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Abstract

The integer sequence m = 7 - - - Ty, is said to be an inversion sequence if 0 < m; <i—1
for all i. Let Z,, denote the set of inversion sequences of length n, represented using positive
instead of non-negative integers. We consider here two new statistics defined on the bargraph
representation b(m) of an inversion sequence m which record the number of unit squares
touching the boundary of b(w) and that are either exterior or interior to b(w). We denote
these statistics on Z,, recording the number of outer and inner perimeter squares respectively
by oper and iper. In this paper, we study the distribution of oper and iper on Z,, and also on
members of Z,, that end in a particular letter. We find explicit formulas for the maximum
and minimum values of oper and iper achieved by a member of Z,, as well as for the average
value of these parameters. We make use of both algebraic and combinatorial arguments in
establishing our results.
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1 Introduction

Let ¢ = 01 - - 0, be a permutation of [n] = {1,...,n}, represented using the one-line notation.
Define the sequence a = ag - - - a,, where a; records the number of elements of [i — 1] occurring
to the right of the letter ¢ in o for 1 < i < n. Then a is called the inversion sequence (or
inversion table) of o (see, e.g., [20] p. 21]). For example, o = 364215 € Sg has inversion sequence
a = 012204; note that 0 < a; < i — 1 for all 5. Conversely, starting with a, one can easily
reconstruct the corresponding permutation o. For our purposes, we will add 1 to each entry
of a since it will be more convenient to represent the resulting sequence geometrically. The
enumeration of inversion sequences satisfying various restrictions has been an ongoing object of
interest in combinatorics. For example, the pattern avoidance problem on inversion sequences
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has been studied from several perspectives, initiated in the papers [I4] and [7] concerning the
classical avoidance of a single permutation or word pattern of length three, in analogy with the
comparable problem on permutations. For extensions of this work in various directions, see, e.g.,
[6, 18, ), [10, 18, 2T, 22].

Recall that a bargraph is a self-avoiding random walk in the first quadrant starting at the
origin and ending at (n,0) consisting of up (0,1), down (0,—1) and horizontal (1,0) steps.
The bargraph representation b(7) of a sequence 7 = 7 - - - 7, of positive integers is obtained by
requiring that the number of unit squares in the i-th column of b(7) be given by 7; for 1 <i <n
(i.e., the height above the z-axis of the i-th horizontal step of b(7) equals 7;). Many different
parameters have been considered on bargraphs representing various kinds of sequences 7; see,
for example, the review paper [I3] and references contained therein. Let Z,, denote the set of
inversion sequences ™ = 71 - - - 7, of length n, represented using positive integers (i.e., 1 < m; <1
for all ). Here, we wish to consider some new parameters on Z,, that are defined geometrically
in terms of b(w). For other recent parameters considered on Z,,, see, e.g., [11, [4, [I5] [16].

Given 7 € 7, define the outer (site-) perimeter as the number of unit squares exterior to b(m)
that have at least one side which borders the boundary of b(7) (including possibly the bottom
boundary of b(7) flush with the x-axis). We define the inner (site-) perimeter in the same way
as the outer except that the squares in question are contained within the bargraph b(x). Denote
by oper(w) and iper(w) the outer and inner perimeter, respectively, of © € Z,,. For example, if
7 = 121345283419 € Z;,, then we have oper(r) = 51 and iper(r) = 38; see Figure [1] below, where
the outer and inner perimeter squares of 7 are shaded or indicated by a circle. The oper statistic
was originally considered on arbitrary bargraphs (which are synonymous with compositions) in
[5], where it is referred to as just the site-perimeter, and was later studied on k-ary words [3] and
finite set partitions [I2] both represented geometrically as bargraphs, the latter via restricted
growth sequences. The iper distribution on compositions was studied in [2] where a generating
function formula was found, a result which was refined in [IT]. We use here the descriptors outer
and inner to distinguish further the oper and iper parameters on Z,.

Figure 1: The outer and inner perimeter of m = 121345283419 € 715

Let per(m) and area(m) denote the perimeter and area of b(w) for # = 7y - - - m, € Z,, whose
distributions on Z,, were studied in [I5]. Then, by the definitions, we have oper(r) < per(w) and
iper(m) < area(w) for all m € Z,,, with equality in the first inequality only when 7 = 11---1 and
equality in the second only when min{m;, m;41,m12} = lor2forall 1 <i < n—2, where m;41 = 2
if the minimum is 2. Further, by an induction on j, where j denotes the greatest column height
within a member of Z,,, one can show iper(w) + 4 < oper(r) for all # € Z,, and n > 2. Note that
equality is achieved in the last inequality when 7 = 12"~! (among other sequences), and hence
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¢ =4 is best possible among all constants ¢ in inequalities of the form iper(m) + ¢ < oper(w) for
all 7.

The organization of this paper is as follows. In the next section, we study the distribution
of the oper statistic on Z, and also on members of Z,, ending in a particular letter. To do
so, we consider auxiliary generating functions for the distribution of oper on certain subsets of
T., namely, those obtained by considering whether the last letter of a member of Z, is greater
than, less than or equal to its predecessor. This enables one to translate the recurrences for
the distribution into a system of functional equations satisfied by the generating functions. As
corollaries of this analysis, one obtains explicit formulas for the maximum, minimum and average
values of oper on Z,, as well as for the sign balance (corresponding to the case ¢ = —1). Direct
combinatorial proofs can then be given for these explicit formulas which do not make use of
recurrences or generating functions. A comparable treatment is provided for the iper parameter
on Z,, in the third section. The final section is an appendix devoted to establishing a functional
equation for a generating function related to the oper distribution on Z,.

2 Distribution of outer perimeter

Givenn > 2 with1 <i<n-1and 1< j<n,letZ,; ; denote the subset of Z,, whose members
end in i,j and let Z,, ; = U}""['Z,,; ;. Let a(n,i,j) denote the distribution of the outer perimeter
statistic on Z,, ; ; and let a(n,j) = Z;L:—ll a(n,i,7) for n > 2 be the corresponding distribution
on 7, ;, with a(1,1) = ¢*. Let a(n,i,j) = a(n,j) = 0 in all cases where the set over which
the distribution is taken is empty. Throughout, we will represent m € Z,, as a bargraph and
frequently write 7 in place of b(w), by a slight abuse of notation.

For example, when n = 4, we have a(4,1) = 4¢'° + ¢! + ¢'2, a(4,2) = 5¢** + ¢'2, a(4,3) =
3¢'%2 + 3¢ and a(4,4) = ¢** + 3¢'* +2¢'%; see Figure [2| which gives the outer perimeter of each
member of Zy.

LT L 1] L] 1 | [ 1 []
10 11 13 15 10 11 12 4 _
L] | L L] L] l L] l l
12 12 13 4 10 11 13 15 _
l | | l l l | | l l
10 11 12 14 11 11 12 13

Figure 2: The outer perimeter of inversion sequences of length 4

It is possible to determine the a(n,i,7), and hence the a(n, j), recursively as follows.
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LEMMA 1 Ifn > 3, then

a(n,i,j) =qa(n—1,1), 1<j<i<n-—1, (1)
a(n,i,i):qza(n—l i), 1<i<n-—1, (2)
Jj—1 n—2
a(n,i,j) Z a7 a(n — 1,k,4) + Z a?I 7R 20 (n — 1,k,4) + Z ¢ " 2a(n —1,k,i),
k=i+1 k=j

for 1 < i < j < n, with initial values a(1,1) = ¢*, a(2,1) = a(2,1,1) = ¢° and a(2,2) =
a(2,1,2) =¢"

Proof. The initial conditions for n = 1,2 are easily verified, so assume n > 3. Before proceeding
further, we define the following terms. Let us refer to the set of j outer perimeter squares directly
to the right of the n-th column of ¢ € Z,, ; as the set of right lateral squares of o, denoted by
rlat(o). Further, we refer to a square lying directly above or below some column of ¢ as a high
or low boundary square of o, respectively. Suppose m € I, ; ; is obtained from p € Z,_1; by
appending a column of size j to p. We consider cases based on the relative sizes of i and j,
first assuming ¢ > j. Note in this case that appending a column of size j to p has the effect of
replacing the j lowest squares of rlat(p) by those of rlat(n), with the ¢ — j top squares in rlat(p)
still part of the outer perimeter of 7. Taking into account the low boundary square in the last
column of 7, we get oper(w) = oper(p) + 1 for all 7 and p, which implies . If i = j, then
rlat(p) is completely replaced by rlat(w), with only the high and low boundary squares in the
last column of 7 accounting for the difference in oper parameter values, which implies .

To prove (3)), assume ¢ < j and we consider cases based on the penultimate letter k of p,
where 1 <k <n—2. If 1 <k <1, then appending a column of size j to p results in their being
j — 1 — 1 new outer perimeter squares in column n — 1 lying directly above the high boundary
square in that column. Further, taking into account the high and low boundary squares of 7
in column n and the fact that 7 has j — ¢ more right lateral squares than p as j > i, we get
oper(m) —oper(p) = 2j — 2i + 1 for all = and p, regardless of the value of k € [i]. Considering all
possible k then yields a contribution of Y, _, ¢* =% !a(n — 1, k, i) towards a(n,,) in this case.
If i+1 <k <j—1, then the difference oper(m) — oper(p) can be attributed to outer perimeter
squares of the following three types: (i) those that arise from the top j — k squares in column
n of 7, each of which contributes two new outer perimeter squares (to its left and right), (ii)
the ones that arise from the k — ¢ squares of 7 lying directly below those in (i), each of which
contributes a single new square (to its right), and (iii) the high and low boundary squares in the
final column of 7. Combining these cases gives

oper(m) —oper(p) =2(j —k)+k—i+2=2j—k—i+2,

for each 7 and p, and considering all k yields a contribution of Zk i1 a¥ k= 2q(n — 1, k,4).
Finally, if j < k < n — 2, then the difference in oper parameter values comes about from the
top j — ¢ right lateral squares of 7, together with the high and low boundary squares in the final
column. This gives oper(n) — oper(p) = j — i + 2 for all 7 and p in this case. Considering all
possible k then yields the third summation on the right side of and completes the proof. [

Let a(n) = S0} Yoiqa(n,i,g) =" a(n,j) for n > 2, with a(1) = ¢*. Then a(n) gives
the distribution on all of Z,, for the outer perimeter statistic. For example, from the formulas
above for a(4, j), we have

4
Za4j —4q10+6q11+5q12+4q13+3ql4+2q15
j=1
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Note that a(n) = n! for all n > 1 when ¢ = 1. We wish to determine the (ordinary) generating
function for a(n). In order to do so, we consider the following three auxiliary generating functions:

n—1
v) = E E a(n,i,i)z"v !,
n>2 1=1
n—2 n—1
P z 1, i—j5—1
N(z,v,u) a(n,i,j)x U ,
n>3 j=11i=j+1
n j—1

P(z,v,u) ZZZ a(n,i,j)z" v

n>2 j=2i=1

which are introduced so that one can translate the recurrences in Lemma [[l Note that the
distribution for oper on Z,, for n > 1 then has generating function given by ¢*z + AE(z,1) +
AN(z,1,1) + AP(z,1,1).

We have the following functional equation satisfied AE(x,v) for general ¢ and v, which is
derived in the appendix.

THEOREM 1 The generating function AE(x,v) satisfies

(1—0)(1—q¢%v) +q(1 — q)(¢*v? — v+ qu + 1)z + Pva?

AE(z,v)
1—-w
gr(¢vz—¢*+1) o5 1. gqu(g(l—gv’r + (1 - ¢*v)(1 — qv))
= AE = AE(z,1
7 (on @)+ (-0 .
qSvx? 1 qSvx? ¢svx? 6 92 9
+ T AE( q) - AE(q vx, 1) + 1_qUAE(;zc,qv)—l-q (1 —q“v). (4)

It is also shown in the appendix that AN (z,v,u) and AP(z,v,u) may both be expressed in
terms of AE(z,v) (see Theorem [7] below). Hence, finding a formula for the generating function
of the oper distribution on Z,, for n > 1 is equivalent to finding AE(z,v) when v = 1. Though
it does not seem likely that one can solve for AE(x,v) or AE(z,1) in explicitly for general
q, it is possible nonetheless to deduce the following further properties of the outer perimeter
distribution on bargraphs of inversion sequences.

2.1 The case ¢ = —1

Using (4), one can show
2?(1 — 2 — vx)
AB@,0) lg=1= —F 5 —
Thus, by Theorem [7] we have

. uz?(2ua® — ux — vz — x + 1)
AN = d AP =1= —
(@,0,u) lg=—1= 7= and AP(z,0,u) g=— (1—22)(1 — 2ux)

Taking v = v = 1 shows that AF(z,1)+ AN (x,1,1) + AP(z,1,1) at ¢ = —1 is zero and thus
yields the following sign-balance result for the oper statistic on Z,,.

COROLLARY 1 For all n > 2, the number of inversion sequences of length n with odd outer
perimeter is the same as the number with even outer perimeter.

One can also explain bijectively the prior result.
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Bijective proof of Corollary Let m = 7wy ---m, € Z,. We define an involution on Z,, that
reverses the parity of oper(r) for all 7. First suppose 7 contains at least one entry > 3 and let
¢ be the smallest index such that my > 3. Then ¢ > 3 and m,—; € {1,2}. Consider switching
m¢—1 to the other option, which changes the value of oper(w) by one, and hence reverses the oper
parity. This follows from my_o € {1,2} and the fact that all squares lying above the (¢ — 1)-st
column of 7 up to height m, belong to the outer perimeter as they border the /-th column of 7
on its left. On the other hand, if no such ¢ exists, then 7 is binary (on {1,2}) and switching
7, to the other option is seen to reverse the parity. Combining the two operations above then
yields the desired involution on Z,,. O

Remarks: The preceding involution ¢ can be used to establish the formulas given above for
AN = AN (z,v,u) and AE = AE(z,v) evaluated at ¢ = —1, when restricted to the subsets of Z,,
enumerated by AN or AFE. For the first formula, note that the restriction of ¢ to members of Z,,
enumerated by AN is not defined on the binary members of Z,, 5 ;. For changing the last entry
to 2 as described would result in a member of 7, 5 o, which is enumerated by AE, and not AN.
Further, it is seen that the restriction of ¢ is defined on all other members of Z,, enumerated by
AN, as in this case there would exist a smallest index ¢ such that 7, > 3 with £ <n — 1. Thus,
the sum of the (signed) weights of the survivors of the involution is given by 2"~3v for n > 3
and the formula for AN at ¢ = —1 follows. On the other hand, the restriction of ¢ is not defined
on the binary members of Z,, enumerated by AF, which must end in either 11 or 22. Then the
survivors of the involution in this case have weight given by 2"~3(1 —v) if n > 3 and 1 if n = 2,
which implies the formula for AE. A comparable argument though it involves more cases can
also be given for the formula above for AP(x,v,u) at ¢ = —1.

2.2 Maximum and minimum outer perimeter

Let d(p) denote the degree of a polynomial p = p(q) in the indeterminate g. In Table [1| below
are given d(a(n,i,7)) for all ¢ and j, where 2 <n < 5.

n ilj=1 j=2 j=3 j=4 j=5
2 16 7
3 18 9 11
28 9 10
4 1]10 11 13 15
2] 10 11 12 14
3]12 12 13 14
5 1|14 15 16 18 20
213 14 15 17 19
3]14 14 15 16 18
4116 16 16 17 18

Table 1: Degrees of the polynomials a(n,,j) for 2 <n <5

By Lemma [l] and induction on n = 3m + k where m > 2 and k£ = 0,1, 2, one can prove the
following general formula for d(a(n,1,j)).
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THEOREM 2 For all m > 2,

d(a(3m,1,7)) =

d(a(3m +1,i,7)) =

and

d(a(3m + 2,1, j)) =

3Im2+m+4—i+j,

3m? —m+4—i+ 27,

3m? —3m + 5 + 24,
3m? — 3m + 6 + 2i,
3m? +m+ 3,

3m? —3m+ 5+ 24,
3m? —3m + 5 + 24,

3m? +3m+5—i+7,
3m? +m+4—1i+ 27,
3m? —m + 4 +2j,
3m? —m + 5+ 2i,
3m? 4+ 3m + 4,

3Im? —m+4+ 2i,
3m? —m+ 4+ 24,

3m? +5m+6 —i+ 7,
3m? +3m+5—i+ 25,
3m? +m+4+ 25,
3m? +m+ 5+ 2i,
3m? 4+ 5m + 5,

3m? +m+ 4+ 2,
3m? +m + 4 + 2i,

1<i<j<2m-—1,
1<i<2m—1,2m < j < 3m,
2m<i=73<3m-—1,
1<5<2m—-2,7+1<¢<2m —1,
1<57<2m—-1,2m <:<3m—1,
2m < j<3m,j+1<:<3m —1,

1<i<j<2m,
1<i<2m,2m+1<j5<3m+1,
2m+1<i<j—-1,2m+1<j5<3m+1,
2m <1 =3 < 3m,
1<j<2m—-1,74+1<17<2m,
1<53<2m—1,2m <1< 3m,

2m <j<3m+1,5+1 < < 3m,

1<i<j<2m,
1<:<2m,2m+1< 35 <3m+ 2,
2m+1<i<j—1,2m+1<53<3m+2,
2m+1<i=353<3m+1,
1<57<2m—-1,57+1<1:<2m,
1<5<2m,2m+1<i<3m+1,

2m <j3<3m+2,j+1<1<3m+ 1.

Note that the result above is seen also to hold for n = 5, which could serve as the basis of
an inductive argument. When 1 < ¢ < 2m — 1, the preceding formula may be written more
compactly for all m > 2 and £k =0,1,2 as

3m? + (2k + 1)m + 3 + k, 1<j<i—1,
3m2+ 2k +1)m+4+k—i+j, i<j<2m,
3m? 4+ (2k —)m +4+k —i+2j —Okeqr0), 2m+1<j<3m+k,

d(a(3m + k,i,5)) =

where dx = 1 or 0 depending on the truth or falsity of the statement X.
By considering the largest value of d(a(n,i,j)) over all i and j for a fixed n in Theorem
we obtain the following result for d(a(n)).

COROLLARY 2 Let dgf) denote the mazimum outer perimeter of a member of Lsm+r. Then we
have d¥) = 3m? + (2k +5)m + (k;rQ) +2 fork=0,1,2 and all m > 1.

One can provide a direct explanation of this result as follows.

Combinatorial proof of Corollary Let egf) denote the number of members of Zg,,,x such

that oper(m) = dgf). We will establish the formula for dg,]f) in Corollary |2[ and at the same time
show further that

eﬁ,?):e%):3ande$,2l):1, m > 2,



38 MANSOUR, SHATTUCK

with e§°) = 652) =1 and egl) = 2. By a mazimal member of 7,,, we mean one where the

maximum oper value, which we denote by d,,, is achieved. Let e,, denote the number of maximal
members of Z,,. One may verify e3 =1, e4 = 2, e5 = 1 and eg = e; = 3, with the corresponding
sets of maximal sequences given by {113}, {1114,1214}, {11315}, {111416,113116, 121416} and
{1131517,1214117,1114117}, respectively, which implies d3 = 11, dy = 15, d5 = 20, dg = 25 and
d7 = 31.

We proceed to establish the formulas for d, and e, by induction on n, assuming n > 8.
Henceforth, let 7 = ny---m, € Z,. If m, < n, then we may replace 7, with n to obtain
a member of Z, with (strictly) larger outer perimeter. Further, if 7, = n and 7,—1 > 1,
then replacing m,, 1 with 1 is seen to increase the outer perimeter. Applying Lemma [2| below,
repeatedly if necessary, it follows that if = is maximal, then we must have m; € {1,i} for all
i € [n], with 7,1 = 1 and m, = n. Clearly, the sequences 11---1n and 121---1n cannot be
maximal as n > 8, so consider the largest index s € [3,n — 2] such that 7, = s. If s <n —4,
then such 7 cannot be maximal, as replacing m, s = 1 with n — 2 is seen to increase the oper
value, whence s € {n —2,n — 3}. It follows that the maximal members of Z,, must belong to the
subset {7 € Z,, : # = 71n or plln}, where 7 and p denote maximal members of Z,,_s and Z,,_3,
respectively. Then we have oper(rw) = d,—2 +n + 4 if # = 71ln and oper(w) = d,,_3 + 2n + 2 if

5,’? above based on

m = plln, where d,,_> and d,_3 are given by the appropriate formula for d
the value of n mod 3, by the induction hypothesis.

One may verify for all cases of n mod 3 that d,,_s+n—2 > d,,_5 forn > 8, i.e., d,+n+1 > dy41
for n > 5, and hence only members of Z,, of the form m = pl1n are maximal when n > 8. Further,
we get dif) = di:ll +2(3m+k+1) and eF) = 65:)71 if 3m + k > 8, which implies by induction
the dgf) and egff) formulas for £k = 0,1,2 and all m > 1. Note that if n = 6 or 7, then we get
dp—3 +n — 2 =d,_s, which accounts for the formulas in these cases. O

LEMMA 2 Letn>5 and m =my - -7, € L, ending in 1n. Suppose that there exists at least one
index i € [3,n — 2] such that m; ¢ {1,i} and let t be the largest such index. Ift > 4, then oper(w)
can be increased by replacing my with 1 or t (possibly both). The same applies if t = 3, unless
starts with 12215, in which case one can replace 22 with 13 to increase oper(rw).

Proof. Given i € [n] and 1 < ¢ < i, let 7(»9) denote the member of Z, obtained from
by replacing 7; with £. Let TI) denote the sequence of oper statistic values (oper(m®9))i_,
starting with £ = 1. We will use the terms descent, level and ascent in the usual way to indicate
the relative sizes of a pair of adjacent entries in the sequence II(¥). First suppose w41 =t + 1.
Then one may verify that the sequence II®!) is weakly decreasing and starts with a descent, which
implies oper(r) is increased by replacing 1 < 7 < t with 1. Now suppose 741 = 1, w0 = t+2.
Then it can be shown that II(®) in this case starts with zero or more descents, followed by one
or more levels, followed by zero or more ascents, where there must be at least one descent or
ascent. Indeed, if ¢ > 4, then II® must contain at least one ascent if 7;_; = 1 or 2 and at least
one descent if 7;_; > 3. In either case, we have oper(m) < max{oper(7(*1)) oper(r*¥)}. If
t = 3, then 7 starts either as 11215 or 12215, and one can make the replacements 2 by 3 or 22
or 13, respectively, to increase oper (7). Finally, if 711 = 7m0 = 1, then I® starts with zero or
one descents, followed by zero or more levels, followed by one or more ascents, where there are
at least two ascents if II(Y) starts with a descent. Thus, replacing m; with ¢ always increases the
outer perimeter in cases where m; 11 = my9 = 1, which completes the proof. O

Determining the greatest value of d(a(n, 4, j)) amongst all i where n and j are fixed in Theorem
yields the following formula for d(a(n, j)).
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COROLLARY 3 Letn >4 and 1 < j <n. Then we have

3m? + 3 + max{2j — m, 3m}, if n.= 3m;
d(a(n,j)) = ¢ 3m? + 2m + 4+ max{2j —m — 1,3m}, ifn=3m+ 1;
3m? +4m + 6 + max{2j —m — 2,3m}, ifn=3m+2.

One may extend the combinatorial argument given for Corollary 2] to explain the formula for
d(a(n,j)) as well.

Combinatorial proof of Corollary The formula can be verified directly for n = 4 and
n =5, so we may assume n > 6. Let II”) be as in the proof of Lemma [2| Then it can be shown
that no descents or levels can occur anywhere to the right of the first ascent (if it exists) of IT(*)
for 3 < i < mn—1. Thus, when determining d(a(n,j)), i.e., the maximum outer perimeter of
a member of Z,, ;, one may restrict attention to # = m; ---m, € I, ; such that m; € {1,i} for
1 <i<n-—1. Note that if 7,,_3 = m,_o = m,_1 = 1, then replacing 7, _o = 1 with n — 2 is seen
to increase the oper value. Therefore, in finding d(a(n, j)), we need only consider 7 having one
of the following three forms: (i) 7 = a(n — 1), (ii) 7 = B(n — 2)1j or (iii) 7 = y(n — 3)11j.

Let d,, denote the maximum outer perimeter achieved by a member of Z,,. Recall that
maximal members of Z,, necessarily end in n for all n > 1. Let 1 < j < n — 2. Then the
maximum oper value achieved by a member of Z,, ; of the form (i), (ii) or (iii) above is given by
(a) dn—1+ 1, (b) dp—o+j+2or (c) dy_s+ 2j + 2, respectively. If j =n — 1, then one gets for
these maximum values d,,—1 + 2, d,—2 +n + 2 and d,,_3 + 2n instead. If j = n, then clearly the
maximum is given by d,. We then need to determine the largest of (a), (b) and (c) for each j.
To do so, we consider cases on n mod 3 and make use of the formula from Corollary [2]

If n = 3m, where m > 2, then we need to compare (a) dg(mm—1)42 +1 = 3m? + 3m + 3, (b)
dy(m—1)+1+J+2=3m*+m+j+3 and (c) ds(m-_1)+2j +2 = 3m? —m+ 2j + 3. Note that if
1 < j < 2m, then (a)>(b)>(c), whereas if 2m + 1 < j < 3m — 2, then (c)>(b)>(a). Hence, we
have
3m? 4+ 3m + 3, 1<j<2m,
3m?—m+2j+3, 2m+1<j<3m—2.

d(a(3m, j)) = {

Note that this may be written as a single formula as d(a(3m,j)) = 3m? + 3 + max{2j — m, 3m}
for 1 < j < 3m—2. If j = 3m — 1, then we must compare 3m? + 3m + 4, 3m? + 4m + 3
and 3m? + 5m + 1, with the last of these quantities being the greatest as m > 2. If j = 3m,
then the maximum possible oper value is ds,, = 3m? 4+ 5m + 3. Thus, the preceding formula
for d(a(3m,j)) where 1 < j < 3m — 2 is seen to hold also for j = 3m — 1,3m. This completes
the proof of the formula for d(a(n,j)) when n = 3m. The arguments for the n = 3m + 1 and
n = 3m + 2 cases are similar, which we leave to the reader. O

Remarks: It is possible to extend the combinatorial proof of Corollary |3| and obtain the for-
mulas for d(a(n,1, 7)) given in Theorem [2| for any ¢ and j, though several cases are required based
on the modular class of n mod 3 and the relative sizes of 7 and j. Note that when ¢ > 7, there
are the following simple relations between d(a(n,1,j)) and d(a(n, j)):

d(a(n,i,7)) = d(a(n —1,7)) + 1, ¢ > 7, and d(a(n,i,1)) = d(a(n — 1,7)) + 2,

which are easily realized directly.
We now consider members of Z,, for which the outer perimeter is a minimum. Inspection
of the terms of a(n) for the first several values of n suggests that the coefficient corresponding
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to the smallest term ¢?"*? is given by M, 1, the (n — 1)-st Motzkin number (see A001006 in
[19]). Though we do not have a complete analytic proof of this result, a simple combinatorial
explanation can be given.

PrOPOSITION 1 There are M,,_1 members of Z,, for n > 1 for which the minimum outer perime-
ter of 2n + 2 is achieved. Moreover, the number of members of I, ; where 1 < j < n for which
the minimum outer perimeter value of 2n + j 4+ 1 on I, ; is achieved corresponds to the array
A064189[n — 1,5 — 1].

Proof. One may verify that in order for 7 = 7y - - - m,, € Z,, to achieve the minimum possible oper
value of 2n + 2, it is necessary and sufficient for the m; to satisfy |m11 —m| <1lfor1 <i<n-—1,
with 7, = 1. Upon putting an up step u = (1,1), a down step d = (1,—1) or a horizontal
step h = (1,0) according to if m; 41 — m; equals 1, —1 or 0, respectively, one sees that members
of 7,, for which the minimum oper is achieved are in one-to-one correspondence with the set of
Motzkin paths of length n—1, which establishes the first statement. Further, this bijection shows
that the minimal members of Z,, ; are synonymous with first quadrant lattice paths containing
u, d and h steps and ending at the point (n — 1,5 — 1), and hence are enumerated by the array
A064189[n — 1,5 — 1] from [19]. O

Remark: The subset of Z,, whose members satisfy |m; 11 —m;| < 1for 1 <4 <n—1 are studied
in greater detail in [I7], where they are referred to as smooth inversion sequences.

2.3 Average outer perimeter

In this subsection, we find an explicit formula for the average outer perimeter of a member
of Z,. To do so, let AE,(z,v) = C%AE(QC,U) lg=1, ANy(z,v,u) = G%AN(x,v,u) l|4=1 and
APy(z,v,u) = a%AP(JU, v,u) |g=1, where y denotes either the g, z or v variable. By differentiating
both sides of with respect to ¢, and setting ¢ = 1, we obtain

AE,(z,v) = 2(3 — 10v + 11v? — 40*)2? + ((v — 1)* + 1 — (1 — v)?2) AE, (v, 1)
+2(1 —v)2AE,(x,1) 4+ 22(1 — v)?AE, (zv,1) + v*2*(1 — v) AE,(z,v)
+ (2v(1 —v)* + (V¥ —v® +v? —v + 1)a)AE(z,v) — (1 —v)?AE(xv,1)
+2((1 - 3v)(1 —v) —v*2)AB(z,1) — 2v2*(1 — v)? AE, (zv, 1)

1
+ 5mQ(l —v)2AE,, (vz, 1), (5)

where AE,,(x,1) = (%;AE(Z‘,’U) l|g=v=1 and AE(z,v) is used here to denote AE(z,v) |4=1. To
solve the functional equation for AE,(z,v), we use the fact

1 —ont "
AE(2,0) [g=1= Y (n = 1)l——a",

1—-w
n>2
which follows from the definitions, and further, make a guess that
341202 -9 4
AE,(z,1) = 62 + Z(n —2)! (n + n8 nt +(n— 1)Hn1) x",

n>3

where H, = ;_, % is the n-th harmonic number.



ENUMERATION OF INVERSION SEQUENCES 41

Then, by , we obtain the following general formula for AE,(x,v):

11v% + v — 8)23 1—o"
AE = 2| — DI Ha"t ——
q(z,v) = 6z T —|—7;)(n NH,x 0
z(n® 4+ 4n? +23n —20)  vz?(n—1)(n —2)(n —3)
- 2)lz" -
2 (-2 < 8(v—1) 6(v—1)
n>3
an(z,0)0" 1 + 3b, (z,v)
24(1 — v)4 ’

where

an(z,v) = 240522 — 720%2% — 60vx + 720%2% 4 204032 — 960222 — 480 — 20402 % + 24va?
+ 96v” + 84vx — 48v — 24z
—wva(v —1)(44v3z — 88v?x — 21v? + 4dvx + 420 — 242 — 21)n
+ 120z (v — 1)3(2vz + 5)n? — va(v — 1)% (4vz — 3)n3,
bo(z,v) = —8v32? + 12032 + 24v%2? + 160° — 36v%z — 3202 + 20vz + 160 + 4o
+z(v — 1)(8vx — 150 + 14v + 1)n — 122(v — 1)3n? — z(v — 1)*n®.

This formula for AE,(z,v) can be shown to yield the expression that we guessed above for
AE,(z,1), as required, upon taking the limit as v approaches 1. By Theorem m one can find
explicit formulas for AN, (z,v,u), AP,(z,v,v) and AP,(z,v,u) (as the expressions are rather
lengthy, we omit them), which implies the following result.

THEOREM 3 We have
24 15n +2 1
AE(2,1) + AN(,1,1) + APy(,1,1) = > _ (”*857” CH S+ ) o
n
n>2

That is, the average outer perimeter of members of I, for n > 2 is given by

nZ+15n+2

1
H, +—.
8 + + n

It is also possible to explain the foregoing result directly without recourse to recurrences or
generating functions.

Combinatorial proof of Theorem We may assume n > 4, as the formula is apparent for
n = 2,3. Throughout, let 7 = 7y --- 7, € Z,,. In analogy to a right lateral square defined in the
proof of Lemma [I] above, a left lateral square will refer to the one bordering the left side of the
first column of 7. Note first that there are n! left lateral, (n — 1)l(1 +2--- 4+ n) = w right
lateral and (2n)n! boundary squares (high and low) altogether within the members of Z,,. We
now count two additional classes of squares that are defined as follows. By a right (left) border
outer perimeter square, we mean one that is neither a right (left) lateral nor high boundary
square and that borders the right (left) side of some column. Note that it is possible for a square
in column ¢ of 7 for some 2 < ¢ < n — 1 to be both a right and left border square, provided
m;+1 <m = min{m;_1, 711}, in which case there are m — 7; — 1 such squares in column i. Our
strategy will be to find separate expressions for the totals of the right and left border squares
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taken over all the members of Z,, and then subtract from the sum of these expressions the number
of squares that are both right and left border to correct for double counting.

To find the average number of right border squares, suppose m = 7y - - - 7, has a right border
square in column ¢ occurring at height ¢. Then it is necessary and sufficient that 4 < ¢ < n,
3</t<i—1,1<m;<fl—2and £ <m_1 <i—1. It is seen that the probability that there is
a right border square in column 4 at height ¢ within a randomly chosen member of Z,, is given

by &2 (1 - £ ) Summing over 3 < ¢ < i gives Ze 3

7 i—1
average lying in column 4 within the members of Z,,. Note that

i£;2<1—l_1> i Z_lzuﬂ ( 1_1)

=3 L=
_i—2 (i-1@E-2) 1 -(2—1)(2—2)(22—3) (2—2)(@—3)
ili—1) 2 i 1) 6 6

fj) right border squares on

i

M

Summing over 4 < ¢ < n then yields

~(i—2)(i—3) 1
Z 6 6

(-5+8) -ttty
i1=4 1=2 ¢

right border squares on average in members of Z,, for all n > 4.
We now count left border squares in Z,,. Note that a left border square occurs in column ¢ of
7 at height £ifand only if 2 <i<n—-1,3<¢<i+1,1<m <{—2and £ <11 <i+1. Thus,

the probability that there is a left border square in column i at height £ is given by £=2 ( - H—i)
Summing over 3 < ¢ < ¢+ 1 gives
iiz—z L1y i 1 §£(€+1)— 1 (ii—1) (-1)(@2i-1)
i i+1) i(ti+1) i+l 2 6
=3 =1
= 6 B
and hence there are an average of Y1, =1 = w left border squares in members of Z,,.

Finally, observe that a square in column i of m at height ¢ is both a right and left border
square if and only if 4 <i<n—-1,3</<i—-1,1<m <{-2,¢<m_1<i—1and

¢ <41 <i+1. Considering all possible ¢ then gives on average Z;é =2 (1 — u) (1 — z+1)

% i—1
squares in column ¢ in members of Z,, that are both right and left border. Note that

i—1
Z -2 -1 -1
= i—1 1+ 1

i %

:%2(5—2)—%2(6—1)(4 2) + z(z? ) (£ —1)%(t—2)
£=3

£=3 (=3
1i—2 9 i—2 i—2
:gZK—ﬂilZ@(ﬁ—i—l Z£€+1
{=1 {=1 6:1
i—1 .
1 1 i—4
= -2 2(i — )02 + %) =
(z+1 Z * =200 —2(i — 1)0* + () = z(+1)+ 17

l:l
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and summing over 4 < ¢ < n — 1 gives on average

|
—
3\
—

n

1
i(i + 1)

Zi—4_1_l+(n—4)(n—5)_n2—9n+26_l
N n a n

p 12 4 24 24

Il
I

%

squares in members of Z,, for n > 2 that are both right and left border. Combining the formulas
found above, we have that the average outer perimeter on Z,, is given by

n+1 n?—9n—4 (n—1)(n—-2) n?—-9n+26 1
1400 gy TR g - -
Pty et 12 24 n
n? 4 15n + 2 1
:f‘f'Hn“"*a
n
as desired. O

3 Distribution of inner perimeter

Let b(n,1,j) denote the distribution of the inner perimeter statistic on Z,, ; ; and let b(n,j) =
Z?z_ll b(n,i,7) for n > 2 be the corresponding distribution on Z, ;, with b(1,1) = ¢. Let
b(n,i,7) = b(n,7) =0 in all cases where the set over which the distribution is taken is empty.

Then the b(n, 1, 5) satisfy the following recurrence relations.

LEMMA 3 Ifn > 2, then

j—1 n—2

b(n,i,j) = @ b —1Lki)+q> bn—1ki), 1<j<i<n-—1, (6)
= k=j

b(n,1,j) =¢b(n—1,1), 1<j<mn, (7)
i—1 n—2

b(n,i,5) = > ¢ b —1,ki)+ > ¢ Hb(n—1,k,d), 2<i<j<n, (8)
k=1 k=1

with initial value b(1,1) = q.

Proof. In each case, we append a column of size j to p € Z,,_1 1 ; toobtain m =7y -- - m, € L, 5 ;.
First suppose n > 3 and 2 < i < j <mn,withi <n. If 1 <k <i—1, then in going from p to
7, one introduces j inner perimeter squares (i.e., those in the appended column), while at the
same time, taking away from the inner perimeter the k — 1 squares in the final column of p at
heights 2,3,...,k. Thus, we get a contribution of qj_k+1b(n —1,k,i) for such 7 and summing
over k € [i — 1] accounts for the first summation on the right side of (§). On the other hand, if
1 < k <n—2, then appending a column of size j to p always results in their being a net increase
of j — (i — 2) in the iper value, as the middle ¢ — 2 squares in the final column of p cease to be
part of the inner perimeter. Considering all i < k < n — 2 yields the second sum on the right
side and completes the proof of . On the other hand, if i = 1, then no inner perimeter squares
of p are lost when j is appended, regardless of the value of k, which implies . Now assume
1<j<i<n-—1. If1<k<j—1, then reasoning as in the first part of the proof above of
yields the first sum on the right side of @ On the other hand, if j < k < n — 2, then the
squares at heights 2,3,...,7 in the final column of p are lost from the inner perimeter when j
is appended, resulting in their being an increase of 1 in the iper value. This accounts for the
second part of formula @ and completes the proof. O
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Analogous to before, we define the following generating functions

n—2 n—1

BN (z,v,u,q) = ZZZ (n,i, )" v " tyi=i—1

n>3 j=11i=j+1

and
BP(x,v,u,q) ZZanzg Yyt Tyl
n>2j=1i=1
Let b(n) = Y00 S0 b(n,i,j) = Y0 b(n, j) for n > 2, with b(1) = ¢. Then b(n) gives the

distribution on all of Z,, for the inner perimeter statistic. Note that the generating function of
b(n) for n > 1 is given by gz + BN(z,1,1,q) + BP(z,1,1,q).

By rewriting @f in terms of generating functions (we omit the details), we obtain the
following system of functional equations.

THEOREM 4 We have
qr

BN(I',’U,’LL,(]) =
u—q

(gBP(l',’l)7’LLU,q) - BP(I',’U,(]’U,(]))
u

1 . 1
1q_$u (uBP(LE, v,vu,q) — BP(z,vu,vu, q) + WBN(x7U7 @ﬂ)

1 1
— —BN(z,vu, ,q))
VU VU

_am (2 1 1
+ UU2(1 7u) (’LL BN(:IJ7’1)7 U7Q) BN(QL‘,’U, van)) )

BP(x,v,u,q) = ¢*(qu+1)2” + —

(BP(:L’,’U, qu, q) - tuP(qux, ia Ea q))
U qu’ u

1 —
_ w <BP(1‘,’U,0,Q) — tuP(un U,OaQ))
1—qu qu
2
2z 1 5 o v qu
————— | BN(z,v, ~,q) — ¢*u* BN (quz, —, —
v(1 — qu) ( (.0, 50) — ' w”BN(qua, qu’ v ’Q)>
a1 = g)x
+ L — (C(x,q) — quC(quz,q))

+ q<11_q>(BP(:v 0,0,q) — quBP(quz,0,0,q)),

where C(x,q) denotes the free coefficient of w in the generating function uBN (z, u,u, q).

We are unable to solve the preceding system explicitly for BN (z, v, u,q) and BP(z,v,u,q).
Further, the inner perimeter statistic, unlike the outer, is not sign-balanced on the set Z, for
n > 2, since taking u = v = 1 and ¢ = —1 gives the series expansion

D b(n) lg=—1 2™ = —22* 4 62° — 162° + 4027 — 762° + 14827 — 12322 + 87762 + - -
n>2

We remark that we did not find this sequence (or its absolute value) in the OEIS [19] nor have
we found an explicit expression for it. In the next two subsections, we consider the degree and
minimum g¢-exponent of the polynomial b(n), the first and last coefficients of b(n) and the value
of the derivative of b(n) evaluated at ¢ = 1.
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3.1 Maximum and minimum inner perimeter

By induction on n and Lemma |3] we have the following formula for d(b(n,i,7)).

THEOREM 5 For all m > 1,

3m? —m+j, i=1<j5<3m,

3m? —m+1, 2<i<m,1<j<i—1,
d(b(3m,i,5)) = 3m* —m+2+j—i, 2<i<m,i<j<3m,

3m? — 2m + 1+ 1, m+1<i<3m-—1,1<j<m,

3m?2—3m+1+j+i, m+1<i<3m—-1,m+1<j<3m,

3m? +m + j, 1=1<7<3m+1,
3m? +m+1, 2<i<m,1<j<i—1,
N 3m2+m+2—|—j—i, 2<i1<m, 1 <j3<3m+1,
db@m +1,0.9)) = 3249 44 m+1<i<3m,1<j<m,
3Im2—m+14+j+4, i=m+1<j<3Im+1,
3m? —m+j +1, m+2<i1<3Im,m+1<j57<3m-+1,
and
3m? +3m+ 1+ 7, i=1<j<3m+2,
3m? + 3m + 2, 2<i<m+1,1<j<i—1,
d(b(3m +2,i,75)) =% 3m>+3m+3+j—i, 2<i<m+1,i<j<3m+2,
3m?+2m+ 1+, m+2<i<3Im+1,1<j<m+1,
3m?2 +m+j +1, m+2<i<3m+1,m+2<j<3m+2.

Concerning the degree of the polynomial b(n), which corresponds to the maximum iper value
of a member of Z,, we have the following result which is a consequence of Theorem

COROLLARY 4 Let qui) denote the mazimum inner perimeter of a member of Lsm+r. Then we
have ulf) = 3m? + (2k +3)m + (k;rl) fork=0,1,2 and allm > 1.

Combinatorial proof of Corollary Let vgf) denote the number of members of Zs,, 4k
such that oper(w) = uS,’f). We will establish the formula for ug,]f) in Corollary 4 and at the same
time show further that

v =100 =3and v® =2, m>1.

m m

By a mazimal member of Z,,, we mean here one for which the greatest value of the inner perimeter
on Z, is achieved. Let Z* denote the set of maximal members of Z,,, with v, = |Z*|. Then for
3 <n <5, we have v3 = 1, vy = 3 and vs = 2, with the corresponding sets Z given by {123},
{1134,1224,1234} and {12145,12245}. Note that members of 7} must end in n, as the sequence
of iper values of (™% for 1 < £ < n is seen to be weakly increasing, ending in an ascent. Consider
formingm =my---m, € L, from 7’ = 7y ---m,_3 € I,,_3 where n > 6 by appending m,_amT,_17,.
Then we have d := iper(w) — iper(n’) < 2n for all 7 € Z,,. To prove this, we may assume 7, = n
and consider two general cases as follows. First suppose that at most two out of three squares in
columns n — 2, n — 1 and n at height ¢ for each ¢ € [2,n — 2] belong to the inner perimeter of 7.
Further, the three squares at height 1 in these columns are always part of the inner perimeter,
as are the top two squares in column n since m, = n and the top square in column n — 1 if
Tn—1 = n — 1. Then the maximum possible value of d is given by 2(n — 3) + 6 = 2n in this case.
Note that such a difference is indeed achieved when m,,_o =1, m,_1 = n — 1 and 7, = n. Now
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suppose for some ¢ € [2,n — 2] that the three squares in columns n — 2, n — 1 and n at height
{ all belong to the inner perimeter of 7. Then it is seen that there is only one such ¢ and it
must correspond to min{m,_1,7,—2} when it exists. Further, the existence of such an ¢ implies
Tp—1 < n — 1. But then the top square in column n — 1 fails to belong to the inner perimeter of
m and d < 2n once again.

We now claim that if 7,1 < n — 1 within 7= € Z,, where n > 5, then 7 cannot be maximal.
To prove this, we may assume 7, = n and 7’ € Z*_,, for if either fails to hold, then 7 cannot
be maximal, as either condition failing to hold would imply that iper(w) is strictly less than
the iper value of the member of Z,, obtained by appending 1(n — 1)n to a member of Z;_4. If
min{7m,_1, T2} = 1, then no such ¢ € [2,n — 2] as described above exists. Then 7,1 <n —1
implies d < 2n and thus 7 cannot be maximal. So assume m,_1,7T,_2 > 2. If m,_o = 2 and
Tp—1 =N — 2, then n > 5 and m, = n implies the square at height two in column n — 1 is not
counted in iper(7). Then no height ¢ as described above would exist in this case and once again
d<2n. If m,_o =2 and m,_1 < n — 2, then such a height ¢ may exist in this case, but this is
offset by the fact that there would be at least one height (namely, n — 2) where only one of the
final three squares at that height is counted in iper(w), and hence d < 2n in this case also. On
the other hand, if 7,,_ > 3, then m,,_1 > 2 and 7’ ending in n — 3 (being maximal) would imply
that the square at height two in column n — 2 is not part of the inner perimeter of 7. Considering
separately when 7,_1 = 2 or m,_1 > 2 leads again to the conclusion that d < 2n in either case,
which completes the proof of the claim.

Then each m € T for n > 6 is obtained by appending a(n — 1)n to 7’ € I _4 for some a > 1.
If a > 1, then the square at height two in the final column of 7’ would cease to be part of the
inner perimeter after a(n — 1)n is appended, as n > 6 implies the penultimate letter of 7’ is at
least two. This would cause for 7 not to be maximal, so we must have ¢ = 1. Thus, all members
of Z* for n > 6 arise by appending 1(n — 1)n to members of 7 _5. This implies v,, = v,,_3 for
n > 6, which yields the second statement. Further, we have that members of Z* for n > 6 are of
the form m = p1(¢ — 1)¢---1(n — 1)n, where ¢ € {6,7,8} with n = ¢ (mod 3) and p € I3, Z; or
7%, whichever is appropriate. Computing the inner perimeter of the maximal 7 in each case of
n mod 3 yields the formula given for uSZ“) and completes the proof. O

By Theorem [5| we obtain the following formula for d(b(n, j)).

COROLLARY 5 Letn>1 and 1 < j <n. Then we have

3m? + max{m, j}, if n = 3m;
d(b(n, j)) = § 3m? + 2m + max{m + 1, j}, ifn=3m+1;
3m? +4m+ 1+ max{m+ 1,5}, ifn=3m+2.

Combinatorial proof of Corollary We may assume n > 5, as the formula may be verified
directly for 1 <n < 4. Given 7 = 7y -+ - 1, € I, let 78 be as in the proof of Lemma [2| above
and TI¥) = (iper(7(#9))_, denote the corresponding sequence of iper values, starting with ¢ = 1.
Note that II() where 3 < i < n starts with an ascent, i.e., iper(ﬂ(i’l)) < iper(ﬂ'(ivz))7 if and only
if min{m;_1,m;—2} = 1 or 2 and min{m;41,m;42} = 1 or 2, where we take 7,1 = m4+2 = 1 when
t =n or n— 1 and a minimum of 2 can occur in either case only when m;,_; = 2 or w41 = 2.
Further, II) has an ascent at index ¢ > 2, i.e., iper(r(#9)) < iper(7(#+1) for some £ € [2,i — 1],
if and only if ¢ > min{m;_1, 741} and either (I) £ > M — 1, where M = max{m;_1, 741}, or
(IT) ¢ < M — 2 and increasing the i-th entry of 7 from ¢ to £ + 1 does not eliminate from the
inner perimeter a square at height ¢ + 1 in either column 7 — 1 or 4 + 1. From the preceding
characterizations for when an ascent occurs, it is seen that II¥) cannot contain a descent anywhere
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to the right of its first ascent (if it exists). Moreover, if an ascent in 1D occurs at index £ for
some £ > 2, then such an ascent must be followed by another ascent. Thus, the maximum value
of 1) is always achieved at £ = 1 or £ = i (possibly both).

Let m =m---m, € I, 5, where n > 5 and 1 < j < n. By the preceding, in determining the
maximum inner perimeter achieved by a member of Z,, j, we may restrict attention to those 7
such that m; € {1,i} for 1 <4 < n — 1. Note that if 7 is of the form = = 7'1(n — 2)(n — 1),
then the sequence (=3 ig (weakly) decreasing, as increasing the (n — 3)-rd entry of 7 from ¢
to £ + 1 would eliminate from the inner perimeter the square at height ¢ + 1 in column n — 2.
Thus, we may assume m,_3 = 1 if 7,_9 = n —2 and 7,_1 = n — 1 within 7 € Z,,; when
maximizing the inner perimeter of m. Therefore, in order to ascertain d(b(n,j)), one need only
consider 7w € Z,, ; having one of the following three forms: (i) 7 = alj, (ii) 7 = f1(n — 1)j or
(iii) m = y1(n—2)(n—1)j. Clearly, we may take «, 8 and + to be maximal in order to maximize
iper(m) in each case.

Let u,, = d(b(n)) denote the largest inner perimeter of a member of Z,,. Clearly, if j =1 or
j = n, then we have d(b(n, 1)) = u,—1 + 1 and d(b(n,n)) = u,, in these cases, so we may assume
2 < j <n—1. Then the maximum value of iper(n) for 7 of the forms (i), (ii) and (iii) above
are given by u,—o+j+ 1, up—s +n+jand up—g +2n —1+9;,_1, respectively. We must then
determine the largest of these three quantities. To do so, we consider cases on n mod 3 and
recall the formula for u,, from Corollary [ If n = 3m for some m > 2, then the three quantities
work out respectively to uz(,—1)11 4+ J +1 = 3m? —m + j, ugim_1) +3m +j = 3m* + j and
Ug(m—2)42 T 6m — 1+ 653, 1= 3m? 4+ m + 0j.3m—1. If 2 < j <'m, then the largest of the three
quantities is given by 3m? 4+ m, whereas if m < j < 3m — 1, then it is 3m? + j. Thus, in general,
we have d(b(3m, j)) = 3m? + max{m, j} for 2 < j < 3m — 1, with this formula seen to hold also
for j = 1 and j = 3m. This establishes the first formula stated above for d(b(n,j)). Similar
arguments can be given in the n = 3m + 1 and n = 3m + 2 cases. |

Remark: One can extend the combinatorial proof of Corollary [5] to realize the formulas for
d(b(n,,7)) in Theorem [5) though a more intricate analysis is needed.

The smallest g-exponent on the other hand of a term appearing in the polynomial b(n), which
corresponds to the minimum iper value of a member of Z,,, is clearly equal to n and is achieved
only by the inversion sequence 11---1. Moreover, the lowest exponent of a term appearing in
b(n,i,j) and b(n, j) is given by n+4+j — 2 and n+ j — 1, respectively. Note that 7 € Z,, ; ; for
which the minimum iper value is achieved can be decomposed as 7 = 1%«ij if 2 < ¢ < j, where
a > 1 and « is a (strictly) decreasing possibly empty sequence in [2,i — 1], or as 7 = 1*8ij if
1 < j <, where a > 1 and 3 is decreasing in [2,j]. Thus, there are 2=2 members 7 € Z, ; ; for
which iper(m) = n+i+j—2if 2 <i < jand 277! such members of Z,, ; ; if 1 < j < 4, with
only a single m € Z,, 1 ; for which iper(m) = n+ j — 1. Summing over ¢ shows that the coefficient
of the lowest degree term in b(n,j) = Z?;ll b(n,i,j) always equals one, which is easily realized
directly.

3.2 Average inner perimeter

THEOREM 6 The average inner perimeter of members of I, for n > 2 is given by

3n2+41n—-28 H, 1

24 2 n’

Proof. Let t(n,i,j) = diqb(n,i,j) l¢=1 and note b(n,i,j) [¢=1= (n — 2)!. Define t(n,j) =
d%b(n,j) lg=1= Z?;ll t(n,i,7). Differentiating both sides of (6)—(8) with respect to g, and
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letting ¢ = 1, gives the following formulas for ¢(n, i, j) where n > 3:
. . 1+1 . .
t(n,i,i) =t(n—1,4) + 5 +2n—-3-2i|(n—=3)!—d61(n—-2), 1<i<n-—1, (9)

t(n,i,§) = t(n— 1,i) + ((”;1) +(j—i+2)(n—1—(j+i+1)/2)> (n—3)!,

2<i<j<n, (10)
tn,1,j) =t(n—1,1)+jn—2), 2<j<n, (11)

t(n,i,j):t(n—l,i)+<(j;1)+n—2—j) (n—3) 1<j<i<n-—1. (12)

Summing and over 7 for a fixed j € [2,n — 1] yields respectively
1

<.
|

Z;am@ﬁ
:if“”_L”+(W—3+ﬁC;J)—U+&§F_4X+@>—3n+g(n—mu
inj;t(n,i,j) —inzj;llt(nl,i)+(n1j) <<j;1) +n2j) (n—3)..

To the sum of the last two equations, we add @[) with ¢ replaced by j and , which yields

amﬂzﬂn—n+(m—32+fm—m—JU_1mU_U+@m>m—3ﬂ 1<j<n,

6
(13)
after several algebraic steps, where t(n) = d%b(n) lg=1= Z?:l t(n,j). Note that the j = 1 and
j = n cases of require a separate argument. Summing over 1 < j < n, we obtain
t(n) —nt(n—1) = n(nf2)2+(n72)ij27i J fij(f;l)Jrl (n—3)!
; ; 3 ; 6
7j=1 j=1 j=1
_ e D =2)2n+1)  (m+1\  nP(n+1)?
= (n(n 2)° + 5 4 o1
n(n+1)
—+1 —3)!
t—p * >(n 3)
3 2
_ 3n® + 16n —25n—6(n72)!.
12
An induction on n > 2 using the last equality now gives
t(n) 3n®+41n—28 H, + I\
24 2 v
as desired. g

It is also possible to provide a combinatorial explanation of the prior result, which like the
proof of Theorem [3| above, features a double counting argument.



ENUMERATION OF INVERSION SEQUENCES 49

Combinatorial proof of Theorem [6; We may assume n > 4, as the formula is apparent for
n = 2,3. First note that there are n - n! inner perimeter squares occurring at height 1 within
all the members of Z,, and also the same number occurring at the top of a column within a
bargraph. From this, we must subtract the number of squares that correspond to a column of
height one within an inversion sequence, of which it is seen that there are H,, - n!. Thus, there
are (2n — H,)n! inner perimeter squares altogether that occur at the top or bottom of a column.
To count the remaining inner perimeter squares in Z,,, we divide them into two general classes as
follows. By a right (left) border inner perimeter square, we mean one that does not occur at the
top or the bottom of a column of a bargraph and whose right (left) side borders the boundary
of the bargraph.

Let m =7y -+ -7, € Z,. To count the right border squares in Z,,, first note that = has a right
border square at height ¢ in column 7 where i < nifandonly if 3<i<n—-1,2</{l<m <1
and 1 < w41 < ¢ — 1. Further, 7 has a right border square at height ¢ in column n if and only
if3</+1<m, <n. Considering all possible ¢ and ¢, this yields on average

nolizl, 4 . n—1 , nol /oL a2 = =
- 1—=)+ (1—>= — {— —— T4 - L
;§z+1( z> eZ:; n ;(2(14—1); z(z—i—l); n;
n—1 ,. .
i—1(—-2) (n=1)(n-2) n>-9n-4 (n—1)(n—2)
= = H,n _—_—
; 6(i+1) * 2n 12 Tl 2n
n? —3n — 22 1
g H —
D + H, +

right border squares in members of Z,,. Note that 7 has a left border square at height ¢ in column
i wherei <nifandonlyif3<i<n—-1,2</{<m<iand1l<m_; <{—1. This yields

-1 N Ei-2  (n-2)(n—3)
>N 1--)=) =

, 1—1 1 ; 6 12

=3 (=2 =3

left border squares on average within the members of Z,, excluding those occurring in the final
column.

From the total of the previous two cases, we must subtract the number of squares that are
counted twice, i.e., those whose right and left sides both touch the boundary of a bargraph and
do not occur in the last column or at the top or bottom of a column. Note that 7 has an inner
perimeter square at height ¢ in column ¢ where i < n that is both a right and left border square
if and only if the two sets of necessary conditions specified above for i and ¢ are simultaneously
satisfied. Considering all possible i and ¢ gives on average Z?;; Zz;; (f; _lf (1 — f) such squares
in members of Z,,. Note that

i—1 ilo o . .
(61)2( £> 1 2 1 2 1 2 1 3
o ) e o AU ) = po_L ¥y
; 2 -1 ) 12—1Z:1 Z(ﬂ—l); z(z—i—l); 2(@2—1);
C=DEi-1) =1 (—1)(i—2)
6(i +1) A+1)  126+1)
and hence
Siu 1t _"i(i—l)(i—2)_n2—9n—4+&
i=3 (=2 -1 i _1:3 12(i+1) 24 2 -
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Combining the previous cases, and subtracting the number of twice counted squares, implies that
the average iper value on Z, is given by

n? —3n — 22 1 (n—2)(n—23) n?—9n—-4 H,
om—Hy+ (T2 gy o - Zn
" +( 2z +n>+ 12 ( 24 2)

2 +41n—28 H, 1
= TR Iy

24 2 n’
as desired. O]

4 Appendix

We derive in this section the functional equation for AE(x,v) given in Theorem
First note that by 7, we have

n n—1
xv-qQZZ n—ljxvjl—qﬁxZ—&—qa:ZZZ (n,i,5)z" v~
n>2 j=1 n>2 j=1 i=1
2y 1
= ¢%2% + ¢z AE(x,v) + >z AP(z,v,v) + qTAN(x,v, 5), (14)
AN xvu-qzzzz Lk, j)amv! "ty =1
n>3 i=1 j=i+1 k=1
n—2 n—1
=qr Z Z Z a(n, j, §)a"v " tyd 71
n>3 i=1 j=i+1
n—1 n j—1
+ qx Z a(n, k, j)az"vi "yl Tt
n>2 i=1 j=i+1 k=1
n—3 n—2 n-—1
—|—qu Z a(n, k, j)a"vd "yl Tt
n>4 i=1 j=i+1 k=j+1
n—17—1 n j—1j-1
=qx a(n, j, j)a"vI " lyd 711 +qxzz Za n, k,j)a"vI " lyd 71
n>3 j=2 i=1 n>2j=21i=1 k=1
n—2j5—1 n—1
+qxz a(n, k, j)z"v? "yl —it
n>4 j=2 i=1 k=j+1
n—1 _uj_l n j—1 —’U,j_l
= qx a(n, j, j)ax"vI 1 +quZZa(n,k,])x"v]_l
n>2 j=1 n>2j=2 k=1 U
n—2 n—1 B ’U,jil
+qx Z a(n, k,j)az"v? !
n>3 j=1 k=j+1 —u
= 1q_x (AE(z,v) — AE(x,uv) + AP(z,v,v) — AP(z,uv,uv))
qx 1 1 1 1
+ T (UAN(z,v,v) m)AN(z,uv, uv)> (15)
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and

n 7 n+1

= q"uz® + qx Z Z % a(n, k, i)z " ul

n>2i=1 k=1 j=i+1
n—2 n—1 n+l1l

+ ¢’ E E E E ¥ a(n, ki) el T
n>3i=1 k=i+1 j—k+1

n—2 n—1

+qxzzz qu ta(n, k,i)x" v

n>3 1=1 k=i+1 j=i+1

—q uz? + Pux ZZZ a(n, k,i)z" Vi 1( q2n+2—2iun+1—i>

n>2z 1 k=1

n—2 n—1

1q_’U,fEu Z n k ’L n z 1(qk7iuk7i 7q2n+27k7iun+17i)
q n>3 i=1 k=i+1
q ux n—2 n—1
h—i ki
b S ke g
n>3 =1 k=i+1

=q"ua® + quiu(AE( v) — AB(¢? uxq )+ AP(z,v,v)
v

1—gq
5,,2

— AP(a? v _awr (AN Y AN(Pur. 2 ¢

(un, o)) b (AN ) - AN, o, )

3

q-ux 1 qu

——— | AN —-) — quAN —]. 1

A (AN D) - quAN a0 D) (16)

It is then possible to express the generating functions AN (z,v,u) and AP(z,v,u) in terms
of AE(z,v).

THEOREM 7 We have

1

q(1 =)

1—q¢%x AE(xz,v) — AE(z,1)
AP =—q¢ AE
(z,v,v) ¢ x+ o (x,v) + d1=0)

AN (z,v,u) = (AE(z,v) — AE(x,uv)), (17)

(18)
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and
Apte. ) = CE D e A = 4B
i qf;)“(zx pem AB(q*uz, 1)
R e A )
= =g B D) g AT 09
Moreover,

622 + g2z AP(2,v,v) + #AN(.%, v, %)
1—q2x ’

Proof. By , we have , which leads to , by (15). Hence, by (|1 l and . we obtaln
(18). Substituting into , and maklng use of (17), then yields (19

Using Theorem [7} one can now obtain the functional equation formula given in Theorem [l l
after several algebraic steps.

AE(z,v) = (20)
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