of iper(π) for π of the forms (i), (ii) and (iii) above
are given by un−2 + j + 1, un−3 + n+ j and un−4 + 2n− 1 + δj,n−1, respectively. We must then
determine the largest of these three quantities. To do so, we consider cases on n mod 3 and
recall the formula for un from Corollary 4. If n = 3m for some m ≥ 2, then the three quantities
work out respectively to u3(m−1)+1 + j + 1 = 3m2 − m + j, u3(m−1) + 3m + j = 3m2 + j and
u3(m−2)+2 + 6m− 1 + δj,3m−1 = 3m2 +m+ δj,3m−1. If 2 ≤ j ≤ m, then the largest of the three
quantities is given by 3m2 +m, whereas if m < j ≤ 3m− 1, then it is 3m2 + j. Thus, in general,
we have d(b(3m, j)) = 3m2 +max{m, j} for 2 ≤ j ≤ 3m− 1, with this formula seen to hold also
for j = 1 and j = 3m. This establishes the first formula stated above for d(b(n, j)). Similar
arguments can be given in the n = 3m+ 1 and n = 3m+ 2 cases. �

Remark: One can extend the combinatorial proof of Corollary 5 to realize the formulas for
d(b(n, i, j)) in Theorem 5, though a more intricate analysis is needed.

The smallest q-exponent on the other hand of a term appearing in the polynomial b(n), which
corresponds to the minimum iper value of a member of In, is clearly equal to n and is achieved
only by the inversion sequence 11 · · · 1. Moreover, the lowest exponent of a term appearing in
b(n, i, j) and b(n, j) is given by n+ i+ j − 2 and n+ j − 1, respectively. Note that π ∈ In,i,j for
which the minimum iper value is achieved can be decomposed as π = 1aαij if 2 ≤ i ≤ j, where
a ≥ 1 and α is a (strictly) decreasing possibly empty sequence in [2, i − 1], or as π = 1aβij if
1 ≤ j < i, where a ≥ 1 and β is decreasing in [2, j]. Thus, there are 2i−2 members π ∈ In,i,j for
which iper(π) = n + i + j − 2 if 2 ≤ i ≤ j and 2j−1 such members of In,i,j if 1 ≤ j < i, with
only a single π ∈ In,1,j for which iper(π) = n+ j − 1. Summing over i shows that the coefficient
of the lowest degree term in b(n, j) =

∑n−1
i=1 b(n, i, j) always equals one, which is easily realized

directly.

3.2 Average inner perimeter
Theorem 6 The average inner perimeter of members of In for n ≥ 2 is given by

3n2 + 41n− 28

24
− Hn

2
+

1

n
.

Proof. Let t(n, i, j) = d
dq b(n, i, j) |q=1 and note b(n, i, j) |q=1= (n − 2)!. Define t(n, j) =

d
dq b(n, j) |q=1=

∑n−1
i=1 t(n, i, j). Differentiating both sides of (6)–(8) with respect to q, and
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letting q = 1, gives the following formulas for t(n, i, j) where n ≥ 3:

t(n, i, i) = t(n− 1, i) +

((
i+ 1

2

)
+ 2n− 3− 2i

)
(n− 3)!− δi,1(n− 2)!, 1 ≤ i ≤ n− 1, (9)

t(n, i, j) = t(n− 1, i) +

((
j + 1

2

)
+ (j − i+ 2)(n− 1− (j + i+ 1)/2)

)
(n− 3)!,

2 ≤ i < j ≤ n, (10)
t(n, 1, j) = t(n− 1, 1) + j(n− 2)!, 2 ≤ j ≤ n, (11)

t(n, i, j) = t(n− 1, i) +

((
j + 1

2

)
+ n− 2− j

)
(n− 3)!, 1 ≤ j < i ≤ n− 1. (12)

Summing (10) and (12) over i for a fixed j ∈ [2, n− 1] yields respectively

j−1∑
i=2

t(n, i, j)

=

j−1∑
i=2

t(n− 1, i) +

(
(n− 3 + j)

(
j + 1

2

)
− (j + 1)(j2 − 4)

2
+

(
j

3

)
− 3n+ 3

)
(n− 3)!,

n−1∑
i=j+1

t(n, i, j) =

n−1∑
i=j+1

t(n− 1, i) + (n− 1− j)

((
j + 1

2

)
+ n− 2− j

)
(n− 3)!.

To the sum of the last two equations, we add (9) with i replaced by j and (11), which yields

t(n, j) = t(n− 1) +

(
(n− 2)2 + j2(n− 2)− j(j − 1)(2j − 1)

6
+ δj,n

)
(n− 3)!, 1 ≤ j ≤ n,

(13)

after several algebraic steps, where t(n) = d
dq b(n) |q=1=

∑n
j=1 t(n, j). Note that the j = 1 and

j = n cases of (13) require a separate argument. Summing (13) over 1 ≤ j ≤ n, we obtain

t(n)− nt(n− 1) =

n(n− 2)2 + (n− 2)

n∑
j=1

j2 −
n∑

j=1

(
j

3

)
−

n∑
j=1

j(j2 − 1)

6
+ 1

 (n− 3)!

=

(
n(n− 2)2 +

n(n+ 1)(n− 2)(2n+ 1)

6
−
(
n+ 1

4

)
− n2(n+ 1)2

24

+
n(n+ 1)

12
+ 1

)
(n− 3)!

=
3n3 + 16n2 − 25n− 6

12
(n− 2)!.

An induction on n ≥ 2 using the last equality now gives

t(n) =

(
3n2 + 41n− 28

24
− Hn

2
+

1

n

)
n!,

as desired. �
It is also possible to provide a combinatorial explanation of the prior result, which like the

proof of Theorem 3 above, features a double counting argument.
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Combinatorial proof of Theorem 6: We may assume n ≥ 4, as the formula is apparent for
n = 2, 3. First note that there are n · n! inner perimeter squares occurring at height 1 within
all the members of In and also the same number occurring at the top of a column within a
bargraph. From this, we must subtract the number of squares that correspond to a column of
height one within an inversion sequence, of which it is seen that there are Hn · n!. Thus, there
are (2n−Hn)n! inner perimeter squares altogether that occur at the top or bottom of a column.
To count the remaining inner perimeter squares in In, we divide them into two general classes as
follows. By a right (left) border inner perimeter square, we mean one that does not occur at the
top or the bottom of a column of a bargraph and whose right (left) side borders the boundary
of the bargraph.

Let π = π1 · · ·πn ∈ In. To count the right border squares in In, first note that π has a right
border square at height ` in column i where i < n if and only if 3 ≤ i ≤ n − 1, 2 ≤ ` < πi ≤ i
and 1 ≤ πi+1 ≤ `− 1. Further, π has a right border square at height ` in column n if and only
if 3 ≤ `+ 1 ≤ πn ≤ n. Considering all possible i and `, this yields on average

n−1∑
i=3

i−1∑
`=2

`− 1

i+ 1

(
1− `

i

)
+

n−1∑
`=2

(
1− `

n

)
=

n−1∑
i=3

(
i− 1

i(i+ 1)

i−2∑
`=1

`− 1

i(i+ 1)

i−2∑
`=1

`2

)
+

1

n

n−2∑
`=1

`

=
n−1∑
i=3

(i− 1)(i− 2)

6(i+ 1)
+

(n− 1)(n− 2)

2n
=

n2 − 9n− 4

12
+Hn +

(n− 1)(n− 2)

2n

=
n2 − 3n− 22

12
+Hn +

1

n

right border squares in members of In. Note that π has a left border square at height ` in column
i where i < n if and only if 3 ≤ i ≤ n− 1, 2 ≤ ` < πi ≤ i and 1 ≤ πi−1 ≤ `− 1. This yields

n−1∑
i=3

i−1∑
`=2

`− 1

i− 1

(
1− `

i

)
=

n−1∑
i=3

i− 2

6
=

(n− 2)(n− 3)

12

left border squares on average within the members of In, excluding those occurring in the final
column.

From the total of the previous two cases, we must subtract the number of squares that are
counted twice, i.e., those whose right and left sides both touch the boundary of a bargraph and
do not occur in the last column or at the top or bottom of a column. Note that π has an inner
perimeter square at height ` in column i where i < n that is both a right and left border square
if and only if the two sets of necessary conditions specified above for i and ` are simultaneously
satisfied. Considering all possible i and ` gives on average

∑n−1
i=3

∑i−1
`=2

(`−1)2

i2−1

(
1− `

i

)
such squares

in members of In. Note that

i−1∑
`=2

(`− 1)2

i2 − 1

(
1− `

i

)
=

1

i2 − 1

i−2∑
`=1

`2 − 1

i(i2 − 1)

i−2∑
`=1

`2(`+ 1) =
1

i(i+ 1)

i−1∑
`=1

`2 − 1

i(i2 − 1)

i−1∑
`=1

`3

=
(i− 1)(2i− 1)

6(i+ 1)
− i(i− 1)

4(i+ 1)
=

(i− 1)(i− 2)

12(i+ 1)
,

and hence
n−1∑
i=3

i−1∑
`=2

(`− 1)2

i2 − 1

(
1− `

i

)
=

n−1∑
i=3

(i− 1)(i− 2)

12(i+ 1)
=

n2 − 9n− 4

24
+

Hn

2
.
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Combining the previous cases, and subtracting the number of twice counted squares, implies that
the average iper value on In is given by

2n−Hn +

(
n2 − 3n− 22

12
+Hn +

1

n

)
+

(n− 2)(n− 3)

12
−
(
n2 − 9n− 4

24
+

Hn

2

)
=

3n2 + 41n− 28

24
− Hn

2
+

1

n
,

as desired. �

4 Appendix
We derive in this section the functional equation for AE(x, v) given in Theorem 1.

First note that by (1)–(3), we have

AE(x, v) = q2
∑
n≥2

n−1∑
j=1

a(n− 1, j)xnvj−1 = q6x2 + q2x
∑
n≥2

n∑
j=1

n−1∑
i=1

a(n, i, j)xnvj−1

= q6x2 + q2xAE(x, v) + q2xAP (x, v, v) +
q2x

v
AN(x, v,

1

v
), (14)

AN(x, v, u) = q
∑
n≥3

n−2∑
i=1

n−1∑
j=i+1

n−2∑
k=1

a(n− 1, k, j)xnvj−1uj−i−1

= qx
∑
n≥3

n−2∑
i=1

n−1∑
j=i+1

a(n, j, j)xnvj−1uj−i−1

+ qx
∑
n≥2

n−1∑
i=1

n∑
j=i+1

j−1∑
k=1

a(n, k, j)xnvj−1uj−i−1

+ qx
∑
n≥4

n−3∑
i=1

n−2∑
j=i+1

n−1∑
k=j+1

a(n, k, j)xnvj−1uj−i−1

= qx
∑
n≥3

n−1∑
j=2

j−1∑
i=1

a(n, j, j)xnvj−1uj−i−1 + qx
∑
n≥2

n∑
j=2

j−1∑
i=1

j−1∑
k=1

a(n, k, j)xnvj−1uj−i−1

+ qx
∑
n≥4

n−2∑
j=2

j−1∑
i=1

n−1∑
k=j+1

a(n, k, j)xnvj−1uj−i−1

= qx
∑
n≥2

n−1∑
j=1

a(n, j, j)xnvj−1 1− uj−1

1− u
+ qx

∑
n≥2

n∑
j=2

j−1∑
k=1

a(n, k, j)xnvj−1 1− uj−1

1− u

+ qx
∑
n≥3

n−2∑
j=1

n−1∑
k=j+1

a(n, k, j)xnvj−1 1− uj−1

1− u

=
qx

1− u
(AE(x, v)−AE(x, uv) +AP (x, v, v)−AP (x, uv, uv))

+
qx

1− u

(
1

v
AN(x, v,

1

v
)− 1

uv
AN(x, uv,

1

uv
)

)
(15)
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and

AP (x, v, u) = q7ux2 +
∑
n≥3

n∑
j=2

j−1∑
i=1

i∑
k=1

q2j−2i+1a(n− 1, k, i)xnvi−1uj−i

+
∑
n≥3

n∑
j=2

j−1∑
i=1

j−1∑
k=i+1

q2j−k−i+2a(n− 1, k, i)xnvi−1uj−i

+
∑
n≥4

n−2∑
j=2

j−1∑
i=1

n−2∑
k=j

qj−i+2a(n− 1, k, i)xnvi−1uj−i

= q7ux2 + qx
∑
n≥2

n∑
i=1

i∑
k=1

n+1∑
j=i+1

q2j−2ia(n, k, i)xnvi−1uj−i

+ q2x
∑
n≥3

n−2∑
i=1

n−1∑
k=i+1

n+1∑
j=k+1

q2j−k−ia(n, k, i)xnvi−1uj−i

+ q2x
∑
n≥3

n−2∑
i=1

n−1∑
k=i+1

k∑
j=i+1

qj−ia(n, k, i)xnvi−1uj−i

= q7ux2 +
q3ux

1− q2u

∑
n≥2

n∑
i=1

i∑
k=1

a(n, k, i)xnvi−1(1− q2n+2−2iun+1−i)

+
q4ux

1− q2u

∑
n≥3

n−2∑
i=1

n−1∑
k=i+1

a(n, k, i)xnvi−1(qk−iuk−i − q2n+2−k−iun+1−i)

+
q3ux

1− qu

∑
n≥3

n−2∑
i=1

n−1∑
k=i+1

a(n, k, i)xnvi−1(1− qk−iuk−i)

= q7ux2 +
q3ux

1− q2u

(
AE(x, v)−AE(q2ux,

v

q2u
) +AP (x, v, v)

−AP (q2ux,
v

q2u
,

v

q2u
)

)
+

q5u2x

v(1− q2u)

(
AN(x, v,

qu

v
)−AN(q2ux,

v

q2u
,
qu

v
)

)
+

q3ux

v(1− qu)

(
AN(x, v,

1

v
)− quAN(x, v,

qu

v
)

)
. (16)

It is then possible to express the generating functions AN(x, v, u) and AP (x, v, u) in terms
of AE(x, v).

Theorem 7 We have

AN(x, v, u) =
1

q(1− u)
(AE(x, v)−AE(x, uv)), (17)

AP (x, v, v) = −q4x+
1− q2x

q2x
AE(x, v) +

AE(x, v)−AE(x, 1)

q(1− v)
(18)
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and

AP (x, v, u) =
(q2(q − 1)ux+ (qu− v)(v − 1))qu

(v − qu)(1− q2u)(1− v)
AE(x, v) +

q3(1− q)u2x

(1− qu)(1− q2u)(1− v)
AE(x, 1)

− q4u2x

(1− q2u)(v − q2u)
AE(q2ux, 1)

+
q6(q − 1)u3x− (v − q2u)(v − qu)

q(1− q2u)(v − q2u)(v − qu)
AE(q2ux,

v

q2u
)

+
q4u2x

(1− q2u)(v − qu)
AE(q2ux,

1

q
) +

q3(1− q)u2x

(1− q2u)(v − qu)(1− qu)
AE(x, qu). (19)

Moreover,

AE(x, v) =
q6x2 + q2xAP (x, v, v) + q2x

v AN(x, v, 1
v )

1− q2x
. (20)

Proof. By (14), we have (20), which leads to (17), by (15). Hence, by (17) and (20), we obtain
(18). Substituting (18) into (16), and making use of (17), then yields (19). �

Using Theorem 7, one can now obtain the functional equation formula given in Theorem 1
after several algebraic steps.
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