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ABSTRACT

Offshore wind turbines could be an important aspect of the global green energy transition, but their implementation 
is challenging due to the harshness of marine environments. Compared to onshore structures, offshore wind turbines 
are exposed to stronger loads from waves and more turbulent atmospheric conditions, while salt-laden air accelerates 
structural degradation. These variable environmental conditions also make diagnostics difficult. Supervisory control 
and data acquisition (SCADA) systems, which are already embedded in all turbines, provide a cost-effective source 
of operational data for performance assessment and condition monitoring. Although experience of SCADA-based 
onshore testing over recent decades has provided valuable knowledge, these insights cannot be directly applied to 
offshore monitoring. This review summarises the current state of knowledge of SCADA-based monitoring for offshore 
wind turbines, compares it with onshore approaches, and highlights offshore-specific challenges arising from the 
marine environment.
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INTRODUCTION

The European Union is intensifying efforts to scale up 
offshore wind energy, as a cornerstone of its drive towards 
industrial competitiveness and clean electrification. New 
“tripartite contracts” have been signed between governments, 
wind developers and industry, with the aim of stabilising 
investment and accelerating the development of grid 
infrastructure and permitting processes. Although challenges 
remain, including project delays, underbidding in auctions 
and grid bottlenecks, recent decisions have signalled that 
there are plans to raise Europe’s capacity from 37 GW today 

to 80 GW by 2030, giving rise to an urgent need for reliable 
monitoring and diagnostic solutions to sustain large-scale 
offshore operations [1].  

Condition monitoring (CM) systems for offshore wind 
farms are often cost-effective because they help to mitigate the 
increased energy loss during the downtime of a turbine. In a 
marine environment, the downtime of offshore turbines may 
rise due to harsh weather conditions and the longer distances 
to the turbines. In addition, the larger components needed 
for high-capacity offshore turbines, which are designed to 
withstand the marine environment, have higher costs for 
operation and maintenance (O&M) [2].   
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All offshore wind turbines (WTs) are equipped with 
supervisory control and data acquisition (SCADA) systems 
as standard. These systems collect extensive amounts of data 
during the operational lifetime of a turbine, and provide 
updates, usually every 10 min. When used with robust 
algorithms, data from these systems can enable control, 
predictive maintenance, and alerts [3].  

SCADA-based monitoring technologies have lowered 
O&M costs and improved wind power generation, thereby 
enabling more effective maintenance planning and operational 
decisions for offshore wind farms. However, the current 
lack of standardisation and open sharing of SCADA data 
remains a major limitation of offshore systems. Differences 
in technology, operating environments, and data collection 
practices make it difficult to compare studies in this field. In 
particular, offshore reliability is less well understood than 
onshore reliability, as access to detailed and flagged datasets 
is limited [4]. This paper highlights the value of SCADA data 
for monitoring, identifies gaps in extant research, and presents 
key insights into its benefits for offshore WT applications. The 
purpose of this review is to identify ways of improving the 
use of SCADA data within the offshore wind energy sector.

CHALLENGES OF OFFSHORE WIND 
TURBINE MONITORING

The marine environment presents certain challenges for 
the SCADA-based monitoring of offshore wind turbines. 
Offshore turbines operate under strong, turbulent winds [5], 
and this issue is compounded by wind-wave-current loadings, 
which increase fatigue of offshore support structures [6] and 
drive frequent yaw and pitch adjustments. Furthermore, 
humidity and salt accelerate corrosion, cause sensor drift, and 
reduce the reliability of data. Another factor is the marine-
specific biofouling that modifies the hydrodynamic loading, 
while the subsea cables introduce additional modes of failure. 

SCADA data from offshore wind turbines is often 
incomplete and noisy, due to the harsh marine environment. 
This results in, relative to onshore WT data,  increased errors 
in data and a lower signal-to-noise ratio. Furthermore, the 
maritime environment for offshore WTs imposes unique 
logistical maintenance constraints, such as limited weather 
windows for access to turbines via vessel or helicopter, and 
very high downtime and maintenance costs that demand 
highly reliable predictive alarms with minimal false positives 
and false negatives.  

When taken together, these factors mean that offshore 
diagnostics requires more tailored, robust, and environment-
aware monitoring strategies. In Table 1, we summarise the key 
issues related to offshore turbine diagnostics arising from the 
marine environment, and compare them to those affecting 
onshore turbines.

Table 1. Key issues for offshore vs onshore WT monitoring

Factor Onshore WT Offshore WT
Main 

consequences for 
offshore WT

Wind 
conditions

More 
predictable, 
lower 
turbulence, 
affected by hills, 
forests, obstacles

Stronger but 
more turbulent 
winds, gusts and 
rapid direction 
changes

More frequent 
yaw/pitch activity 
offshore leads 
to higher loads 
and failure rates 
in pitch and yaw 
systems

Loads Only wind and 
terrain-induced 
turbulence

Combined 
wind- and wave-
current loading 
on foundations

Extra dynamic 
stresses on support 
structures make 
them harder 
to model and 
influence SCADA 
vibration signals

Air 
composition

Dust, sand, 
insects, 
occasional icing

Salt-laden, 
humid air; icing 
in some seas

Salt accelerates 
corrosion and 
sensor failures

Temperature 
variations

Larger daily and 
seasonal swings 
inland

More stable but 
humid marine 
climate

Fewer thermal 
cycles offshore, but 
constant humidity 
leads to corrosion

Biofouling Not relevant Marine 
organisms 
(algae, 
barnacles, 
mussels) on 
foundations and 
cables

Increased 
hydrodynamic 
drag and mass, 
shifted vibration 
modes, cable 
overloading

Cables and 
grid

Underground or 
overhead land 
cables; stable 
substations

Subsea cables 
and offshore 
substations

Cable faults 
unique to offshore 
turbines, costly 
and hard to repair

Maintenance 
and logistics 
accessibility

Fast response 
possible; 
easy road access;
requires road 
vehicles, cranes

Slower response; 
limited weather-
dependent 
access; requires 
vessels, jack-ups, 
or helicopters

Delayed 
maintenance for 
offshore WTs; 
higher cost of 
downtime; 
false positive 
alarms lead to 
wasted vessel trips;
false negatives can 
lead to catastrophic 
failures

Downtime 
cost

Lower; 
easier delivery of 
spare parts

Much higher 
due to vessel 
hire, delays and 
lost production

Offshore SCADA 
monitoring must 
prioritise early, 
accurate prediction
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SCADA-BASED METHODS FOR OFFSHORE 
WIND TURBINE DIAGNOSTICS

The following subsections provide a detailed overview 
of the three main categories of SCADA-based monitoring 
methods for offshore WTs, which are shown in Fig. 1. The first 
category is knowledge-driven approaches, in which physical 
understanding and expert rules are used to interpret SCADA 
signals. The second category is data-driven approaches, which 
include statistical indicators and machine-learning models 
that extract patterns directly from operational data. Finally, 
there are hybrid methods that combine the strengths of both 
knowledge-driven and data-driven strategies to improve 
diagnostic accuracy under varying marine conditions.

Fig. 1. Three classes of SCADA-based monitoring methods for offshore wind 
turbines.

KNOWLEDGE-DRIVEN APPROACHES

One example of a knowledge-based monitoring approach 
is threshold-based monitoring, in which fixed upper or lower 
limits are used for SCADA signals. This method offers fast, 
straightforward anomaly detection, but it often produces 
false alarms, especially under offshore conditions, due to 
turbulence, humidity and marine variability. An extension 
of the classical threshold method for offshore WT diagnostics 
was successfully applied by Agarwal and Kishor [7], who 
developed a flexible threshold selection approach combined 
with a fuzzy inference system-based fault detection method, 
known as the Flexible Threshold Selection and Fuzzy Fault 
Detection System (FTSFFDDS). 

Other knowledge-driven approaches such as expert rule 
systems and fault trees use “if-then” logic or hierarchical fault 
structures based on engineering knowledge (for example, 
low power combined with yaw misalignment indicates a 
yaw fault). These methods are transparent and interpretable, 
but often lack robustness under variable marine conditions, 
which limits their transferability between offshore sites [8].   

Failure mode and effects analysis (FMEA) is a structured, 
knowledge-driven, risk-based method in which failure modes 
are ranked by severity, occurrence, and detection. FMEA is 
widely applied to WT components, including pitch actuators, 
converters, and gearboxes, but its effectiveness for offshore 
turbines is limited by missing or unreliable SCADA data and 
its strong dependence on expert judgments. Extensions of this 

method have been used to address 
offshore-specific challenges; for 
instance, Dinmohammadi and 
Shafiee [9] proposed a fuzzy-
FMEA approach that enabled 
more accurate risk prioritisation 
of failure modes. One application 
for offshore wind turbine 
systems was demonstrated 
on 16 mechanical, electrical, 
and auxiliary assemblies. 
Furthermore, Li et al. [10] applied 
an analytic hierarchy process 
approach to determine the 
weights of FMEA risk factors for 
floating offshore wind turbines.  

Reliability block diagrams 
(RBDs) and fault tree analysis 
(F TA) met hod s model 
subsystem reliability and failure 
relationships, thus allowing for 
the estimation of downtime 
impacts such as pitch or converter 
faults in offshore farms. They 
are valuable for availability 

assessment and O&M planning, but are static methods 
that cannot be adapted to the fluctuating SCADA signal 
quality specific to offshore environments. For this reason, 
an extension, a fuzzy FTA (FFTA) model was established by 
Zhang et al. [11] to quantify the information uncertainties 
for a floating offshore WT.

A causal reasoning approach involves the application 
of engineering cause-and-effect rules [12]; for example, a 
power drop at a constant rotor speed may be linked to a pitch 
or sensor fault. Methods of this type, which are grounded 
in physics, enhance the interpretability of faults but may 
oversimplify the complex, multi-factor interactions in the 
marine environment. A summary of knowledge-based 
diagnostics for WTs is given in Table 2.
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Table 2. Knowledge-driven approaches for offshore WT SCADA diagnostics

DATA-DRIVEN APPROACHES

One straightforward data-driven approach to SCADA 
diagnostics involves monitoring statistical features such as 
the mean, variance, or coefficient of variation of key signals; 
for example, an abnormal variance in rotor speed or pitch 
activity may serve as an early flag. These methods are easy 
to compute and highly interpretable, although in offshore 
environments, they often give false alarms due to turbulence 
and humidity [13].    

Another data-driven approach is residual analysis, in which 
measured curves, such as the power curve, are compared with 
a modelled or expected baseline [13]. Deviations can indicate 
several issues, such as blade soiling, pitch misalignment, or 
icing. Since power is a standard SCADA signal, this approach 
provides a useful baseline check. Its main limitation for 
offshore use is that wakes, turbulence, and curtailment events 
are frequent, and can create residuals unrelated to faults.    

Offshore WT SCADA data are rarely made publicly 
available, especially when labelled, meaning that unsupervised 
learning methods become particularly useful. Algorithms 
such as k-means or density-based spatial clustering of 
applications with noise  can cluster SCADA data into groups 
representing normal operating regimes, while points that do 
not belong to any cluster are identified as anomalies. These 
methods can successfully identify unusual states, but the 

Approach Description Pros Cons Reference(s)

Threshold-
based 
monitoring

Fixed upper/
lower limits for 
SCADA signals 

Simple, widely 
implemented, 
fast detection

Possible false 
alarms due to 
turbulent winds, 
humidity, marine 
variability

[7] (offshore)

Expert rule 
systems/fault 
trees

“If–then” rules or 
hierarchical fault 
logic built on 
expert knowledge

Transparent, 
interpretable, 
codifies human 
expertise

Rule 
transferability is 
weak, and

not robust in 
changing marine 
conditions

[8] (review of the  
method)

FMEA Structured 
method to rank 
failure modes 
by severity, 
occurrence, 
detection

Systematic, risk-
based, 

accepted in 
industry

Offshore 
SCADA data 
often missing/
unreliable, 
heavily expert-
dependent

[9] (offshore), 
[10] (floating 
offshore)

RBD & FTA Reliability 
models of turbine 
subsystems 
and failure 
relationships

Good for 
availability 
assessment and 
O&M planning

Static, 

cannot be 
adapted to 
varying SCADA 
signal quality 

[11] (offshore)

Causal 
reasoning 
(physics-
based rules)

Uses engineering 
cause-effect rules 
rather than pure 
statistics

Physics-based, 
helps distinguish 
between 
environment and 
component faults

Simplifications 
may miss 
complex multi-
factor marine 
interactions

[12] (offshore)

definitions of clusters may drift over time as the sea conditions 
change, making interpretation difficult. Miraftabzadeh et al. 
[14] presented a review of unsupervised clustering methods 

for power systems, including WT applications. Li 
et al. [15] applied an unsupervised method called 
Hawkey to multivariate real-world WT data. 

In the absence of labelled data, semi-supervised 
anomaly detection models can only learn from 
healthy SCADA data and flag any deviations. 
Examples of this type include autoencoders 
with reconstruction error thresholds and one-
class support vector machines (SVMs). These 
are particularly attractive for offshore wind 
applications, where labels for fault data are scarce. 
Suliaman and Salam [16] successfully applied an 
autoencoder method to a power curve for onshore 
WTs.  Unfortunately, such methods can be highly 
sensitive to environmental noise, which can lead 
to false positive flags.  

In supervised machine learning, classifiers 
or regressors such as SVMs, random forest or 
gradient boosting are applied to predict faults 
from SCADA features. For example, Pandit and 
Infield [17] used a Gaussian process model to 
onshore power curve data, while Leahy and Hu 
[18] used SVMs to distinguish faults such as air 
cooling, excitation, and generator heating from 
healthy operating states. Methods such as these 
can achieve high accuracy when labelled fault data 
are available; their main drawback is that labelled 
offshore fault data are limited, and there is a risk 

of overfitting of the model to site-specific conditions.    
The most efficient, although time-consuming, methods are 

deep learning approaches. Recurrent neural networks (RNNs) 
long short-term memory (LSTM) networks, convolutional 
neural networks (CNNs), and autoencoders have been applied 
to offshore SCADA time series [19]. These approaches can 
capture nonlinearity and temporal patterns, making them 
powerful for anomaly detection and forecasting. For instance, 
LSTMs have been used to predict power output or detect 
emerging faults in offshore turbines. However, these models 
require large datasets, which are rare for offshore WTs, and 
their “black-box” nature limits their interpretability. In Table 
3, we present a systematic summary of current data-driven 
approaches. 
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Table 3. Data-driven approaches for offshore WT SCADA diagnostics

HYBRID KNOWLEDGE- AND DATA-
DRIVEN APPROACHES

Physics-informed normal behaviour modelling (NBM) 
methods combine theoretical physics (for example, 
aerodynamic power curves or thermal balance equations) 
with SCADA data. By grounding the model in known physical 
behaviour, this approach can reduce false alarms compared to 
purely data-driven models. Schlechtingen and Santos [20], [21] 
demonstrated the use of NBM in the context of WT condition 
monitoring. Nevertheless, the accuracy of this approach for 
offshore WT depends strongly on parameter calibration, as 
wake effects and turbulence can distort the residuals between 
measured and predicted signals.  

Another example of a hybrid approach to diagnostics 
involves Kalman filtering and related state-estimation 
techniques. These methods, as described by Noppe [22] 

integrate dynamic system equations 
with continuously updated SCADA 
measurements. They provide effective 
noise reduction and can yield estimates 
of unmeasured states. These methods can 
be useful, especially when attempting 
diagnosis in a harsh offshore environment, 
but they rely on accurate initial models 
and parameter tuning, which becomes 
challenging in offshore environments 
where marine loads are highly variable. 
Another example of this approach was 
provided by Branland et al. [23] in regard 
to floating offshore wind turbines.  

Hybrid statistical-machine learning 
models use physics-derived indicators 
such as power curve residuals or pitch-
to-wind relationships as inputs to machine 
learning algorithms. An approach of this 
type was presented by Jamil et al. [24] 
and validated on an entire offshore farm. 
Although hybrid models yield improved 
detection accuracy and a reduced false 
positive rate, they require site-specific 
training and can become overfitted to 
noisy offshore SCADA datasets if not 
carefully validated.  

Parameter estimation models represent 
one of the most straightforward hybrid 
approaches. In this approach, SCADA data 
are linked to physical quantities such as 
friction coefficients or efficiency factors. 
Tracking how these coefficients change 
over time can help in understanding the 
wear and tear of turbine parts. Ziegler 
et al. [25] demonstrated how parameter 
trends derived from operational data 
could support lifetime extension decisions 
and be used to identify abnormal wear 
patterns. However, the reliability of these 

methods depends on accurate prior knowledge of the turbine’s 
dynamics. In offshore conditions, strong turbulence and 
wake interactions can cause apparent parameter drift that 
does not correspond to real structural changes, which can 
reduce interpretability.   

Finally, another hybrid approach is  grey-box system 
identification, in which reduced physical models are combined 
with optimisation algorithms that fit parameters directly to 
SCADA data. This method has been applied to offshore WTs, 
as demonstrated by Liang et al. [26]. Gebel et al. [27] employed 
a grey-box modelling approach to estimate equivalent wind-
wave loads and to update structural dynamics models using 
field measurements. Grey-box frameworks strike a balance 
between transparency and flexibility, but their accuracy relies 

Approach Description Pros Cons Reference(s)

Statistical indicators Simple statistical 
features (mean, 
variance, 
coefficient 
of variation, 
correlations) 
monitored over 
time

Easy to compute, 
interpretable

Sensitive to 
turbulence 
and marine 
variability, high 
false alarm rate

[13] (review)

Power curve and 
residual analysis

Compare 
measured power 
to modelled/
expected power 
from SCADA 
(baseline 
regression)

Uses standard 
signals, 

good baseline 
check

Affected 
by wakes, 
turbulence, 
curtailment; 
common offshore

[13] (review)

Clustering/ 
unsupervised 
learning

Identify “normal” 
operating clusters 
and flag outliers

No labels 
required; good 
for anomaly 
detection; 
scalable

Cluster drift due 
to changing sea 
conditions, 

hard to interpret

[14] (review of 
power systems, 
including 
onshore WT)
[15] (offshore, 
tested on real-
world data)

Semi-supervised 
anomaly detection

Trained only 
on “healthy” 
data; can detect 
deviations

Works without 
fault labels

Sensitive to 
environmental 
noise; 

may confuse 
turbulence with 
faults

[16] (onshore 
power curve 
data)

Supervised ML 
(shallow)

Classification/
regression using 
labelled data 
(SVMs, random 
forest, gradient 
boosting)

High accuracy 
if labels exist, 
flexible, 

time-efficient

Requires fault 
labels, which are 
scarce offshore;

risk of overfitting 

[17] (onshore)

[18] (onshore)

Deep learning Neural networks, 
LSTM, CNN 
autoencoders 
for SCADA time 
series

Can model 
nonlinear, 
temporal 
dependencies, 
strong anomaly 
detection

Data-hungry, 
limited 
transparency, 

risk of 
overfitting, time-
consuming

[19] (review)
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on the quality of SCADA signals and the details of the model. 
These methods may also overlook the nonlinear effects and 
subsystem couplings that are characteristic of the marine 
environment. A summary of hybrid diagnostic methods for 
offshore WTs is provided in Table 4.

Table 4. Hybrid approaches for offshore wind turbine SCADA diagnostics

CONCLUSION

SCADA data represent the backbone of offshore WT 
monitoring, but could be more cost-efficient if more robust 
methods for diagnostics were developed. Of the methods 
discussed here, it is difficult to identify the single best option, 
as some are more suited to specific SCADA signals while others 
address different types of problem. One of the most promising 
directions for wind turbine monitoring is the development 
of a digital twin (DT) [28]. Although individual hybrid 
approaches such as NBM, Kalman filtering, and parameter 
estimation can improve the robustness of SCADA-based 
offshore WT monitoring, the concept of the DT represents 
the most advanced multi-hybrid integration of these methods. 
This technology combines a physics-based approach with 
continuous SCADA-driven updates. Furthermore, a DT 
can adapt to the changes and complexity of the marine 
environment, thus enabling predictions, simulations, 
and diagnostics. This technology is still computationally 
challenging and limited by the accessibility of data, but is 

widely regarded as the most promising path for offshore WT 
monitoring.  

This review indicates that there are only a limited number 
of studies in which methods have been validated on actual 
offshore datasets, and even fewer datasets that are openly 
accessible. Future progress in offshore WT diagnostics and 
maintenance, and the adoption of integrated frameworks 

such as DTs, will rely on improved data sharing 
within the industry and among scientists.
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