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Abstract: This study evaluated efficiency of bucket lysimeters for measuring water fluxes and ion transport in four 

hydrologically isolated experimental catchments representing reclaimed (levelled and planted by alder) and unreclaimed 

(wave like topography, unvegetated) post-mining sites near Sokolov, Czech Republic. Weekly measurements of leachate 

from lysimeters and surface/subsurface runoff from experimental catchments, in which lysimeters were installed, were 

collected from 2021 to 2024. Ion concentrations (Ca²⁺, Na⁺, Li⁺, NH₄⁺, K⁺) were quantified using ion-selective electrodes. 

Upscaled estimates showed higher accuracy at the unreclaimed site (R² = 0.81 for total runoff, R² = 0.88 for 

evapotranspiration) than at the reclaimed site (R² = 0.72 and R² = 0.77). Lysimeter leachate explained surface runoff 

variance at unreclaimed (R² = 0.75) and reclaimed (R² = 0.47) sites, but was not predictive for subsurface flow. Among 

ions, Li⁺ showed the highest predictive capacity (R² = 0.44 - 0.56), while NH₄⁺ showed consistent patterns across sites. K⁺, 

Na⁺, and Ca²⁺ showed variable transport influenced by soil and vegetation development. Lysimeters captured surface water 

fluxes and evapotranspiration but did not represent subsurface flow or solute transport well. Better lysimeter performance 

at the unreclaimed site suggests that vegetation development reduces hydrological predictability during ecosystem 

recovery. 
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1 INTRODUCTION 

 

Bucket lysimeters provide controlled measurements of water 

and solute transport at the point scale (Howell, 2005; Evett et al., 

2023; Liu et al., 1998; Gee et al., 2009), but their ability to 

predict field runoff across spatial scales is poorly understood 

(Kopp et al., 2013). This challenge is acute in heterogeneous 

post-mining landscapes where lysimeters, by isolating soil 

volumes and eliminating lateral flow, may alter the hydrological 

connectivity governing catchment-scale runoff. 

Mining activities significantly alter natural water movement, 

creating complex flow patterns (Younger et al., 2002; Younger 

et al., 2005; Hancock et al., 2003). Flat reclaimed is more 

uniform, subsurface heterogeneity may appear through variable 

root systems, compaction patterns, and preferential flow 

pathways. In contrast, unreclaimed plots with wavy topography 

exhibit predictable hydrological behavior where wave crests 

consistently experience high infiltration while troughs generate 

surface runoff (Frouz et al., 2024). Tree species further influence 

water movement in clay-rich mining soils (Prach et al., 2011; 

Jačka et al., 2021), creating small-scale differences potentially 

missed by point measurements (Mudrák et al., 2010; Swanson et 

al., 2011). 

While lysimeters correlate with runoff in forest ecosystems 

(Song et al., 2020) and capture snowpack dynamics (Whitaker 

and Sugiyama, 2005; Ala-aho et al., 2018), mining soil studies 

reveal discrepancies between lysimeter and field observations 

(Colombani et al., 2020; Roussat et al., 2008). Ion behavior may 

better indicate hydrological connectivity through differential 

transport and retention patterns (Nimmo, 2006; Dwivedi et al., 

2025; Webster et al., 2006). While conservative tracers like 

chloride track water movement with minimal soil interaction 

(Kendall and McDonnell, 1998), cations provide complementary 

information in clay-rich environments. Major cations (Na⁺, K⁺, 

Mg²⁺, Ca²⁺) exhibit differential retention following the lyotropic 

series which is the relative binding strength to negatively 

charged soil particles, typically ordered: Na⁺ < K⁺ < Mg²⁺ < Ca²⁺ 

(Williams and Coleman, 1950; Sposito, 2008). Water moving 

rapidly through preferential pathways carries cations in near-

input proportions, while matrix flow promotes selective 

retention of strongly-bound cations (Jarvis, 2007). In high-CEC 

mining soils, this differential mobility makes cations sensitive to 

flow pathway differences between lysimeters and field 

conditions (Younger et al., 2002). 

This study uses the FALCON artificial catchment array, 

designed to study ecosystem development between flat and 

wavelike microtopography (Frouz et al., 2020). The system 

provides hydrologically isolated catchments monitoring surface 

and subsurface runoff under two treatments: conventional 

reclamation with leveled surfaces and alder plantations, versus 

spontaneous succession with wavy topography and unmanaged 

vegetation. 

We hypothesized that lysimeter drainage would better reflect 

surface runoff on unreclaimed plots due to predictable 

hydrological patterns, while subsurface runoff would be poorly 

represented due to preferential flow pathways. We expected 

lysimeter-derived water balance to align with catchment-scale 

evapotranspiration estimates calculated from the residual water 

balance approach, especially on reclaimed sites where more 

uniform conditions should facilitate upscaling. Finally, we 
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hypothesized that ion concentrations in lysimeter leachate would 

correlate with runoff concentrations, with stronger agreement in 

subsurface flow following lyotropic series patterns. 

 

2 MATERIALS AND METHODS 

 

2.1 Study site 

 

The FALCON experimental catchments investigate 

ecosystem development in post-mining sites under different 

restoration approaches: reclaimed sites which have flat surfaces 

and are planted with alder, and unreclaimed sites with wavy 

terrain left for unassisted recovery (Fig. 1). FALCON is located 

in a post-mining landscape near Sokolov, Czech Republic 

(50.2218908 N, 12.7071839 E), and forms a part of the Long-

Term Ecological Research (LTER) network. The area receives 

650 mm precipitation annually, with a mean temperature of 6.8 

°C, at 428 m elevation. 

The facility comprises four adjacent catchments, each 

measuring 40 × 60 m (2400 m²), sloping 0.6% toward the 

southwest. Each catchment is bordered at the upslope edge by a 

drainage trench to prevent water inflow from higher elevations 

(Fig. 1). During construction, each catchment was excavated and 

a compacted clay layer was placed at 2.5 m depth to act as a seal, 

forming a basin. This was filled with fragmented clay-stone 

derived from slightly alkaline (pH 8) Miocene sediments. The 

substrate has a silt loam texture with granulometric composition 

of clay = 18-9%, silt = 51-58%, and sand = 24-30% (Kuráž et al., 

2012). The substrate exhibits high water retention capacity due 

to its high clay content (Kuráž et al., 2012), with bulk density 

values typical of young post-mining soils in the region ranging 

from 1.3 to 1.6 g cm⁻³ (Cejpek et al., 2013). The Miocene clay-

stone material contains naturally elevated lithium 

concentrations, typical of sedimentary deposits in the North 

Bohemian Basin. These sediments are derived from weathered 

volcanic tuffs and claystones of the Cypris Formation, which are 

enriched in lithium-bearing clay minerals (Rouhani et al., 2023). 

The alkaline pH and clay-rich composition of the substrate 

contribute to lithium release during weathering processes. 

Construction was completed in September 2019. 

 

 
Fig. 1. Aerial photograph of FALCON catchment array A), scale bar 

represents 20 m and red dots position of individual bucket 

lysimeters. Cross section on individual experimental catchment B) a 

measuring shaft for subsurface run off, b and d drainage system for 

subsurface runoff collection, c surface runoff collection, e. 

impermeable clay sealing, and f overburden back fill, C represent 

schematic of bucket lysimeters used.  

 

2.1.1 Sampling and measurement 

 

Twenty weighable bucket lysimeters (688 cm² surface area, 

60 cm depth) were installed across four field plots. Each 

lysimeter consists of an outer watertight case and an inner soil-

filled container. The inner container was weighed using a 

portable balance (±1–2 mm rainfall equivalent accuracy), and 

percolating leachate was sucked out using a pressure pump and 

collected in vials for storage and analysis in the laboratory. 

From 2021 to 2024, weekly measurements were conducted on 

both lysimeters and catchment plots. Catchment surface and 

subsurface runoff volumes were collected weekly and measured 

at collection points (as described in Fig. 1). Lysimeter leachate 

drainage volumes were recorded in the field and inner containers 

were weighed to assess water storage changes. Water samples 

(0.5 L) were collected from lysimeter leachate and catchment 

runoff, transported on ice to the laboratory, filtered using 0.45 

µm membrane filters, and stored at 4°C until analysis. 

Concentrations of calcium (Ca²⁺), sodium (Na⁺), lithium (Li⁺), 

ammonium (NH₄⁺), and potassium (K⁺) were measured using a 

Mettler Toledo SevenDirect SD60 ion meter equipped with ion-

selective electrodes. Calibration was performed using standard 

solutions (1, 10, and 100 ppm) prepared fresh for each session, 

with periodic verification throughout analysis. Electrodes were 

rinsed thoroughly with deionized water between measurements. 

Lysimeter-scale ET was calculated for individual lysimeters as: 

 

𝐸𝑇𝑙𝑦𝑠𝑖𝑚𝑒𝑡𝑒𝑟 = 𝑃 − 𝐿𝑙𝑦𝑠𝑖𝑚𝑒𝑡𝑒𝑟            (1) 

 

where P is precipitation and L lysimeter is the measured 

lysimeter drainage volume (in mm). This represents point-scale 

water loss through evapotranspiration, with lateral flow 

eliminated by the lysimeter design. 

Catchment-scale ET was estimated using the residual water 

balance approach: 

 

𝐸𝑇𝑐𝑎𝑡𝑐ℎ𝑚𝑒𝑛𝑡 = 𝑃 − (𝐿𝑢𝑝𝑠𝑐𝑎𝑙𝑒𝑑 + 𝑄𝑠 + 𝑄𝑏)          (2) 

 

where P is precipitation, L upscaled is lysimeter drainage 

upscaled to catchment area, Qs is surface runoff, and Qb is 

subsurface runoff. Weekly precipitation was measured with a 

tipping-bucket rain gauge (Onset RG3-M, ±1% accuracy). All 

water fluxes were converted to depth units (mm) by normalizing 

volumes to the 2,400 m² catchment area. Lysimeter drainage 

volumes were upscaled using the catchment-to-lysimeter area 

ratio (38,400), calculated as catchment area (2,400 m²) divided 

by lysimeter area (0.0625 m²). ET proportions were calculated as 

the fraction of precipitation lost to evapotranspiration (ET/P) at 

each scale, enabling direct comparison between lysimeter-

derived and catchment-scale estimates (Fig. 3c). 

Changes in soil water storage (ΔS) were assumed negligible 

on weekly to monthly timescales, supported by lysimeter weight 

measurements before and after drainage events, although site-

specific heterogeneity may cause deviations in some plots. 

Uncertainty in weekly ET was assessed by propagating errors 

from individual components: rainfall (±1%), lysimeter drainage 

(±2%), and runoff (±3%), resulting in ET uncertainty of ±4.6 mm 

at 95% confidence level. This method was applied consistently 

across all sites and years, enabling direct comparisons between 

reclaimed and unreclaimed plots. 

 

2.1.2 Data processing 

 

Simple linear regression was used to examine the 

relationships between lysimeter water volume, surface and 

subsurface runoff, and ion concentrations in these. All 

computational analyses were done using the R software version 

4.5.1. 
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3 RESULTS 

 

3.1 Relationship between bucket lysimeter water volume and 

flow 

 

At the reclaimed site (Fig. 2a), lysimeter leachate volume was 

significantly correlated with surface runoff (R = 0.69, R² = 0.47, 

p = 0.028) but had a nonsignificant correlation with subsurface 

runoff (R = 0.47, R² = 0.22, p = 0.168). 

Similarly, at the unreclaimed site (Fig. 2b), lysimeter leachate 

volume was significantly correlated with surface runoff (R = 

0.87, R² = 0.75, p = 0.001), but with a weaker correlation with 

subsurface runoff (R = 0.59, R² = 0.35, p = 0.074). 

 

3.2 Runoff and evapotranspiration scaling analysis from 

lysimeter to whole catchment 

 

Upscaled lysimeter runoff closely matched catchment-scale 

total runoff at both sites. At the unreclaimed site, the regression 

slope between upscaled lysimeter runoff and actual catchment 

runoff was 1.05 (R² = 0.81), indicating near-perfect agreement 

with the 1:1 line (Table 1, Fig. 3a). The reclaimed site showed a 

slope of 0.95 with slightly lower fit (R² = 0.72) and greater scatter 

at higher runoff volumes (Fig. 3a). Average scaling deviation 

was 10% for the unreclaimed site and 18% for the reclaimed site, 

with wider spread at the reclaimed site (Table 1, Fig. 3b). 

Lysimeter-derived evapotranspiration (ET) estimates also 

aligned well with catchment-scale ET proportions. The ET 

proportion calculated from lysimeter measurements was 0.96 at 

the unreclaimed site (R² = 0.88) and 0.89 at the reclaimed site 

(R² = 0.77), matching the catchment-scale ET proportions at both 

sites (Table 1, Fig. 3c). Scaling deviation showed no systematic 

bias with lysimeter volume between 5 and 100 mL. The slopes 

of scaling deviation versus lysimeter volume were near zero 

(0.05 for reclaimed, 0.00 for unreclaimed), indicating no 

volume-dependent bias in the upscaling approach (Table 1, Fig. 

3d). 

 

 
Fig. 2. Relationship between bucket lysimeter water volume and flow water volume for reclaimed (a) and unreclaimed site (b), showing 

surface and subsurface flow correlations with associated statistics (p < 0.050). Shaded areas represent 95% confidence intervals. 

 

 
Fig. 3. Scaled runoff and ET from lysimeter (1/16 m²) to catchment area (2,400 m²) using a factor of 38,400mL. 
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Table. 1. Summary of runoff and ET scaling relationship and between the bucket lysimeter and catchment. 

 

Metric Reclaimed Unreclaimed 

Average scaling deviation (%) 18 10 

Scaling R2 (Runoff) 0.72 0.81 

Lysimeter ET proportion 0.89 0.96 

Catchment ET proportion 0.89 0.96 

ET scaling R2 0.77 0.88 

Regression slope (R2) 0.95 1.05 

Regression slope (ET) 0.89 0.96 

Scaling deviation vs. Lysimeter volume slope 0.05 0 
 

 
 

Table. 2. Summary of regression results. Bucket Lysimeter vs Flow and Ion Measurements Cations are ordered according to lyotropic 

series proposed by Williams and Coleman (1950). 

 

Site Flow types Parameter Equation R R2 P value 

Reclaimed Surface Li+ y = 0.97x + 3.79 0.75 0.56 <0.001 

Reclaimed Subsurface Li+ y = 1.45x – 6.67 0.66 0.44 <0.001 

Unreclaimed Surface Li+ y = 0.85x + 4.26 0.73 0.53 <0.001 

Unreclaimed Subsurface Li+ y = 1.35x + 0.83 0.46 0.23 <0.001 

Reclaimed Surface Na+ y = -0.28x + 63.53 -0.17 0.03 <0.001 

Reclaimed Subsurface Na+ y = 0.53x + 27.34 0.29 0.08 <0.001 

Unreclaimed Surface Na+ y = 0.43x + 35.06 0.16 0.03 <0.001 

Unreclaimed Subsurface Na+ y = -0.07x + 59.94 -0.05 0 <0.001 

Reclaimed Surface K+ y = 0.67x + 10.35 0.53 0.28 <0.001 

Reclaimed Subsurface K+ y = 0.73x + 4.11 0.5 0.28 <0.001 

Unreclaimed Surface K+ y = 0.49x + 19.95 0.14 0.02 <0.001 

Unreclaimed Subsurface K+ y = 0.56x + 12.12 0.48 0.23 <0.001 

Reclaimed Surface NH4
+ y = 0.43x + 22.13 0.55 0.3 <0.001 

Reclaimed Subsurface NH4
+ y = 0.60x + 14.63 0.55 0.3 <0.001 

Unreclaimed Surface NH4
+ y = 1.34x + 3.47 0.66 0.44 <0.001 

Unreclaimed Subsurface NH4
+ y = 0.79x + 15.15 0.49 0.24 <0.001 

Reclaimed Surface Ca2+ y = 0.16x + 34.38 0.24 0.06 <0.001 

Reclaimed Subsurface Ca2+ y = 0.32x + 28.78 0.44 0.19 <0.001 

Unreclaimed Surface Ca2+ y = 0.20x + 36.04 0.23 0.05 <0.001 

Unreclaimed Subsurface Ca2+ y = 0.10x + 41.29 0.13 0.02 <0.001 
 

3.3 Relationship between ion concentration in surface and 

subsurface flows and bucket lysimeter 

 

Li⁺ showed the highest correlation between lysimeter and 

runoff concentrations across both sites, with significant 

relationships for surface runoff at the reclaimed (r = 0.75, R² = 

0.56, p < 0.001; Fig. 4a) and unreclaimed sites (r = 0.73, R² = 

0.53, p < 0.001; Fig. 4c), and weaker correlations for subsurface 

flow at the reclaimed (r = 0.66, R² = 0.44, p < 0.001; Fig. 4b) and 

unreclaimed sites (r = 0.46, R² = 0.23, p < 0.001; Fig. 4d). 

NH₄⁺ showed moderate and consistent correlations across 

both sites, with equivalent relationships for surface and 

subsurface flow at the reclaimed site (r = 0.55, R² = 0.30, p < 

0.001), and stronger correlation with surface runoff (r = 0.66, R² 

= 0.44, p < 0.001) than subsurface flow (r = 0.49, R² = 0.24, p < 

0.001) at the unreclaimed site, suggesting more direct surface 

transport. 

 
Fig. 4. Ion transport relationships at the reclaimed and unreclaimed 

sites. Regression analysis shows relationships between lysimeter 

concentrations and surface and subsurface flows for Li+ (p < 0.050). 
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K⁺ displayed moderate predictive strength at the reclaimed 

site for both surface (r = 0.53, R² = 0.28, p < 0.001) and 

subsurface flow (r = 0.50, R² = 0.25, p < 0.001), but weak 

correlation with surface runoff at the unreclaimed site (r = 0.14, 

R² = 0.02, p < 0.001), while subsurface flow remained 

moderately correlated (r = 0.48, R² = 0.23, p < 0.001), pointing 

to site-specific variation in K⁺ transport. 

Na⁺ had a negative relationship with surface runoff at the 

reclaimed site (r = –0.17, R² = 0.03, p < 0.001) and minimal 

correlations under other conditions (R² ≤ 0.08). Ca²⁺ remained 

weakly correlated across all site and flow types (R² = 0.02–0.19), 

suggesting limited representativeness in lysimeter 

measurements. 

 

4 DISCUSSION 

 

4.1 Relationship between bucket lysimeter water volume and 

flow 

 

Lysimeter water correlated with surface runoff but not 

subsurface runoff, partially supporting our hypothesis. Both 

lysimeter leachates and surface runoff respond directly to 

rainfall, while subsurface runoff follows complex temporal 

patterns (Lin et al., 2008). The correlation was significantly 

stronger at the unreclaimed site compared to the reclaimed site 

because reclamation activities alter soil structure, porosity, and 

hydraulic conductivity, creating heterogeneous flow pathways 

that reduce lysimeter representativeness (Zhang et al., 2025). 

Heavy machinery during reclamation increases soil compaction 

and bulk density while reducing infiltration rates, leading to 

greater spatial variability in surface flow generation (Ephron et 

al., 2016). Lysimeters poorly predicted subsurface flow at both 

sites due to the scale mismatch between point measurements and 

subsurface processes that operate through preferential flow 

networks and macropore systems at larger scales (Blöschl and 

Sivapalan, 1995; Colombani et al., 2020). 

 

4.2 Runoff and evapotranspiration scaling analysis from 

lysimeter to whole catchment 

 

Lysimeters provided reliable estimates of total runoff and 

evapotranspiration (ET) for post-mining water balance studies, 

though performance varied by site condition. The unreclaimed 

site showed stronger agreement with catchment-scale runoff 

compared to the reclaimed site. This difference reflects 

vegetation development effects: the unreclaimed site exhibits 

homogeneous infiltration and flow patterns due to sparse 

vegetation, while the reclaimed site develops root systems and 

preferential pathways, leading to spatial variability in water 

movement (Jačka et al., 2021). These results support findings by 

Meissner et al. (2020) and the scaling framework proposed by 

Blöschl and Sivapalan (1995), which emphasizes that upscaling 

is most effective when hydrological processes are spatially 

uniform. 

Despite these differences in runoff prediction, lysimeters 

captured ET patterns well at both sites, with ET proportions 

consistent across scales. This supports Allen et al. (1998) that ET 

processes are more spatially uniform than runoff. Lower ET 

proportions at the reclaimed site may reflect reduced water use 

efficiency in early successional vegetation, aligning with 

observations by Bradshaw (1997) and Cooke and Johnson (2002) 

on physiological differences in young plant communities. 

 

 

 

4.3. Ion in lysimeters and catchment runoff 

 

All ions correlated with surface and subsurface runoff, but 

correlations varied between ions, indicating different transport 

processes in disturbed soils (Radcliffe and Šimůnek, 2010). 

Results aligned with the lyotropic series (Williams and Coleman, 

1950) where ions that replace H⁺ in the sorption complex remain 

bound, leading to regression slopes deviating from one (Bolt et 

al., 1976; Fletcher and Sposito, 1989), although exceptions 

occurred (Appelo and Postma, 2005). 

Li⁺ showed the highest predictive capacity across both sites 

and flow types, with regression slopes close to 1.0 for surface 

runoff, confirming its utility as a conservative tracer. The 

elevated Li⁺ concentrations observed in both lysimeter leachate 

and catchment runoff reflect natural enrichment in the Miocene 

clay-stone substrate, which contains lithium-bearing minerals 

typical of sedimentary formations in the North Bohemian Basin 

(Rouhani et al., 2023). Li⁺ functions effectively as a conservative 

tracer due to its minimal sorption to soil particles, limited 

biological uptake, and high solubility (Ptak et al., 2004; Vengosh 

et al., 2002). Compared to chloride (Cl⁻), the most widely used 

conservative tracer, Li⁺ offers several advantages in clay-rich 

mining environments such as lower background concentrations 

in natural waters, providing better signal-to-noise ratios, minimal 

but measurable retention that can help differentiate flow 

pathways, and less susceptibility to atmospheric deposition and 

anthropogenic contamination (Kendall and McDonnell, 1998). 

However, Cl⁻ remains preferable in studies requiring truly 

conservative behavior with zero soil interaction. In high cation 

exchange capacity post-mining soils, Li⁺'s weak binding affinity 

(lowest in the lyotropic series) makes it more mobile than other 

cations while still providing information about hydrological 

connectivity that purely conservative tracers cannot capture 

(Williams and Coleman, 1950; Sposito, 2008; Omar et al., 2025). 

The strong correlations observed in this study demonstrate that 

Li⁺ effectively tracks water movement through both surface and 

subsurface pathways in heterogeneous post-mining landscapes. 

NH₄⁺ showed consistent correlations across sites and flow 

paths, contrasting with less disturbed environments where 

nitrogen species display high spatial variability (Wollheim et al., 

2001). This may reflect simplified biogeochemical cycling 

where reduced microbial diversity and plant biomass result in 

uniform nitrogen cycling (Bradshaw, 1997; Cooke and Johnson, 

2002). K⁺ behaviour was site-dependent, with strong correlations 

at the reclaimed site but poor surface flow correlations at the 

unreclaimed site (Wiegleb and Felinks, 2001; Mengel et al., 

2001). Wavy topography and heterogeneous soil development at 

the unreclaimed site contribute to complex K⁺ transport 

dynamics (Bendfeldt et al., 2001; Zipper et al., 2011). 

Na⁺ and Ca²⁺ showed weak predictive relationships, departing 

from lysimeter studies where major cations typically show 

correlations (Liu et al., 1998; Howell, 2005; Gee et al., 2009). 

For Ca²⁺, this reflects mineral weathering in mining spoils where 

diverse mineral assemblages result in inconsistent Ca²⁺ release 

(Strömberg and Banwart, 1999; White and Brantley, 2003), 

while Na⁺ shows variable transport governed by sorption and soil 

exchange processes, including negative correlations between 

lysimeter and surface runoff concentrations at the reclaimed site. 

Regression slopes across ions and flow types indicate solute 

retention and release mechanisms. Steeper slopes for Li⁺ in 

subsurface flow at the reclaimed site suggest enhanced 

mobilization compared to lysimeter concentrations (Beven and 

Germann, 2013; Šimůnek et al., 2003). This may reflect 

preferential flow pathways or chemical processes that 

concentrate solutes during transport (Jarvis, 2007). 
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4.4 Practical outcome 

 

Lysimeters predicted surface runoff more effectively than 

subsurface runoff because surface processes are more directly 

linked to local conditions (Schmocker-Fackel et al., 2007; 

Durner et al., 2008; Weihermüller et al., 2007). Better 

performance at the unreclaimed site suggests that the absence of 

established vegetation and root-induced heterogeneity results in 

more uniform infiltration and runoff, while reclaimed sites 

develop spatially variable pathways over time. Lysimeter data 

can represent field conditions well for stable tracers such as Li⁺ 

(Hertel and von Unold, 2014; Meissner et al., 2020), but for 

nutrients and reactive solutes additional field-scale 

measurements are needed to capture flow and transport processes 

(Beven and Germann, 2013; Singh et al., 2018; Šimůnek et al., 

2003). 

The role of time in these patterns is not well understood and 

needs further study. The stronger predictability at the 

unreclaimed site may be temporary and could decline as 

vegetation grows and soil structure becomes more complex 

(Antoneli et al., 2018; Bradshaw, 1997; Shrestha and Lal, 2011). 

Long-term monitoring is important to understand how lysimeter 

performance changes as post-mining sites recover (Moreno-de 

las Heras et al., 2008; Pietrzykowski and Krzaklewski, 2010). 

 

5 CONCLUSIONS 

 

Bucket lysimeters predict surface runoff and ion transport in 

post-mining landscapes under specific conditions. Lysimeters 

performed better at the unreclaimed site, where hydrological 

uniformity enhances predictability. Conservative tracers like Li⁺ 

correlated with surface and subsurface flows, while other ions 

showed site-specific behaviour influenced by vegetation and 

topography. Lysimeters failed to predict subsurface flow, 

confirming scale limitations and the need to supplement point 

measurements with catchment observations. 

Context-specific monitoring strategies are required in post-

mining environments as ecosystems evolve. Long-term studies 

are needed to understand how vegetation recovery and soil 

development affect lysimeter-field relationships and to develop 

monitoring frameworks for disturbed landscapes. Future 

research should also explore more sophisticated statistical 

approaches, including multivariate analysis to examine 

interactions between environmental variables (vegetation cover, 

soil properties, topography) and nonlinear modeling to capture 

complex threshold behaviors as post-mining ecosystems evolve. 

Such approaches may reveal nuanced relationships that emerge 

as vegetation recovery and soil development progress over 

longer timescales. 
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