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ABSTRACT

Offshore wind turbines could be an important aspect of the global green energy transition, but their implementation
is challenging due to the harshness of marine environments. Compared to onshore structures, offshore wind turbines
are exposed to stronger loads from waves and more turbulent atmospheric conditions, while salt-laden air accelerates
structural degradation. These variable environmental conditions also make diagnostics difficult. Supervisory control
and data acquisition (SCADA) systems, which are already embedded in all turbines, provide a cost-effective source
of operational data for performance assessment and condition monitoring. Although experience of SCADA-based
onshore testing over recent decades has provided valuable knowledge, these insights cannot be directly applied to
offshore monitoring. This review summarises the current state of knowledge of SCADA-based monitoring for offshore
wind turbines, compares it with onshore approaches, and highlights offshore-specific challenges arising from the

marine environment.
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INTRODUCTION

The European Union is intensifying efforts to scale up
offshore wind energy, as a cornerstone of its drive towards
industrial competitiveness and clean electrification. New
“tripartite contracts” have been signed between governments,
wind developers and industry, with the aim of stabilising
investment and accelerating the development of grid
infrastructure and permitting processes. Although challenges
remain, including project delays, underbidding in auctions
and grid bottlenecks, recent decisions have signalled that
there are plans to raise Europe’s capacity from 37 GW today

to 80 GW by 2030, giving rise to an urgent need for reliable
monitoring and diagnostic solutions to sustain large-scale
offshore operations [1].

Condition monitoring (CM) systems for offshore wind
farms are often cost-effective because they help to mitigate the
increased energy loss during the downtime of a turbine. In a
marine environment, the downtime of offshore turbines may
rise due to harsh weather conditions and the longer distances
to the turbines. In addition, the larger components needed
for high-capacity offshore turbines, which are designed to
withstand the marine environment, have higher costs for
operation and maintenance (O&M) [2].
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All offshore wind turbines (WTs) are equipped with
supervisory control and data acquisition (SCADA) systems
as standard. These systems collect extensive amounts of data
during the operational lifetime of a turbine, and provide
updates, usually every 10 min. When used with robust
algorithms, data from these systems can enable control,
predictive maintenance, and alerts [3].

SCADA-based monitoring technologies have lowered
O&M costs and improved wind power generation, thereby
enabling more effective maintenance planning and operational
decisions for offshore wind farms. However, the current
lack of standardisation and open sharing of SCADA data
remains a major limitation of offshore systems. Differences
in technology, operating environments, and data collection
practices make it difficult to compare studies in this field. In
particular, offshore reliability is less well understood than
onshore reliability, as access to detailed and flagged datasets
is limited [4]. This paper highlights the value of SCADA data
for monitoring, identifies gaps in extant research, and presents
key insights into its benefits for offshore WT applications. The
purpose of this review is to identify ways of improving the
use of SCADA data within the offshore wind energy sector.

CHALLENGES OF OFFSHORE WIND
TURBINE MONITORING

The marine environment presents certain challenges for
the SCADA-based monitoring of offshore wind turbines.
Offshore turbines operate under strong, turbulent winds [5],
and this issue is compounded by wind-wave-current loadings,
which increase fatigue of offshore support structures [6] and
drive frequent yaw and pitch adjustments. Furthermore,
humidity and salt accelerate corrosion, cause sensor drift, and
reduce the reliability of data. Another factor is the marine-
specific biofouling that modifies the hydrodynamic loading,
while the subsea cables introduce additional modes of failure.

SCADA data from offshore wind turbines is often
incomplete and noisy, due to the harsh marine environment.
This results in, relative to onshore WT data, increased errors
in data and a lower signal-to-noise ratio. Furthermore, the
maritime environment for offshore WTs imposes unique
logistical maintenance constraints, such as limited weather
windows for access to turbines via vessel or helicopter, and
very high downtime and maintenance costs that demand
highly reliable predictive alarms with minimal false positives
and false negatives.

When taken together, these factors mean that offshore
diagnostics requires more tailored, robust, and environment-
aware monitoring strategies. In Table 1, we summarise the key
issues related to offshore turbine diagnostics arising from the
marine environment, and compare them to those affecting
onshore turbines.
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Table 1. Key issues for offshore vs onshore WT monitoring

Main
Factor Onshore WT Offshore WT | consequences for
offshore WT
Wind More Stronger but More frequent
conditions predictable, more turbulent | yaw/pitch activity
lower winds, gusts and | offshore leads
turbulence, rapid direction | to higher loads
affected by hills, | changes and failure rates
forests, obstacles in pitch and yaw
systems
Loads Only wind and | Combined Extra dynamic
terrain-induced | wind- and wave- | stresses on support
turbulence current loading | structures make
on foundations | them harder
to model and
influence SCADA
vibration signals
Air Dust, sand, Salt-laden, Salt accelerates
composition | insects, humid air; icing | corrosion and
occasional icing | in some seas sensor failures
Temperature | Larger daily and | More stable but | Fewer thermal
variations seasonal swings | humid marine | cycles offshore, but
inland climate constant humidity
leads to corrosion
Biofouling Not relevant Marine Increased
organisms hydrodynamic
(algae, drag and mass,
barnacles, shifted vibration
mussels) on modes, cable
foundations and | overloading
cables
Cablesand | Underground or | Subsea cables Cable faults
grid overhead land and offshore unique to offshore

cables; stable
substations

substations

turbines, costly
and hard to repair

Maintenance | Fast response Slower response; | Delayed
and logistics | possible; limited weather- | maintenance for
accessibility | easy road access; | dependent offshore WTs;
requires road access; requires | higher cost of
vehicles, cranes | vessels, jack-ups, | downtime;
or helicopters false positive
alarms lead to
wasted vessel trips;
false negatives can
lead to catastrophic
failures
Downtime Lower; Much higher Offshore SCADA
cost easier delivery of | due to vessel monitoring must

spare parts

hire, delays and
lost production

prioritise early,
accurate prediction




SCADA-BASED METHODS FOR OFFSHORE
WIND TURBINE DIAGNOSTICS

The following subsections provide a detailed overview
of the three main categories of SCADA-based monitoring
methods for oftshore WTs, which are shown in Fig. 1. The first
category is knowledge-driven approaches, in which physical
understanding and expert rules are used to interpret SCADA
signals. The second category is data-driven approaches, which
include statistical indicators and machine-learning models
that extract patterns directly from operational data. Finally,
there are hybrid methods that combine the strengths of both
knowledge-driven and data-driven strategies to improve
diagnostic accuracy under varying marine conditions.

KNOWLEDGE-
DRIVEN

APPROACHES

DATA-DRIVEN
APPROACHES

HYBRID
KNOWLEDGE-

AND DATA-
DRIVEN
APPROACHES

Fig. 1. Three classes of SCADA-based monitoring methods for offshore wind
turbines.

KNOWLEDGE-DRIVEN APPROACHES

One example of a knowledge-based monitoring approach
is threshold-based monitoring, in which fixed upper or lower
limits are used for SCADA signals. This method offers fast,
straightforward anomaly detection, but it often produces
false alarms, especially under offshore conditions, due to
turbulence, humidity and marine variability. An extension
of the classical threshold method for oftshore WT diagnostics
was successfully applied by Agarwal and Kishor [7], who
developed a flexible threshold selection approach combined
with a fuzzy inference system-based fault detection method,
known as the Flexible Threshold Selection and Fuzzy Fault
Detection System (FTSFFDDS).

Statistical indicators

*Power curve & residual analysis
+Clustering / unsupervised learning
*Semi-supervised anomaly detection
*Supervised ML (shallow)

*Deep learning

Other knowledge-driven approaches such as expert rule
systems and fault trees use “if-then” logic or hierarchical fault
structures based on engineering knowledge (for example,
low power combined with yaw misalignment indicates a
yaw fault). These methods are transparent and interpretable,
but often lack robustness under variable marine conditions,
which limits their transferability between offshore sites [8].

Failure mode and effects analysis (FMEA) is a structured,
knowledge-driven, risk-based method in which failure modes
are ranked by severity, occurrence, and detection. FMEA is
widely applied to WT components, including pitch actuators,
converters, and gearboxes, but its effectiveness for offshore
turbines is limited by missing or unreliable SCADA data and
its strong dependence on expert judgments. Extensions of this
method have been used to address
offshore-specific challenges; for
instance, Dinmohammadi and
Shafiee [9] proposed a fuzzy-
FMEA approach that enabled

e Threshold-based monitoring

s Expert rule systems / fault trees

 Failure mode and effects analysis (FMEA)

* Reliability block diagrams (RBD) & fault tree more accurate risk prioritisation
analysis (FTA)

« Causal reasoning (physics-based rules)

of failure modes. One application
for offshore wind turbine
systems was demonstrated
on 16 mechanical, electrical,
and auxiliary assemblies.
Furthermore, Li et al. [10] applied
an analytic hierarchy process
approach to determine the
weights of FMEA risk factors for
floating offshore wind turbines.

Reliability block diagrams

*Normal behaviour modelling (physics-infori (RBDs) and fault tree analysis
*Kalman filter / state estimation

* Hybrid statistical-ML models
* Parameter estimation models
* Grey-box system identification

(FTA) methods model
subsystem reliability and failure
relationships, thus allowing for
the estimation of downtime
impacts such as pitch or converter
faults in offshore farms. They
are valuable for availability
assessment and O&M planning, but are static methods
that cannot be adapted to the fluctuating SCADA signal
quality specific to offshore environments. For this reason,
an extension, a fuzzy FTA (FFTA) model was established by
Zhang et al. [11] to quantify the information uncertainties
for a floating oftshore WT.

A causal reasoning approach involves the application
of engineering cause-and-effect rules [12]; for example, a
power drop at a constant rotor speed may be linked to a pitch
or sensor fault. Methods of this type, which are grounded
in physics, enhance the interpretability of faults but may
oversimplify the complex, multi-factor interactions in the
marine environment. A summary of knowledge-based
diagnostics for WTs is given in Table 2.
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Table 2. Knowledge-driven approaches for offshore WT SCADA diagnostics

definitions of clusters may drift over time as the sea conditions
change, making interpretation difficult. Miraftabzadeh et al.
[14] presented a review of unsupervised clustering methods

Approach Description Pros Cons Reference(s)
Threshold- | Fixed upper/ Simple, widely Possible false [7] (offshore)
based lower limits for | implemented, alarms due to
monitoring | SCADA signals | fast detection turbulent winds,

humidity, marine
variability
Expertrule | “If-then” rules or | Transparent, Rule [8] (review of the
systems/fault | hierarchical fault | interpretable, transferability is | method)
trees logic built on codifies human | weak, and
expert knowledge [ expertise
not robust in
changing marine
conditions
FMEA Structured Systematic, risk- | Offshore [9] (offshore),
method to rank | based, SCADA data [10] (floating
failure modes often missing/ offshore)
by severity, accepted in unreliable,
occurrence, industry heavily expert-
detection dependent
RBD & FTA | Reliability Good for Static, [11] (offshore)
models of turbine | availability
subsystems assessmentand | cannot be
and failure O&M planning | adapted to
relationships varying SCADA
signal quality
Causal Uses engineering | Physics-based, Simplifications [12] (offshore)
reasoning cause-effect rules | helps distinguish | may miss
(physics- rather than pure | between complex multi-
based rules) | statistics environment and | factor marine
component faults | interactions

for power systems, including WT applications. Li
etal. [15] applied an unsupervised method called
Hawkey to multivariate real-world WT data.

In the absence of labelled data, semi-supervised
anomaly detection models can only learn from
healthy SCADA data and flag any deviations.
Examples of this type include autoencoders
with reconstruction error thresholds and one-
class support vector machines (SVMs). These
are particularly attractive for offshore wind
applications, where labels for fault data are scarce.
Suliaman and Salam [16] successfully applied an
autoencoder method to a power curve for onshore
WTs. Unfortunately, such methods can be highly
sensitive to environmental noise, which can lead
to false positive flags.

In supervised machine learning, classifiers
or regressors such as SVMs, random forest or
gradient boosting are applied to predict faults
from SCADA features. For example, Pandit and
Infield [17] used a Gaussian process model to
onshore power curve data, while Leahy and Hu
[18] used SVMs to distinguish faults such as air
cooling, excitation, and generator heating from
healthy operating states. Methods such as these
can achieve high accuracy when labelled fault data
are available; their main drawback is that labelled

DATA-DRIVEN APPROACHES

One straightforward data-driven approach to SCADA
diagnostics involves monitoring statistical features such as
the mean, variance, or coeflicient of variation of key signals;
for example, an abnormal variance in rotor speed or pitch
activity may serve as an early flag. These methods are easy
to compute and highly interpretable, although in offshore
environments, they often give false alarms due to turbulence
and humidity [13].

Another data-driven approach is residual analysis, in which
measured curves, such as the power curve, are compared with
amodelled or expected baseline [13]. Deviations can indicate
several issues, such as blade soiling, pitch misalignment, or
icing. Since power is a standard SCADA signal, this approach
provides a useful baseline check. Its main limitation for
oftshore use is that wakes, turbulence, and curtailment events
are frequent, and can create residuals unrelated to faults.

Offshore WT SCADA data are rarely made publicly
available, especially when labelled, meaning that unsupervised
learning methods become particularly useful. Algorithms
such as k-means or density-based spatial clustering of
applications with noise can cluster SCADA data into groups
representing normal operating regimes, while points that do
not belong to any cluster are identified as anomalies. These
methods can successfully identify unusual states, but the
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offshore fault data are limited, and there is a risk
of overfitting of the model to site-specific conditions.

The most efficient, although time-consuming, methods are
deep learning approaches. Recurrent neural networks (RNNs)
long short-term memory (LSTM) networks, convolutional
neural networks (CNNs), and autoencoders have been applied
to offshore SCADA time series [19]. These approaches can
capture nonlinearity and temporal patterns, making them
powerful for anomaly detection and forecasting. For instance,
LSTMs have been used to predict power output or detect
emerging faults in offshore turbines. However, these models
require large datasets, which are rare for offshore WTs, and
their “black-box” nature limits their interpretability. In Table
3, we present a systematic summary of current data-driven
approaches.



Table 3. Data-driven approaches for offshore WT SCADA diagnostics

Another example of a hybrid approach to diagnostics
involves Kalman filtering and related state-estimation
techniques. These methods, as described by Noppe [22]

integrate dynamic system equations

Approach Description Pros Cons Reference(s) with continuously updated SCADA
— - — — - measurements. They provide effective
Statistical indicators | Simple statistical | Easy to compute, | Sensitive to [13] (review) . . . .
: noise reduction and can yield estimates
features (mean, | interpretable turbulence
variance, and marine of unmeasured states. These methods can
coefficient variability, high be useful, especially when attempting
of variation, false alarm rate diagnosis in a harsh offshore environment,
correlations) but they rely on accurate initial models
monitored over . .
time and parameter tuning, which becomes
Power curve and Compare Uses standard Affected [13] (review) challenglng in offshore ?nVHonrrllents
residual analysis measured power | signals, by wakes, where marine loads are highly variable.
to modelled/ _ turbulence, Another example of this approach was
expected power g}‘:Odkbasehne curtailment; provided by Branland et al. [23] in regard
chec . . .
from SCADA common offshore to floating offshore wind turbines.
(baseline Hybrid istical hi 1 .
regression) ybri statlstl.ca —ma'c 1n§ egrnlng
Clustering/ Identify “normal” | No labels Cluster drift due | [14] (review of models use thSICS'der.Wed lndlca.tors
unsupervised operating clusters | required; good to changing sea | power systems, such as power curve residuals or pitch-
learning and flag outliers | for anomaly conditions, including to-wind relationships as inputs to machine
detection; , onshore WT) learning algorithms. An approach of this
scalable hard to interpret | [15] (offshore .
tested on real,— type was presented by Jamil et al. [24]
world data) and validated on an entire offshore farm.
Semi-supervised Trained only Works without | Sensitive to [16] (onshore Although hybrid models yield improved
anomaly detection | on “healthy” fault labels environmental | power curve detection accuracy and a reduced false
data; can detect noise; data) positive rate, they require site-specific
deviations training and can become overfitted to
may confuse . X
turbulence with noisy offshore SCADA datasets if not
faults carefully validated.
Supervised ML Classification/ High accuracy Requires fault [17] (onshore) Parameter estimation models represent
(shallow) regression using | if labels exist, labels, which are (18] (onshore one of the most straightforward hybrid
labelled data flexible, scarce offshore; onshore approaches. In this approach, SCADA data
(SVMs, random . . ..
forest, gradient | time-efficient risk of overfitting are linked to physical quantities such as
boosting) friction coeflicients or efficiency factors.
Deep learning Neural networks, | Can model Data-hungry, [19] (review) Tracking how these coefficients Change
LSTM, CNN nonlinear, limited over time can help in understanding the
autoencoders | temporal transparency, wear and tear of turbine parts. Ziegler
for SCADA time | dependencies, sk of et al. [25] demonstrated how parameter
series strong anomaly [ I1SKO R ;
detection overfitting, time- trends derived from operational data
consuming could support lifetime extension decisions

HYBRID KNOWLEDGE- AND DATA-
DRIVEN APPROACHES

Physics-informed normal behaviour modelling (NBM)

methods combine theoretical physics (for example,
aerodynamic power curves or thermal balance equations)
with SCADA data. By grounding the model in known physical
behaviour, this approach can reduce false alarms compared to
purely data-driven models. Schlechtingen and Santos [20], [21]
demonstrated the use of NBM in the context of WT condition
monitoring. Nevertheless, the accuracy of this approach for
offshore WT depends strongly on parameter calibration, as
wake effects and turbulence can distort the residuals between
measured and predicted signals.

and be used to identify abnormal wear

patterns. However, the reliability of these
methods depends on accurate prior knowledge of the turbine’s
dynamics. In offshore conditions, strong turbulence and
wake interactions can cause apparent parameter drift that
does not correspond to real structural changes, which can
reduce interpretability.

Finally, another hybrid approach is grey-box system
identification, in which reduced physical models are combined
with optimisation algorithms that fit parameters directly to
SCADA data. This method has been applied to offshore W'Ts,
as demonstrated by Liang et al. [26]. Gebel et al. [27] employed
a grey-box modelling approach to estimate equivalent wind-
wave loads and to update structural dynamics models using
field measurements. Grey-box frameworks strike a balance
between transparency and flexibility, but their accuracy relies
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on the quality of SCADA signals and the details of the model.
These methods may also overlook the nonlinear effects and
subsystem couplings that are characteristic of the marine
environment. A summary of hybrid diagnostic methods for
offshore WTs is provided in Table 4.

Table 4. Hybrid approaches for offshore wind turbine SCADA diagnostics

widely regarded as the most promising path for oftshore WT
monitoring.

This review indicates that there are only a limited number
of studies in which methods have been validated on actual
offshore datasets, and even fewer datasets that are openly
accessible. Future progress in offshore WT diagnostics and
maintenance, and the adoption of integrated frameworks

such as DTs, will rely on improved data sharing
within the industry and among scientists.
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Approach Description Pros Cons Reference(s)
Normal behaviour | Combines Uses physics Still sensitive [20],[21]
modelling (physics- | theoretical baseline, to turbulence/ | (onshore)
informed) models with reduces false wakes, requires

SCADA alarms vs. pure | careful
corrections data-driven calibration
Kalman filter/state | Uses physics Handles noisy | Requires [22] (offshore),
estimation equations but | SCADA, accurate initial | [23] (floating
updates state bridges physics | model, offshore)
with SCADA | and data tuning difficult
signals in variable
marine loads
Hybrid statistical- | Combine Improve Dependent on | [24] (offshore)
ML models physics-derived | detection site-specific
indicators with | accuracy, training, may
ML classifiers/ | balance be overfitted to
regressors interpretability | noisy offshore
data
Parameter Estimate Link SCADA Need [25] (onshore)
estimation models | degradation signals directly | good prior
of physical to physical knowledge,
parameters meaning risk of
using SCADA parameter
trends drift in marine
turbulence
Grey-box system Reduced Simplified but | Requires high- [26] (offshore),
identification physical model | interpretable, quality SCADA, | [27] (offshore)
fitted with scalable to farm | oversimplification
SCADA using | level may miss
optimisation nonlinear effects
CONCLUSION

SCADA data represent the backbone of offshore WT
monitoring, but could be more cost-efficient if more robust
methods for diagnostics were developed. Of the methods
discussed here, it is difficult to identify the single best option,
as some are more suited to specific SCADA signals while others
address different types of problem. One of the most promising
directions for wind turbine monitoring is the development
of a digital twin (DT) [28]. Although individual hybrid
approaches such as NBM, Kalman filtering, and parameter
estimation can improve the robustness of SCADA-based
offshore WT monitoring, the concept of the DT represents
the most advanced multi-hybrid integration of these methods.
This technology combines a physics-based approach with
continuous SCADA-driven updates. Furthermore, a DT
can adapt to the changes and complexity of the marine
environment, thus enabling predictions, simulations,
and diagnostics. This technology is still computationally
challenging and limited by the accessibility of data, but is
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