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Abstract: The problem above marked as resolved is more than a hundred years known as the closure problem of
turbulence. Extending its name follows from below presented knowledge that to be its solution successful it is necessary
to find an effective averaging tool enabling one to describe and smooth down any random turbulent field without any
phenomenological limitations. To convince of necessity of such tool author in the article previously proved the non-
differentiability of random fields of measurable turbulence characteristics. But the decisive momentum of his solution
strategy arose from the idea that randomness is an autonomous factor of physical processes and, therefore, this property
can be utilized as a property of independent variables of the governing PDEs. To realize this idea author picked random
frequences of turbulent fluctuations. Author then postulated the dual property as well as bifunctionality hypothesis and
found suitable constitutive equations enabling him: (i) to express the instantaneous behaving of any random vector and
scalar turbulent fields; (ii) to average the non-linear N-S system for the thermally known turbulent flow over the
characteristic domains in the 5-D random space; (iii) to close the averaged equations systems with the set of four
relationships named the Energy Distribution Equations (EDE) as the key result of the closure process. The energy
invariance principle was used to find a closing equation for the energy distribution factor. The resultant EDEs were
successfully verified meanwhile by comparing them with data from four independent sources of experiments made in
boundary layers of wind tunnel flows of high anisotropy. This closure problem solution was obtained without the use of
any auxiliary parameters or assumptions of phenomenological or experimental origin. From the nature of EDEs it follows
that all turbulent mean flows are always 3-Dimensional. The use of randomness autonomy as the property of independent
variables at describing turbulent flows is not limited upon Newtonian fluids.

Keywords: Randomness as autonomous factor; 5-D random space; Energy distribution equations; Mathematical
expectations; Energy distribution factor; Tensor of anisotropy.

1 INTRODUCTION

The problem of closure in turbulence occurs when trying to
describe random processes of turbulent fluid flow by means of
deterministic tools. These consist of the systems of partial
differential equations (PDE), all of which are based on their
respective conservation laws. The cause and circumstances of
the problem are usually described as follows: if liquids or gases
move slowly enough, the flow remains smooth and predictable.
Increasing the kinetic energy of the movement beyond a certain
limit will lead to a chaotic, turbulent flow and problems with
describing it by means of the existing PDEs. When non-linear
PDEs are adapted to turbulent flow by averaging, then new
unknown parameters arise of the fluctuating non-linearities. The
unknown means of the non-linearities are problematic because
they create an unclosed system of the closed one and, thus, the
closure problem. Its solution requires finding the missing
physically justified relations between the new and the original
flow parameters. Unsuccessful attempts to close the system by
obtaining new relations through derivation and averaging
operations directly from N-S equations have triggered the era of
turbulence modelling. Turbulence models retrieve missing
relations by evaluating their phenomenological manifestations.
The domain of application of the numerical simulation of
turbulence effects obtained by these models is demarcated
therefore by the validity limits of the phenomenological
assumptions on which they are based. The “direct numerical
solution” of the Navier—Stokes (N-S) equations is based on the

numerical treatment of PDEs as an alternative to turbulence
models. Therefore, it should be assessed in the context of the
issue of the existence of solutions to deterministic PDE systems
when applying them to random turbulent phenomena.

The closure problem of turbulence arose after Reynolds
(1895) published his crucial work involving his (apparent)
turbulent stress tensor as an analogy to the viscous stress tensor.
But his stress tensor had occurred to be a new unknown variable
being generated by averaging as it is said above. The long
absence of a universally accepted solution to the problem has
inspired the development of turbulence modelling to extent, the
sufficient info on which cannot be pressed even in a review
article. The qualified review of the state of the discipline 30 years
ago can be found in Lumley (1989) as well as in Ecke, R. (2005).
Statistical fluid mechanics as the main basis for the study of
turbulence are described in detail in the monograph by Monin
and Yaglom (1975).

In Volume | of the book series on Advances in Fluid
Mechanics edited by L. Debnath and D.N. Riahy (1998) the state
of knowledge of turbulence was evaluated by examining two
crucial aspects: the physical background of the phenomenon and
the mathematical techniques used to describe it. There are
considered the problems involved with the use of the N-S
equations as the closure problem as well as the need for an
explanation of phenomena, such as intermittency and coherent
structures.

Here is suitable to write several quotations of notions which
mostly influenced creation of strategy, objectives and title of this
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article. The first notions are picked out from the Barenblatt, G.1.
(1996): “turbulence is considered with good reason to be the
number one problem of contemporary classical physics..., it
remains an open problem: none of the results available has been
obtained from the first principles. Obtained results are based
essentially on strong additional assumptions, which may or not
be correct “.

A view of turbulence as a phenomenon that needs to be
described using chaos theory can be found in the study by Li
(2013), which also touches the main tool of statistical mechanics:
namely, averaging (i.e., taking the mean flow as the
mathematical expectation). Indeed, a quotation from his paper is
particularly appropriate here: “Chaos is understood, but untamed
as far as turbulence is considered, it is not known what kind of
(method) of averaging should be used. The search for an
effective description of turbulence started from Reynolds
average of a stochastic signal. But Reynolds average is far from
an effective description of turbulence. Its applying to chaos and
turbulence leads to an unsolvable closure problem .

Developments and advances in the knowledge of turbulence
have been considerably influenced by Kolmogorov's cascade
theory of isotropic turbulence (Kolmogorov, 1941a, b). He
defined the length, time and velocity scales of turbulent vortices,
together with a mean rate of energy dissipation and the relations
between them, and these have remained the focus of turbulence
research to the present day (see Hunt and Vassilicos, 1991). It
needs to say: Inter-scale relations resulting from Kolmogorov’s
theory are used in this study to define the characteristic domains
of averaging, but after author preceding extension of their
validity upon the directional components of kinetic energy of
non-isotropic turbulence.

2 ON THE GENESIS OFTHE MEANS FOR
DESCRIPTING RANDOM DYNAMICS OF REAL
FLUIDS

The above-mentioned PDR systems were created by applying
the physical laws of conservation to the process of their creation
as tools for the deterministic description of the flow of real fluids.
Given that the defining characteristic of this flow is the chaotic
dynamics of a discontinuous microworld of molecules, it is
useful to know the steps that make it possible to describe random
phenomena by means of the deterministic tools of the field
theory.

2.1 The non-differentiability of random fields of measurable
turbulence characteristics

The randomness of turbulent flow characteristics is clearly
demonstrated by experiments. It is manifested by the uncertainty
of the values of the relevant parameters, resulting from the
unpredictability of their occurrence. However, the continuity
properties of functions as the deterministic tools of the field
theory require the certainty of the values presented by these
functions to be differentiable. This is clearly stated in Vygodsky’s
continuity and differentiability conditions written in Sec. 1.6
below. But random fields of turbulence characteristics are non-
differentiable  because they do not meet the conditions § 231
and 8 424 of the Sec. 2.6. There is proof of the non-
differentiability of random turbulent fields and origin of the
average and closure problem.

A direct consequence of the non-differentiability of the
turbulent fields is the uncertainty of the partial derivatives,
which, by the mere intention of using the corresponding PDEs to
simulate a turbulent flow in any way, turns any closed PDE

systems defined above in G(x,t) into indeterminate, unclosed
ones.

It coincides with the Reynolds decomposition which splits
any random function f in G(x,t) into two dependent ones and
doubles the number of unknowns in the respective PDE. This
means that the property of the non-differentiability of turbulent
fields justifies the use of decomposition in "apparently” closed
systems, because such use does not change the uncertain status
of the system.

The main consequence of the proven non-differentiability of
turbulent fields is that it does not allow turbulent flow to be
described by existing “apparently” closed PDE systems of the
Newtonian fluid dynamics without an aid of statistical
mechanics.

2.2 The bifunctionality of position coordinates of the
coordinate system

For the Euler expressing conservation laws the mathematical
continuum concept is necessary. It is procured by the known
relations defining the total (material) derivatives of dependent
variables

du; _ 0u; 3 ou; dxj , .
?_E jzluja—xi, ?—uj(x,t), l,j—1,2,3

2.1)
which at the same time are sources of problematic non-
linearities. Nevertheless, we put (2.1) there as an old sample of
the bifunctionality, the functional property we want effectively
to apply.

The mutual independence of position coordinates x; among
themself and with respect to time ¢ in the first equation of (2.1)
is unconstrained. However, the same coordinates x; define in the
second eq. of (2.1) the paths of mass, momentum and energy
transfer in the role of dependent variables, evidencing by such a
way property the of the bifunctionality of space coordinates.

Over and above after applying Reynolds' velocity
decomposition in (2.1) one can adjust the second (reference)
equations in (2.1) to an integrable form

_dn _ w4

=—+ 9 dxi= dx_L+dx’L

u. =
t dt dt dt

2.2)

But this obtained can be integrated even back resulting in the
decomposition of dependently variable

’
dx’; f

ac = Uu; (23)

x;=x+x'; at (%i= u; and

It is important to emphasize that only thanks to this
bifunctionality the x; given in (2.3) does not represent
coordinates x; in the role of independent variables in partial
derivations df/dx;. In opposite case it would imply the
oscillation of the system of coordinates and the invalidity of the
operations performed. In the case of turbulent flow, of course.

The possibility to apply bifunctionality as property of the
coordinates x; has influenced the strategy at solving the average
and closure problem in this study.

2.3 Sources and types of problematic non-linearities of
turbulences in respective PDES system

The respective PDEs system is a closed system involving
seven dependent variables f (xt]). Five of them, i.e., three
components u; of the velocity vector u(u;), density p, and
temperature T shall be considered as primary dependent
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variables, all governed by five equations of three conservation
laws. Momentum, Kinetic energy and internal energy belong to
derived dependent variables, included pressure p(p,T), given by
the thermodynamic equation of state. All respective PDEs
contain non-linearities as well as a momentum flux tensor pu;u;.
Besides these, viscosity u(T) and thermal conductivity #(T) as
properties of moving fluid are of experimental origin. Based on
the laws of conservation PDEs can be presented in the common
form of its left sides,
pz—]: = P (2.4)
by means of notations in the conservation form suitable for
dynamical systems by using the tools of differential calculus (2)
and (2.1) and the properties of the mass conservation equation
itself

2+ pdivu=0 > 2+ div(pu) = 0; (2.5)
in which p indicates the specific mass and u velocity vector. The
second of the equations in (2.5) has already obtained the desired
conservation form after eliminating the full derivation dp/dt
from the first one, by using the pair (2.0) and (2.1). Eq. (2.4)
expresses the momentum conservation law if f = u, or the energy
conservation law if f = € + E. We obtain these conservation laws
in the desired form by making the following adjustments based
on the continuity equation and replacing d(pf)/dt:

p L +f (5 + pdivu) = “ED+ pfdivu = P

dt
div(pfu) = Ps;

S5 @D
at
(2.6)

If (2.6]) reflects the conservation of momentum pu, then P;
are components of the resulting vector of body forces due to
gravity and surface forces of pressure and friction. Its scalar
notation is then a system of three N-S equations
M+div(--:- P

" owu) =Py, i,j =123 (2.7

In the case of isothermal (or thermally known) flow, their
right sides P; do not contain problematic nonlinearities as it
follows from the next section. The total (material) derivative on
the left side of (2.4) are the source of the first, basic type of
problematic turbulence non-linearities shown by eq. (2.6) and
2.7).

2.4 Influence of physical properties of fluids upon generating
problematic non-linearities

The dependences of pressure p, internal energy €, viscosity
coefficient ¢ and thermal conductivity » on the mass p and
absolute temperature T necessary for the closure of systems (2.3)
to (2.7) are of thermodynamic origin, including the parameters
Cv, Cpv indicating specific heat at the same volume or pressure.

The dependence of coefficients u and »# on temperature also
means dependence on flow mode and dynamics. Therefore, we
will comment on the need to assess these relations in terms of the
possible formation of problematic non-linearities in the event of
PDR adaptation to flow with turbulent temperature or density
fluctuations.

Given that the relations for coefficients u and » are always of
an experimental (or empirical) nature, this threat can be ruled out
if the results of experimental measurements (or observations)
have been processed only into regular dependences, devoid of

random fluctuations in the measured values. In the case of using
the averaged PDR system to simulate a turbulent flow, this
allows us to postulate the assumption that if the coefficients u
and » are determined as functions of the average temperature
values T, then u(T ) and »#(T) shall not be a source of
problematic non-linearities.

Nevertheless, any use of the terms isothermal flows or
incompressible fluids concerns only the case of justified neglect
of the temperature/compressibility effects due to practical
reasons.

2.5 The deformation energy as the effect of turbulent density
fluctuations.

The formation of the constitutive functions of the desired
properties requires the use of the vortical properties of the kinetic
energy of the turbulence. One of these may be surprising, so we
shall bring it up first. The current kinetic energy E of the
instantaneous velocity field per volume unit is defined (see L.M.
Milne-Thomson, L.M. 1960, paragraph 3.50) as the product of
the components u; of the velocity vector u and the specific mass
p in the form of.
E= %3, puf, i=1,23 (2.8)

After applying Reynolds’s decomposition u; = 4; + u';, p =
p + p' and implicitly averaging in (2.8), we obtain the averaged
kinetic energy E as a combination of averaged non-linearities

= 1 1 ) e )
E ZEZ?zlpuiz :;21'3=1 [p(uiz+ui)+2uipui+pui (2.9)

in which the last two terms of the sum satisfy the inequalities.
2upu; =0 or 2upu;<0andpu’; =0 or pu:<0
(2.10)

Inequalities in (2.10) are valid due to fact that both fluctuating
non-linearities p"u’; and p'u'i2 alternate positive and negative
values before averaging as the result of the randomness and
mutual independence of the fluctuations p” and u’; and the
nature of their products. After averaging, they behave in this way
because the characteristic averaging domains A are final and
their boundaries are unknown and unconditional; see the
conclusion of Chapter 3.

For the above reasons, the area A shows a statistically equal
probability of occurrence for both positive and negative values
of the averaged fluctuating non-linearities in (2.10). However,
the same probability of occurrence for both positive and negative
values should also apply to their sum

Eq == %i, [20pw + pu; ] E,>0 or ;<0 (2.11)

From the inequalities in (2.11), it follows that the process of
averaging the kinetic energy E in (2.9) resulted into the sum of
two qualitatively different kinds, elastic E. and deformation Eq
giving

E=E. + Eq (2.12)

Of these, the only the elastic part E,, given by
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2

Eo=p(K+k); K =-%i a4 k==Y u7; E, >0 (213)

remains after averaging always positively, while its part Eg4
according to (2.11) can take also negative values.

However, this means that the implicit averaging (2.8) = (2.9)
caused the separating transformation of kinetic energy E into
three qualitatively different types of energy. Two of these, K and
k, denote the two known types of kinetic energy entraining per
mass unit. K is produced by the velocity field &; and k by its
fluctuations u';. The third of them, E, is the result of the
qualitative transformation of part of Kkinetic energy E
and becomes part of the internal energy of the flow as an
averaging effect when the following inequalities are valid,

E>0>E=E,+ E; >0>E,>abs(E,) if E; <0 (2.14)

The sign of the energy E, is determined by the result of the
sum of the averaged fluctuation products of p’ and u’; creating
E,4 in (2.11). It expresses a mass compressing/diluting effect on
the energy exchange through pressure, density and temperature
fluctuations. Since in atmospheric physics the effects of
compressing/diluting are recollected in connection with the
potential temperature of air, see Bednar, J — Zikmunda, O.,
(1985), the deforming energy E; can be named also by the term
potential energy expressed through the potential temperature
fluctuations.

The resulting system of averaged equations is also expected
to determine the current value E,; to be used in energy analysis
or in the direct solution of the energy balance equation. However,
the following two unifying effects of kinetic energy averaging,
arising from the previous analysis, are also important for the
current solution of the closure problem itself:

i. The elastic kinetic energy of flow E, defined in (2.13) is not
affected by the compressibility effect. It is applied in adiabatic
processes through the strain energy E,; generated by
fluctuations p’, u';. This means that the kinetic energy of both
compressible gases and "incompressible liquids™ are defined in
the same way by the same relationship (2.13).

ii. A.N. Kolmogorov assumed his cascade theory of the
kinetic energy of turbulence dissipation to be valid for
incompressible fluid flows. Since the object of his theory is the
dissipation rate of fluctuating kinetic energy k, which is part of
E,, it follows from (i) that this property of E, can also be
expected at compressible fluids. This justified its use in Section
3 below at defining the characteristic domains of needed
properties for averaging relevant PDEs.

2.6 Information Support (1) and (2)
(1) Vygodsky’s (1971) Conditions of Continuity and
Differentiability of Functions of Several Arguments

231. Differentiable Functions

A continuous function which (at a given point) has a
differential is called differentiable at that point. A discontinuous
function cannot have either a derivative or a differential at
a point of discontinuity.

424 Continuity of a Function of Several Arguments

Definition: A Function f(x,y) is called continuous at a point
Mo(Xo,Yo) if the following two conditions are fulfilled:

1. the function has definite value I at Mo.

2. the function has a limit, also equal to |, at Mo

If even one of these conditions is violated, the function is
called discontinuous at the point Mo,

The same holds for the case of three and more arguments.

(2) Reynolds’ decomposition of linear forms of random
dependently variable functions.

Applying the decomposition f = f + f’ of random function

f(x;, t) on its averaged part £ and random fluctuating deviation
f' and establishing the averaging rules for operations with linear
decomposition forms, Reynolds put into action an important tool
of statistical mechanics. Written for velocity u;, u; i,j = 1,2,3,

Reynolds rules valid for mean values f consist of the relations

u; = l_l.i‘l'ui, u’i=0, i:'l_l.l', ul-+u]-:ﬁi+ﬁj, u;u; = 'l_llﬁ]

/)
+ u,iu’]‘ (215)

&l

Using them on decomposition f = f + f’ one obtains also
rules for averaging the partial derivatives

T _ o T
ot o’ ox;  ox ' (2.16)
3 RANDOMNESS OF TURBULENCE PHENOMENA IN
THE ROLE OF A PHYSICALLY AUTONOMOUS
FACTOR OF CHAOS AS THE BASIC STRATEGY OF
THE AVERAGE AND CLOSURE PROBLEM SOLUTION

As the one of possible steps in the effort to get rid of any non-
differentiability of the random turbulent fields proven above
in Section 1, it is solution strategy arisen from the idea that
randomness is an autonomous factor of physical processes and,
therefore, this property can be utilized as a property of
independent variables of the governing PDEs.

Applying Reynolds’ decomposition in the “originally” closed
PDEs one transforms this system into an unclosed one creating
the closure problem. But use of above stated strategy to solution
of the problem enables one to analytically express any random
turbulent flow in the domain G'(x,t) and its mathematical

expectation in the domain G(x,t), performing in such manner the
transformation

random fields f=F+f'in G(xt) > smooth fields f(xt)
in G(xt)

without any phenomenological presumptions on turbulent flow
properties or behaviour.

To perform this the above postulated randomness and
unpredictability of turbulent phenomena will be defined and used
as the properties of independently variable parameters of
turbulent flow.

3.1 Definition of randomness and physical independence of
random turbulent parameters. Dual property and
bifunctionality hypothesis.

The mean flow characteristics f are regular if they remain the
same, after the mean flow, with the same initial and boundary
conditions being repeated. Otherwise, they are random. Two
starting steps were made on the way to the desired solution of the
problem: (i) we considered randomness as an autonomous factor
of random processes and (ii) we have applied it as a useful
property enabling the presentation of the random behaving of
turbulent fields by standard tools of applied mathematics. In this
case it shall be constitutive equations consisting of regular
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functions of random variables. In the presented study, the idea of
randomness is realized through the so-called dual property and
to other random parameters as well as with respect to time t and
position vector X, and (ii) they are simultaneously formal
functions of time and position in the sense that such random
dependence can be determined and described only through
measurement. It is impossible to know these parameters before
measurements have been made, because they behave in time and
space without causal coherence, i.e. randomly. This is a mark of
physical independence. The frequency o of turbulent
fluctuations of vector and scalar fields is chosen to define the
class of independent variables in functions creating constitutive
equations.

3.2 On some tools of statistical mechanics and their
properties applied in the article

This concerns, namely, the averaging of a function defining a
mean value, also called the mathematical expectation, and the
Reynolds’ rules for operations with decomposed random
functions. Two forms of averaging will be used. The first, known
as the Reynolds’ average, means an unknown function denoted
by an overbar, which we call the implicit average. The second
one, called the explicit average, defines the mean value of a given
function through a definite integral over its characteristic
domain. Integrands of these definite integrals will be created
explicitly from the constitutive functions. In such specified
integrands the products of any dependent variables will be
expressed through constitutive functions as well. Both forms,
implicit and explicit, assume the validity of the Reynolds’ rules
for the implicit form of averaging. The explicit averaging of
constitutive functions will be carried out in the space of random
independent variables G (w, t) but with its mean values located
in the space G(x,t) satisfying the conditions (3.1) below.
Therefore, when specifying the domains of averaging, there shall
be neither the possibility nor the need to consider any use of
correlating or autocorrelating functions, or other aspects of
probability theory. Particular attention is required when
averaging a random but statistically steady field. The integral
time scale T— oo in this case, and the result of averaging for one
position point in G(x,t) becomes constant regardless of the
method of averaging. Therefore, the Reynolds average in the
domain — T/2 < 0 < T/2 currently applied in experimental
research on turbulence is consistent. This includes the
experimental resources used in this study to confront theory with
experimental data. Although the mean value of random functions
can be defined differently, it does not exclude the possibility of
comparing computation results with the results of experimental
measurements under these conditions.

The domain of definition for variables to appear in
constitutive equations belongs to G(w,t). Random velocity
components u; of the vector u(x,t) and the scalar dependent
variables (e.g. of density p) will be defined in the regular space
G (x,t)and, through constitutive functions, also in the space

G(w,t).. The space G (x,t) is the standard four-dimensional
space-time. The space G(w,t). is (N + 1) = 5-D, (5-
dimensional), where N = 4 is the number of active random
frequency components. N = 4 because of three vector
frequencies w; and plus one due to scalars ®,. The domains of
definition of the constitutive functions in 5-D space G(w,t).
satisfy the inequalities

0<t<T,

Wip < w; < Wiy, i = 1,2,3, (31)

Where w;p, w;y, T are regular, non-random boundary values of
the random frequency w; and time t. The following scheme
depicts the role of both dependent as well as independent
variable o in

u;=u; (w;, 1)
D G(w,t)

in 5-D G(w,t); > u; =4;(w, (X, t),t) in 4-
(3.2

before and after averaged turbulent velocity field in accordance
with the dual property hypothesis.

3.3 The characteristic speed of turbulent fluctuations and the
turbulent pressure of fluctuating energy

The directional components of the fluctuating kinetic energy

ﬁu'iz are also known as normal turbulent stresses. This
bifunctionality is also manifested in Kolmogorov's cascade
theory of energy dissipation when defining velocity scale V by
means of the characteristic velocity of turbulent fluctuations
according to relations

V=~ [u?,  uj=uj,

valid for isotropic turbulence. Cascade theory determines the
velocity scale V together with the scales of length L and time T
to be functions of the kinematic viscosity v and the average
dissipation rate of fluctuating energy €. By assuming the
possibility of using some of the insights of Kolmogorov’s
cascade theory within TED also for non-isotropic turbulences,
we shall find an equivalent of relation (3.3) for velocity scale V
which satisfies this requirement.

An important feature of scale V in (3.3) is that, together with
scale L, its values determine Re, which characterizes the local
state of turbulence throughout the entire range of turbulent
vortices from maximum vortices to micro-vortices, whereas Re
=> 1 values. Such a property in the non-isotropic region of
turbulence has a velocity scale V only if it is determined by the

i=1,273 (3.3)

_ 2 .
average of three normal stresses pu ;, i.e., by

Vi=yiul i=123 (3.4)
i.e. like how the Kkinetic energy of molecules defines pressure
in thermodynamics, see Soo, S. L. (1962).

The average of the normal stresses (3.4) defines in such way
the turbulent pressure P, as well as the velocity scale V by the
relations

1 _ 2 1
P, = 921'3=1ui2; V= (P /p)

=3 (3.5
and enables us to apply some tools of the cascade theory of
turbulent energy dissipation also to the description of non-
isotropic turbulence processes applying (3.4) in an analogy from
thermodynamics. defining the validity domain and averaging the
constitutive functions. This theory of course considers energy as
ascalar whole. Since anisotropy of turbulent flows to be realized
in the study and suitable method for averaging independent of
any fluid flow state and property has to be found, it requires to
extend the validity of the cascade scale relations to the
directional components of energy. With this aim in mind, it is
useful to begin with the survey of the steps leading to
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Kolmogorov scales and inter-scales relations, see Kolmogorov,
AN, (1941b), or Dubrava, L and Vajcik, S., (1988).

4 EXTENSION OF THE VALIDITY OF THE
KOLMOGOROV’S CASCADE INTER-SCALE
RELATIONS

4.1 Information support (3): Inter-scales relations of the
Kolmogorov’s energy cascade theory

Kolmogorov’s energy cascade theory of turbulence provides
a quantitative description of internal structure of turbulent fluid
flow. This structure is understood as a system of vortices that are
constantly forming and disintegrating. Smaller vortices are
always more stable than larger ones. This process is random. But
the Reynold’s criterion Re = VL/v that characterizes a local state
of flow, has been determined by the mean characteristic
parameters

1 1 -5

V= (P /p)e=(2k/3)2; k=2¥i,u}; i=1,23 (41)

These are the fluctuation kinetic energy. k, the kinematic
viscosity v, the characteristic diameter L and the characteristic
velocity scale V. The last is taken from the average of three
components of 2k in (4.1) to obtain V approximately valid as
well as for the case of not isotropic turbulence. It stems from the
turbulent pressure formulations by (3.4) and (3.5) in the Sec. 3.
According to Kolmogorov’s first similarity hypothesis
(Kolmogorov, 1941a), the dimensions of sufficiently small
isotropic vortices are functionally dependent on just two factors:
v [ m%s] and the mean kinetic energy dissipation rate £ [m?/s°].
By assuming a threshold value of the Reynolds number Re,),
Kolmogorov was able to determine the threshold magnitudes of
length scale L = # and velocity scale V = u, of the smallest
vortices below which viscous frictional forces prevail over
inertial forces. Since Re represents the ratio between those
forces, the value Re = Re, = 1 is the boundary at which the
ratio changes in favor of the frictional forces. Using the threshold
values in (4.1) leads to a relation that we shall call a locating
equation for the sought-after microscales # and w,,:
nu, =v (4.2)

This equation follows from Kolmogorov’s hypothesis on
existence of the relationship n(v, €).

From dimensional analysis, such a relationship takes the form
n = c&F, with @ = —1/4 and § = 3/4. The dimensionless
constant c is determined to be 1, so we achieve the sought-after
smallest size scale of turbulence:

n=(5)

Using this result in (4.2) gives the microscale for velocity:

(4.3)

1

u, = (vé) (4.9)

According to the first similarity hypothesis, the validity of

which the author himself called approximate, for characteristic

scales of turbulent vortices on each nth level of size, the
following dimensional relationships are applicable:

L=VT > L, =V,T, >n=u,t (4.5)

The final equality in (4.5) in combination with (4.3) and (4.4)
leads directly to a microscale for time:

(4.6)

Finally, the ratio of the square of the velocity from (4.4) to
the time microscale ¢ from (4.6) provides a dimensionally
consistent relationship when applied to the whole energy cascade
under the assumption of a one-way flow of energy from larger to
smaller vortices, as a result of which an average dissipation rate
€ can be written as

uf  vE_v?

E=—= =

=T ST 4.7)
4.2 Extension of the validity of the Kolmogorov’s cascade
inter-scale relations up the directional components of the
fluctuating energy of a non-isotropic turbulence

Kolmogorov's cascade theory of energy dissipation refers to
the fluctuating kinetic energy k as a scalar whole. It assumes
"incompressible™ liquids and isotropic turbulence. The intention
to extend its validity to compressible gases is justified above in
the Section (2.7). The extension of the approximate validity of

the cascade theory onto domains of large vortices (where u'l-2 *
u']-z) ensures a "common"” rate of energy dissipation

£=—, =123 (4.10)
by the fact that the square of the velocity scale used in (4.10) is
determined in (3.4) by the arithmetic mean of the three
components of fluctuating energy k, as defined in (4.1), and by
the turbulent pressure P,. While the average dissipation rate &
in (4.10) is studied in Kolmogorov’s cascade theory as a
parameter of one scalar whole of isotropic turbulence, solving
the closure problem requires finding properties and interrelations
for the three dissipation rates of fluctuating kinetic energy

ui# uj, i=123 (4.12)

and their three directional components V> = uf The third
object of our interest is the interrelation between the integral time
scale T and its three components T;. The basis of this
relationship is obtained from (3.4) after eliminating the squares
of velocity scales V2 and V;? obtained from (4.10) and (4.11). It
will be simple,

ET ==Yl &7, (4.12)

By this way, we expand the concept of an energy cascade to
a vector variant that allows inter-scale relations to be defined for
each of the three components V;2of the fluctuation energy field
that make up the sum (4.12). This brings us to a vector space
whose determining parameters are the characteristic velocities of
turbulent fluctuations, further named as the characteristic
velocities of turbulence:

(4.13)

338



The average and closure problem of turbulence theory resolved in random space

The number of characteristic parameters is tripled by the
transition to a vector space, as are the number of inter-scale
relations. This also applies to the dissipation rates &;, in which
the individual components will be different:
& # & # &5 (4.14)

The transition to a vector field requires that we apply the
relations (4.1) — (4.7) for each of the three components (4.13) of
the characteristic velocity V and for each of the three
components of the velocity microscale u,. Equation (4.1) will
give us three relations
ViL; = vRe;, i=1, 2,3, (4.15)
to define three systems of energy cascades by the Re values for
all the directional components of energy. Since (4.2) is a location
equation, the same goes for its three directional variants for the
microscales n; and u,; , which are connected by a common
locating Re = Re. or locating viscosity v, according to the
equation
UpiM; = v Re, = v, (4.16)

In the case of a cascade located in the scalar space, the control
Re is determined by the value Re = Re, = 1. Now, the value
Re, in (4.16) is not known, but it will be the same for all i =1,2,3
in (4.16) and will provide a domain in which averaging is
assumed, the results of which will satisfy the inequalities

VE=u2>0, i=1,2 3, 4.17)
Equations (3.7) also triple in number, but they perform the

same function as before in the form

i=123, (4.18)

Now we just have to write three - dimensional relations
equivalent to both of (4.5):
Li=VT; m=uyt, i=1273 (4.19)

These complete a system of equations for defining nine
microscales and nine inter scale relations. We can do this for
each i separately, just repeating the procedure from the previous
scalar case. By solving the system of equations (4.16), (4.20),
and (4.21) with respect to the microscales n;, 7;, and wu,; , the
functions for the dissipation rate &; and locating viscosity v, are
obtained:

1 1
3\2 = 1
m=(2) n= () we= @) i=123 (420
in which v, is the common parameter for all three directions i,
formed by the control Re, in (4.16).

When compiling the equations for the three inter-scale ratios,
the first equation comes from the ratios between the two
equations in (4.19). The second comes from the ratio between
the equations (4.15) and (4.16). Finally, the second equation in
(4.18) will close the nonlinear system for the three inter-scale
ratios. Its solution in the form of power functions of Reynolds
numbers gives the sought for inter-scale relations

1

o () = () = (S0, =125, (4.21)
for time scales and
Bon (E0 e (O an @.22)

for scales of velocity and length. To find a way to define the
space of averaging of the N-S equations, the ratios from time
scales in (4.21) will be sufficient. The actual value of the
“control” viscosity v, is unknown, but it may be specified within
the inequality (4.17) on a physical basis. We do this by using
characteristic turbulent frequencies defined by time scales
through the relations

i=1,23 (4.23)

The common locating value for these frequencies is unknown,
but, owing to the relation

1 1
Qe=r=0 (4.24)
it will combine three inter-scale relations (4.21) through a
common value of the time microscales t;:
T, =T, =T3 =T, =T,. (4.25)

By rewriting (4.21) with a common t; according to (4.25), we
get the desired inter scale relations connecting any vector values
of the dissipation rates &; with their common scalar &, which

follows from a common fluctuation frequency (4.24) for all three
i=1.23.

1
T; Ti\z Viz c _ — .
—=vi(v—c)2 > LYoz j=12 3 (4.26)

Tc T; Tc

The elimination of the common right-hand side in the second
triplet of equations (4.26) leads directly to farther usable step

T _ VY /o - .
T_j_V_jz b d T—i—T—j—EC |,j—1,2,3 (427)

The equations in (4.27) provide important relations to solve
the closure problem accordingly with the strategy stated above.
The first one determines the ratios between the time scales T;
and T; directly by the ratios between the respective normal
turbulent stresses. The second provides important physical
information and namely that the dissipation rate of fluctuating
energy £ is "approximately™ constant not only for the "vertical"
passage through a cascade of vortices of different sizes. It is valid
also for the "contour-wise™ motion in a single vortex (or multiple
vortices) along a line of the same size L and other parameters.
This three-line information written with three characters
indicates an approximate equality:
Ex§ R E, (4.28)

The use of (4.28) in (4.12) leads to wanted relationship among
the time scales

T==33.T, (4.29)
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enabling one to create the characteristic domain of averaging the
respective PDEs systems.

It is important that (4.29) follows independently as vell as
from this consideration: Numerator of the ratio in (4.10) defining
the mean rate of energy dissipation £ is given by average (3.4)
which stems from the thermodynamics analogy for turbulent
pressure. But to keep this consideration consistent, denominator
in (4.10) would be the same as follows from (4.29). It justifies
validity of the Kolmogorov's cascade relations over the
directional components of energy as well as.

Kolmogorov’s energy cascade is fixed at its lower limit by the
value of the Reynolds number Re = 1. The above-mentioned
relations define three cascades V;2/2 in a positive vector
space. A fourth, given by the sum for k in (4.12), remains in the
original scalar space. These cascades are fixed by a common
value of the Reynolds number Re = Re.. We do not know the
actual value of Re,. However, it has a definite physical
significance, which lies in the local (inner) isotropy of turbulence
and in the common value of the averaged frequency of the
velocity field fluctuations.

Above in Section 3 chosen fluctuation velocity frequencies w
for the bifunctional role of random independent variable
parameters within the possibility to play dependent variables of
turbulent flow has a demonstrable experimental justification. Its
individual random numerical values w, = 1/ T, are clearly
identifiable on the time axis of experimental records regarding
measured velocities, see Dubrava, L. and Vajcik, S. (1988). They
are given by the inverted values of individual time periods Ty, n
=1, 2, between adjacent opposite (+/-) speed extremes. Values
Tn > 0 are random in magnitude and occurrence and fill the
continuous space on the time axis. They do the same with
relationship w, = 1/ T, with frequencies w, ,satisfying the
required properties of random independent variables.

5 CONSTITUTIVE FUNCTIONS AND CONSTITUTIVE
EQUATIONS OF RANDOM TURBULENT FIELDS

The randomness of f' and maximal probability of f in the
Reynolds decomposition f = f + f’ enabled him to open and
define the closure problem. These properties though needed
seem to be not sufficient for his decomposition to become a
constitutive equation as a tool leading also to wanted solution in
accordance with the dual property and bifunctionality
hypothesis.

To avoid this limitation the general sinusoidal function was
used as the constitutive function in suitable constitutive
equations being able to describe any random oscillating flow due
to its random frequency w in the role of the independent
variable.

5.1 Constitutive equations of random fields as the effective
statistical tool of fluid dynamics

With the frequency of turbulent fluctuations playing the role
of the random independent variable, the constitutive equations of
the form

u; = U;cos(wit +¢;), i=1,2, 3, in G(w,t) as well as in
G(x,t), (5.1)

are chosen to define the vector of a random velocity field
u(uy, uy, u3) via the regular cosine function in two spaces of
independent variables. The first space, G(w, t), is formed from
time t and the three components of a random frequency vector

w(wy, w,, w3) of the velocity fluctuations. The random
frequencies of velocity fluctuations w;, although independent in
G(w, t), behave as

w; = w;(x,y,z,t) in G(x,t), (5.2)
i.e., as random but formal functions of time and position. They
are “formal” because, if we know them, we can record them in a
deterministic space in the sense of the dual property hypothesis.

The random frequencies w; can also be understood as
velocities of the vortex rotations caused by the fluctuations w;.
The expression (5.1) contains the phase angles ¢; and moduli
U; = |U;| > 0 of the velocity components u; =1, +u;. The
parameters U; and ¢; are thought to be obtained as the functions
of other mean flow parameters in order to connect G (w, t) with
the deterministic space G(x,t). Therefore U; and ¢; can be
named as the mean connecting parameters.

To obtain U; and ¢; we will subject the constitutions (5.1) to
averaging operations in the space G(w,t). Before averaging
(5.1) it is useful to use some substitutions and rewrite
constitution (5.1) into its dimensionless variant in the form
Uy; = C; COS @; — S; Sin @, (5.3)
where the dimensionless velocity w,; and the trigonometric
functions of time t and frequencies w; are

Ui

Upi = 75

oo Gi= coswt; s =sinw;it ; i=1,2, 3
i

(5.4)

Since the averaging meanwhile can be only implicit, we
average the constitutive equation (5.3) indicating resulted means
meanwhile by overbars. The equation thus obtained can be used
to determine the wanted connecting parameters sin ¢; and
cos @;. This is possible with help of the known relation sin2¢; +
cos?@; = 1. Utilizing this and the average of equation (5.3), we
obtain the parameters to be eliminated in the constitution (5.3),

—ly; $i%¢/D; Uy C+5;/D;

sing; = — o Cosgp =Tl

(5.5)

as functions of the mean velocity field @; and other mean
quantities defined in G(x, t), i.e.:

§i = Sin(l)it, Ei = Coswit, (56)

Dy =M; — @y, Uy = Z—i (5.7)

Mi = §2i + (,:zi,
After elimination of the mean connecting parameters sin ¢;
and cosg; as well as multiplication of the equation (5.3) by the
modulus U;, the constitutive equation (5.3) can be written in
concise form
w = a;i; £bUD;, i=1,23 (5.8)
in which the key constitutive functions a;(w;, t) and b;(w;, t)
are given by the relations
1 - - 1 - -
= (e +5i5), by = ; (Sici — ¢i51) (5.9)
It can be seen immediately that these functions after their
implicit averaging have constant values
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(5.10)

which, thanks to (5.10) and M; in (5.7), changes the averaged
constitutive equation (5.8) into an identity regardless of the
current state of the random velocity field and the method by
which it is averaged. This identity results from determining the
parameters (5.5) from the implicitly averaged equation (5.3). The
validity of (5.10) is important for the inner cohesion of solution
of the problem, because if (5.10) does not hold, the averaging
(5.8) introduces new relations among the mean flow parameters
without any physical justification. The domain of definition of
the expression (5.1) lies in G (w, t). The process of obtaining and
eliminating the fixing phase angles ¢; as functions of mean flow
parameters leads to a transformation of the expression into the
form (5.8), which is also defined in the space G (x, t) in terms of
averaged flow parameters. Therefore, the validity of (5.10)
implies that the transformation is also correct.

5.2 Uniqueness of kinetic energy of a mean velocity field

According to (4.10) and (4.11), the kinetic energy of the
random velocity field (5.8) is defined by the sum

K+k==-32Zua for i=j, ij=123,.. (5.11)
in which the directional components

Ut = U 46 + 25 Uaby/D; + DUk, 1=,
i,j=123 (5.12)

have been obtained through implicit averaging of the squares of
the velocities given by (5.8).

In the equation (5.12), two sources of possible non-uniqueness
have appeared on the right-hand side, even in the case where the

energy components themselves are wu; = u? > 0. The first of
these is the existence of two signs + and —. The second lies in the
value of the discriminant D;. This is defined by the first equation
in (5.4) and the second in (5.7). These equations do not
guarantee a non-negative value of D;. Besides this, the first
equation in (5.4) determines its dependence on the unknown
value of the velocity modulus. Since this energy is determined
by averaging a system of positive elements (squares of velocity),
it is natural to expect the positivity and uniqueness of the result
of the operation prescribed by the equation (5.12). The stated
properties of energy can be ensured by a suitable choice of an
unknown velocity modulus U; in the second equation in (5.7).
Uniqueness of all components of the turbulent stress tensor in
(5.12) and a non-negative energy at i = j will ensure a zero
discriminant D;, i.e.
D;=M,—u*,=0 (5.13)

By eliminating @,; from (5.13) using the third equation in
(4.7), we also determine the modulus of the velocity through the
relation

_ wl

U= =12 3. (5.14)

Since the condition (5.13) holds, the constitutive equation for
the turbulent velocity field (5.8) can be written in the simple form
u; = aiﬂi , = 1, 2, 3, (515)

which is a consequence of its being defined in the space G (x, t)
and the assumption of the uniqueness and positivity of the kinetic
energy applied in equation (5.12). The constitutive function a; =
a;(w;, t) defined by the first equation in (5.9) plays a key role in
EDT. The first equation in (5.9) with functions c;jand s; from
(5.4) puts the constitutive equation (5.15) into the open form

Ui

== Mii(éisinwit + ¢;cosw;t), i=1,23,..

a (5.16)

Owing to the presence of the random independent variable
w; and the mean velocity @;, equation (5.16) can be called the
equation of random velocity oscillations around the equilibrium
mean.

Integrating the products of the velocity vector components
(5.15) over the characteristic domain of G (w, t) one defines the
explicitly averaged non-linearities
i=1273 (5.17)

uiuj:ﬁiﬁjaiaj

which for i = j imply three relationships between the directional

components of the kinetic energies i?; and uf The following
requirement was applied when deriving them: Any Kinetic
energy of turbulent flow if defined by the mean square of the
random velocity field has to be unique and non-negative. For i #
jand p = const. three tangential components of the turbulent.
stress tensor w;u; are defined by (5.17) after its explicit
averaging.

The constitutive equations of a random turbulent field (5.1)
are defined in the space of random independent variables
G(w, t). Their normalized forms (5.15) and (5.16) resulting from
the above operations are fixed by a mean velocity field and are
thus also defined in the regular space G (x, t).

5.3 Constitutive equation of random scalar fields

Density p in the case of compressible fluids as well as other
scalar quantities also behave randomly in a turbulent flow. Since
we see no reason to use another form of constitutive function for
random scalar fields, we proceed with them in the same way as
with the components of the velocity field. The resulting form of
the constitutive equation, for example for p, will then be similar
as (5.15), i.e.,

p = ayp. (5.18)

The constitutive function for p will be the same as for u; in
the first equations in (5.9):

-1 (= s — g2 =2
a, = M_p(CPCP + spsp), M, =5°,+¢%, (5.19)

Similarly, for explicit functions of time t and random
frequency w, (x,y,z,t),

Prp = 2, C, =cCosw,t, s, = sin(wpt) (5.20)

The constitutive function (5.18) will be applied in the
averaging processes of nonlinear terms of the N-S equations for
fluids with variable density p. The constitutive function of a
random field (5.19) satisfies the condition

d, =1 (5.21)
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as in the case of a; for the velocity field.

6 DISTRIBUTION EQUATIONS OF THE KINETIC
ENERGY OF TURBULENT FLOW

The desired relations in (5.17) are formulated through implicit
averaging of given random functions. The final form of these
relations will be found first for the normal stresses, i.e., for
energy components. Let us create the square of the constitutive
function given by the first equation in (5.9). The result will
contain products and squares of the trigonometric functions
defined in (5.4). After replacing them with their corresponding
equivalents by means of double angles, the result of taking the
square has the form

a? = — [M; + (&% — 52))cip + 28,553, (6.1)

4 = 2
2M}

In this equation, two new functions of the random variables
w; appear, namely

Si; = sin(Qw;t), c¢;, = cos(Rw;t) (6.2)
since M; is already defined in (5.7) as an averaged function.

Because the functions (6.2) appear linearly in (6.1), we obtain
the average of the square a? still in its implicit form via

a;a; = oMz i=1, 23 (6.3)
where
A; = (C%; — §%))Cip + 26,555, (6.4)

The implicitly averaged functions of the random double
angles in (6.4),
5i; = sin(Qw;t), €, = cos(w;t) (6.5)
will be replaced in the further development by their explicit
equivalents. We shall call the average of the square of the
constitutive function given by (6.3) the distribution function of
the kinetic energy of turbulence since it will describe dividing

total kinetic energy of flow on the energy of mean flow and the
energy of its turbulent velocity fluctuations.

6.1 Characteristic domain of averaging and tensor of
turbulence anisotropy

The averaging operations performed so far have been implicit
in character. Forming the constitutive functions of vector and
scalar fields allows us to utilize the strategic advantage of the
theory, namely, the explicit form of averaging. The explicit
average j_’ of a function f(xy, x5, ...xy,t), N >0, of N+1
independent variables will be given by the definite integral

F=2 [0 [T dxy doxy - dxy dt in G(w,t)  (6.6)

X1D “X2D
through the characteristic domain

A=TA Ay Ay, Ay =x154 —X1p, Ay =Xoyg —Xap, Ay =
XNH — XND » (6.7)

where x;,x,,..,xy are random and therefore physically
independent parameters of the turbulent flow, and T is an integral
time scale. The domain of averaging 4 is called characteristic
because its boundaries are characteristic. They are not random,
but deterministic limits T,x,p, x,4. They are characteristic
because they are not chosen arbitrarily, but as unknown
dependent variables characterizing the state of the system of
which they are a part. This recalls the role of the free liquid
surface in problems with a moving unknown flow boundary
(Kosorin, 1995, 2011).

When the theory is applied to the system of N-S equations
(7.3) and (7,4) for isothermal flow several types of domains of
averaging will come into consideration. The role of independent
variables in (6.6) will be taken by frequencies of turbulent
fluctuations of the scalars w, and velocities w;, i =1, 2, 3.
Mutual combination of indices i and n as well as the resulting
total number of random independent variables N in each
f(x,; t) is evident from the Table 1, which gives the
dimensionalities of the characteristic domains 4 for the integral
(6.6) in G(w,t). The total dimensionality of any 4 is N + 1,
where N is the number of random variables w; and w, occurring
in (6.6) and the 1 comes from the presence of time t.

The boundaries of the random frequencies in (6.6) are
expected to characterize the state of turbulence between the
upper w;y and lower w;, limits during the time period 0 <t <
T. The parameters derived from the characteristic velocities V;
defined by (4.18) can reasonably be expected to meet the above
requirement. They express the intensity of turbulence, which is
directly proportional to the velocities V;, i =1, 2, 3. This
reasoning leads to the definition of a lower limit w,, through the
relation (4.23),

wp =M= i=1,2,3, (6.8)
and an upper limit w;y according to (4.24),

1
Wy =0, =— (6.9)

These characteristic times T; and T, together with the
velocities V; and V, determine the length characteristics of
vortices, L; = Ly, L, = Ly, Ly = L,. If these vortices are larger,
more unstable, or show signs of anisotropy, then L, # L, # L,
and their various dimensions are approximated by the equations
Li=VT;, i=1,23 (6.10)

Different values of L; simulate the axial dimensions of an
unstable ellipsoid. With sufficiently small vortices, their
dimensions L; become closer in value and more stable, and the
vortices take on a spherical shape with L; = L., T; = T,.. Such a
formulation of boundaries in (6.6) allows the integration in (6.6)
to be interpreted as an integration of the function f(w;, t) in the
domain of G(w, t) with a random w; between the lower (6.8)
and upper (6.9) boundaries in the given time period T. This is an
integration of f in (6.6) over domains ranging between large
anisotropic vortices with dimensions L; and small isotropic
vortices with dimensions L.

To derive the distribution equations in a definite form, it is
necessary to find the explicit equivalents of the implicit averages
(5.6) and (6.5) through the integral (6.6). The dimensionality of
the integration space is in this case determined by the first and
second columns of Table 1. The randomness for (6.6) has
dimensionality N =1, and the integration space is two-
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dimensional. The result of the integration in (6.6) will be fixed
in the deterministic four-dimensional space G(x,t) via the
boundaries (6.8) and (6.9) and the integral time scale T.

The mean values (5.6) calculated according to (6.6) are given
by the definite integrals

5 = Alf[fic fOT sinw; tdtdw; = A%_[CS (Tic) =G (Tll)]

i

(6.11)

_ 1 0c (T 1 T T
C; = A_ifﬂi fO CoOSw; tdt dwi = A_l [Sl (T_c) - S,: (T_L):I (612)
in which the indefinite integrals are expressed by the power
series

_xr (6.13)

Si(x) =x— X E g (—1)n+t
t (2n-1)(@2n-1)!"

3.3! 5.5!

2 4 2n
C(x)=——Z 4. (-1 2 —

22! 44! 2n(2n)!’

(6.14)

Here (6.13) is the integral sine, and (6.14) is related to the
integral cosine C;(x) by C;(x) + C;(x) + Inx = C, where C is
the Euler—Mascheroni constant. The characteristic spaces 4
given in (6.7) — (6.9) become
4, =T, -0) = Ti—Ti (6.15)
The definite integrals of the functions of double angles, (6.5),

differ from (6.11) and (6.12) by the double values of the
arguments:

So = [c (22) - ¢ (25)]
Cip = ZLAL- [Si (2 TLC) =S (2 Tll)]

In the explicitly averaged functions, four unknown ratios
between the time scales appear: three T/T; and a fourth T/T.. We
begin to solve the problem of determining the unknown ratios of
time scales as functions of other flow parameters by asking about
the relations between the scale T and the scales T;. The integral
scale T is a common time scale for all averaging operations,
including those over the N-S equations. Since T and T;. cannot
be independent of one another, we define the relation between
them in the simplest possible way, namely, by the arithmetic
average:

(6.16)

(6.17)

T=2(T,+T, +Ty) (6.18)

The adoption of (6.18) recalls the expression for pressure p as
the arithmetic mean of three normal stresses p; 1, P12, P33 Of the
stress tensor in the derivation of the basic equations of fluid
mechanics (Lojcianskij, 1954 or Milne-Thomson, 1960, §19).
Actually, the relation (6.18) also concerns the normal stresses, in
this case the turbulent u’2.. The linearity of (6.18) allows us to
use the inter-scale relations (4.27) to make an important shift in
solving the problem. Let us divide the equation (6.18) by each T;
in turn for i =1,2,3. We get

T_1({4Ty T
E—3(1+T1+T1) (6.19)
T_1(n T
E_3(T2+1+T2) (6.20)

Toi(hykyg)

m=s\n T (6.21)

The equations (4.27) yield all the ratios between the time
scales Ti in (6.19) — (6.21) as functions of the ratios between the
squares of the respective velocities V2 = w2 . This allows us to
eliminate them and thus obtain the desired relations for three of
the four unknown ratios in (6.19) — (6.21). Let us call these ratios
the anisotropy indices i; and write them

=; =T _1 Wi us
I == (1 + = + u_’f> (6.22)
T 1 (w3 u'?
i =iy == 5(—_u,§ +1+ = (6.23)
12 12
T 1{u'y u'y
— =T _1(va 1 6.24
l3 =1, o3 (u’§ o + ) ( )

The three anisotropy indices (6.22) — (6.24) form the
components of the anisotropy vector i, (i, ,i,,i3) , which can
also be considered as an anisotropy tensor
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formed by the ratios of the normal turbulent stresses u’2.
Meanwhile, it remains to determine the ratio of time scales T/T.
in (6.11) — (6.17),

&= Ti (6.26)

as a function of the other flow parameters. It can be named as the
energy distribution factor.

After performing the operations prescribed by the series
(6.13) and (6.14) and using (6.22) and (6.24), we find that the
averaged functions (6.11) and (6.12) take the forms

o _ L[ geid e £

Si = Ai[ 72w T HED Zn,(m] (6.27)
_ i . 53—%3 _ nel EZn—l_iizn—1

€= A [f L 3.3! + + ( 1) (2n-1)-2n-1)! (628)

After the same operations, the definite integrals (6.16) and
(6.17) take the similar forms

_ L[] 2t 4122082 -i2")
Si2 _Z_Ai[ 221 - W +...+(_1)n W
(6.29)
_ 1 . 23 53_?
Ciz =Z—Ai[2(§— i;) —%4. vt
1 (2n—1)-(2n-1)! ] (6.30)
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Table 1. Dimensionalities of the characteristic domains 4 for the integral (6.6) in G(w, t).

Functions/products Functions Double products (dyads) Triple products (triads)

flxn, t) = fw;, 8) oo U; U u; U pU; pUY; pU
. "N=1 i=j i#j i=j i+

n=1,2,.N, i=1,23 N=1 N=2 N=2 N=2 N=3

As a consequence, each element of the series in (6.27) — (6.30)
can be written as the product of the domain of averaging
and polynomials P;,,,, which follows from the decomposition of
the power functions P;,, for each element of the sums in the series

(5.27) — (5.30). The result of this decomposition is given by the
relations

Py, = (6 = i;))Pyy; m=m(n); n=123,..N (6.32)
Py = &M (&M i28M 2 4 LT L EMT 4
i m=n-1 (6.33)

Use of the decompositions (6.32) and (6.33) in (6.27) — (6.30)
with 4; given by (6.31) leads to vanishing of 4; and thus to the
independence of the averaged functions on the sizes 4; of the
characteristic domains of averaging. The resulting explicit forms
are then

i: 3,22;. 473 _1yn+1 p,
s =t FHHL L OO Pin, gy on— 1 (6.34)
2.2! 4.4! 2n.(2n)!

o EsEwi | CDMlpg, - _

G=1 TR @n-Dn-1’ e T 2(n—1) (6.35)
o _ 20+ 2(E+2igif+i) | (cDMI2mpy,

Siz = 7,5 4.4! Tt 2n.(2n)! (6.36)
s o 2A(EEuHd) | Eomttanttey, L

Cip = 1 331 + + (2n-1)(2n-1)! ; L= 1;2;3 (637)

The properties of the equations (6.31) — (6.33) ensure the
validity of the mean values of the constitutive functions (6.34) —
(6.37) for any values of the domain of averaging —oo < 4;< oo,
including 4; = 0. The functions (6.34) — (6.37), being obtained
by explicit averaging, complete the representation of the energy
distribution functions (6.3) as functions of the anisotropy vector
i,(iy,15,i3) and the energy distribution factor ¢. Becoming
independent of the size of the averaging domains 4; egs. (6.3)
can be written in their final form as

(1)) = T = MUEDHAED

2ME D i=1.23

(6.38)

Their base functions (6.34) — (6.37) are depicted in Fig. 1 at
the anisotropy index i; = 1.

Thus, the effort to complete the first three of the four desired
relations for the closure problem solution has been successful.
These follow from (6.38) written for i = 1,2,3, as

wi+ @ = me, (D) (6.39)

Wi+ w2 = Wy (&, iy) (6.40)

Wi+ a3 = uies(8, is) (6.41)
where anisotropy indexes i; as arguments of the distribution
functions @; are defined by equations (6.22) — (6.24) as the
functions of the normal turbulent stresses u’z.

1.0

0.8

0.6

0.4

0.0

S~ — . 5 6 7 8

-
e

-0.2
Fig. 1 Means of the basic constitutive functions 5;(¢,i;) = sinw;t,
¢; = cosw;t, 5;5(&,i;) =sin2w;t, and ¢ (&,i;) = cos2 w;t in
the case of isotropy (i; = i, = i3 = 1). Their anisotropic forms are
given by (6.34) — (6.37). The energy distribution factor ¢ can be
obtained from (6.52) as a function of k/K.

In the equations (6.39) — (6.41), in addition to the unknown
ratio &, there occur only the directional components of energy

#?; and u'?. These equations are therefore the equations of the
kinetic energy distribution, further (EDE) of a turbulent velocity
field in the four-dimensional space G (x, t). The unknown ratio
of time scales & = T /T, has still to be found as a function of
other flow parameters.

6.2 Characteristic velocity of turbulence and application of
the energy invariance principle

Anisotropy of turbulent flow can be caused by two factors.
The first physical, one follows from limits on the degree of
freedom of movement imposed by solid boundaries of the flow.
The second, formal one is connected with the mathematical tools
applied to the description of vector fields in terms of a coordinate
system. In EDT, the effect of anisotropy is expressed by the
anisotropy index vector i, (i, i,,i3) given in (6.22) — (6.24).
From (6.39) — (6.41), it can be seen that its values are positive
but not limited from above. The energy invariance principle will
be used when solving for the unknown parameter £ in the system
(6.39) — (6.41).

The consideration starts with the system (4.10) — (4.13). The
characteristic velocities of turbulence V;, and the kinetic energies
K and k are now related by
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V,=+ /ﬁ 2K =33 4%, 2k=Y3_,V?: K>0, k>0,
i=1,2,31in G, (6.42)

which define a pair of vectors u(ii,, iy, iz ) and V. (Vy, V,, Vs) at
each point of the turbulent flow. By projections of the absolute
values of the vectors onto the coordinate axes, the components
of the vectors

T; = |u|cosa;, V; = |V|cos B;, lul = V2K, |V| = V2k (6.43)

are determined through their direction cosines cos a; and cos f3;,
i = 1,2,3. Let the vectors u and V have a common initial point
that coincides with the origin of the rectangular coordinate
system. We now replace this coordinate system by a new one
with the same origin, i.e., we rotate the axes. Let us do so in such
a way that the axis of symmetry of the new coordinate trihedron
coincides with the vector V. Owing to symmetry, the direction
cosines of the axis of the trihedron in the new coordinate system
have the same value 1/+/3. Since the characteristic velocity
vector V is collinear with the axis of the trihedron, all the cos £3;,
i = 1,2,3, in the new coordinates also have the same value 1/+/3.

Application of the energy invariance principle now means
that the energies K and k are conserved after the above rotation
of the coordinate system. Then, of course, one must accept
changes in the direction energy components arising owing to
changes in the velocity components through their projections on
the new coordinates. The characteristic velocity components V;
have acquired new values V.., but are equal to each other because
the direction cosines have the same value. This reasoning applied
to (6.43) leads to

Vip =Vor = V3 = |V|/\/§ =/2k/3

The equality of the velocity components in (6.44) implies a
similar equality between the normal components of the stress
tensor w;u; = Vi# = 7;;. According to (6.39) — (6.41), this leads
to the expected change in the anisotropy indices such that they
take the common value

(6.44)

=i, =i3=1 (6.45)

The components of the velocity vector @ (i, ii,, ii3) change
to u,(ily,., iy, i5,), and taking (6.45) in the distribution
functions @;(¢,i;), we find the distribution equations (6.39) —
(6.41) taking the form

2k / 3+ = WD (5 1) (6.46)
2k / 3+ = W D,(5 1) (6.47)
2k / 3+ = WDy (E 1) (6.48)

The distribution functions &;(¢,i;) differ only in the
anisotropy indices i;. Therefore, when (6.45) is used in (6.46) —
(6.48), they become equal:

d)l (f' 1) = (DZ (f' 1) = (D3 (f' 1) = (De (f) (649)
The sum of the three equations (6.46) — (6.48) now gives

2k + (1= @.()) (@, + a3, +5,) =0 (6.50)

Energy invariance during rotation of the coordinate system
requires from the sum of velocity squares in (6.50) to satisfy
relation

ul 4+ us +ui =2K (6.51)
But this allows us to write (6.50) in the form
De(§) =1+1 (6.52)

Since the system (6.46) — (6.48) contains three new dependent
variables ;. , none of its three equations provides useful
information. This also applies in their possible combinations,
except for the one that we used. This was simply their sum,
which, owing to energy invariance, has led us to the new relation
(6.52).

Obtaining (6.52) was the decisive step in solving the closure
problem of turbulence. Fig.2 shows the key dependence @, (¢) =
®;(¢,1),aswell as A,(§) = A4;(¢,1) with M, (&) = M;(¢,1).

0 1 2 3 LT 4

Fig. 2. Isotropic case @,(§) = @;(¢, 1) of the distribution function
®;(&,1;)and its components. The vertical line & = 1 depicts the lower
limit of the parameter &.

The free parameter ¢ = T /T, in the distribution functions
@;(&,1;) was the last of those that needed to be defined by an
appropriate relation with other parameters of turbulent flow.
@, () itself is explicitly defined by (6.38) and (6.49) and allows
the unknown parameter ¢ to be determined via (6.52) as a
function of the energy ratio k/K. After that we can name ¢ the
energy distribution factor.

The functions 35; = sinw; t, ¢; = cos w; t, §;;, = sin(Rw;t),
and ¢;; = cos(2w;t) are the underlying elements of EDT,
through which all dependent variable parameters of turbulent
flow are defined. They are explicitly given by (6.34) — (6.37) as
functions of the distribution factor ¢ and the three components
of the anisotropy vector i,(i,,i,,i3). Figure 1 depicts them for
the one-dimensional isotropic case, when the anisotropy indices
iy =i, =iy =1. Their full four-dimensional form is
numerically investigated through the distribution function (6.38)
during the confrontation of EDT with experiment described in
Section 8.

The energy distribution equations (6.39) — (6.41) together
with (6.52) are the key output of the EDT, reflecting the current
state of the Kkinetic energy distribution of the flow. The
distribution function (6.38) is the determining element of the
system of distribution equations. Its isotropic case from (6.52)
for calculating the distribution factor ¢ is shown in Fig. 2. The
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behavior of the presented functions when the arguments grow
without limit has not yet been rigorously investigated.

7 STRAIGHT AVERAGING OF THE ISOTHERMAL N-S
AND CONTINUITY EQUATIONS

From the point of view of the turbulence closure problem, the
equations of energy distribution (6.49) — (6.41) mean the crucial
result of Part Il. of this study. Using it as the main tool of the
theory, the straight closure process can be completed success-
fully for governing equations of liquid as well as gas flows. For
mass and momentum conservation laws it is shown below.

7.1 Implicit averaging of the N-S equations

The dynamics of real fluids are described by the following
equations for the conservation of mass and momentum (Lojcian-
skij, 1954, Il, p. 137) or (Milne-Thomson, L. M., (1960), 8§
19.03):

% + div (pu) = 0 (7.1)

p% =pF —gradp +divt (7.2)
where F denotes the vector of external forces, p is a pressure and
T means a Vviscous stress tensor, see subsection 7.5. For isother-
mal flow, viscosityu will be constant and T a linear function of
spatial derivatives of the velocity fields. The vector notation
(7.2) of three momentum equations, after a small modification
mentioned below, will be ready for the direct implicit averaging
operation. The modified system can be implicitly averaged re-
sulting in

dpu
at

+ div(puu) = pF —gradp + divt (7.3)

2+ divpu =0 (7.4)
when eq. (7.2) before its averaging was rewritten in the conser-
vation form (7.3) in the way as it is shown in equations line (2.6)
of Sec. 2.5 in Part I. of the study. The product puu in. (7.2) cre-
ating tensor of nine nonlinearities would be explicitly averaged.
We will call it the momentum flux tensor.

7.2 Straight explicit averaging of N-S and continuity equa-
tions in a random space G(w, t)

The energy distribution equations (6.39) — (6.41) together
with (6.52) provide three implicit relations for the normal turbu-
lent stresses defined in (5.17). Since all these relations were de-
rived independently of the N-S equations, the definition of the
tensor (5.17) provides explicit dependences also for the remain-
ing three tangential components of the tensor. They will all de-
pend on the energy and velocity fields of the mean flow. How-
ever, the constitutive functions and the existence of energy dis-
tribution equations allow us to close the averaged N-S system
(7.3), (7.4) after averaging of all nonlinear terms of the system.
We determine the mean values of nonlinearities in the system
(7.3), (7.4) through the definite integrals of the type in (6.6). The
integrand functions appearing in (7.3) and (7.4) in the form of
twin and triple products of distribution functions a; for velocities
u; and a,, for density p are given by (5.9) or (5.19).

For a,, we must define the boundaries of the characteristic
domain w,p and w,y. Owing to isotropy, i.e., the same (higher)

frequencies of turbulent disturbances, the upper limit will be the
same as for velocities, i.e.

1
Woy =N, =—.
pH c Te

(7.5)

We still have to choose the lower boundary w,,. The mean
specific density p is the result of turbulent mixing, and there is
no reason to assume anisotropy. Therefore, the lower limit will
be determined by the average time scale T, and so the lower limit
of the frequency w,p will be

1
(UpD —.Qp —;.

(7.6)
To achieve the main goal of this study, it is still necessary to
determine the explicit means of the dyad and triad non-linearities
that appear in the system (7.3) — (7.4). The above steps allowed
us to discover such integrand functions and its definite integrals
which yield the means of the non-linearities having the needed
property of the mathematical expectation. Such integrand func-
tions representing in (7.3) — (7.4) the vector of momentum pu
and tensor of the momentum stream puu for gases as well as
uu for liquids will be given by the products
pu = [pia, a;]; uu = [Gia;a,]; puu = [pUi;a, a;a;];
i,j=12,3,. (7.7)

in which constitution functions a; and a; are given by (5.9) and
a, by (4.19). To get a,, it is still necessary to define averages

sin(w,t) and cos(w,t) by integration between the limits given
in (6.5) and (6.6), which yields

1 T Q¢ . _ )
5, = —T(nc—np) fo fnp sm(wpt) dwpdt =5 = 5(51) (7.8)

1 T Q¢ .2

¢, = T(T—.(Zp)fo fnp cos(wyt) dw,dt = ¢ = ¢;(£,1)  (7.9)

These results are identical with (6.11) and (6.12) because i; =
1 owing to the bound (7.6). One gets the explicit average of (7.7)
by applying definite integral (6.6) to all integrands (7.7) whilst
respecting the rules (2.15). Then the mean gas momentum field
pu; will be made by
I pit; T Q¢ (2cq - _ _
pu; = Mp’;:'iﬂip , fnp fﬂi (6ycp +3,5,) (G i +

S'isi) d(l)p d(l)idt, i= 1,2,3

(7.10)

The dyads u,w, yield by-products pu,w; the momentum flux
tensor for liquids being given by
U ﬂj
MiM]'Ai]'

i#j, i,j=123.

uiuj = fOT f_(.zalc f_;zjc(éici + §isi) (C_]C] + §]S]) d(l)] da)l- dt,

(7.11)

But (7.11) bears further information concerning liquids. De-
composition pu,u, = pii;ii; + pu’, ', for i # j yields the Reyn-
olds’ (apparent) stress tensor pu’,u’, and (6.11) fori = j is iden-
tical to the energy distribution equations we have obtained. The
integration domains in (7.10) and (7.11) are

Bip =T(Q = 0p) (2 = 0), 4ij = T2 — 2) (2 — 1)),
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i #]. (7.12)

The triad in (7.7) describing the mean momentum flux tensor
for gas is defined by the integral

My (T (2¢ (2¢ rQcy - _ _ _ _
puu; = A:i; fo fnp fﬂi fﬂj (CpCp + spsp) (¢ic; + sisi)(cjcj +
with integration domains

Apij =TApAiAj, Ap ='QC_'Qpl Ai =.(ZC_.Q,:, Al ='(ZC_
0 (7.14)
and the factor

M, =28 =123, (7.15)

PYU T My M M)

All the above multiple integrals can be evaluated directly by
series expansion of the trigonometric functions. We will show
that power series defined by the integrals (7.8) — (7.18) will have
the same properties as (6.31) and (6.33), leading to independence
of the averaged functions on the size of the domain of averaging.
The definite integral (7.13) consists of eight separate products of
three power series. Each term of each series resulting from the
multiplication operation has the form of the m-th product

(a)it)p(wjt)q(wpt)r, p.q,r=0123,..s=p+q+r (7.16)

form=1, 2,3, ..., mc, where mc follows from the amount of the
power series terms included.

Realizing all averaging operations in random space G (w, t)
to be of probabilistic nature the validity of the Reynolds rule u;
=7; was accepted during integration for all integrands, includ-
ing those in (7.10) — (7.13). Therefore, the resultant definite in-
tegral in (7.13) divided by the integration domain defines the m-
th averaged function Jn as

Jm =
T (0c (0c (0 r
ﬁfo fnp fﬂi fn,- (wit)l’(wjt)q(wpt) dw, dw; dw; dt =

[(UP+1

q+1wr+1ts+1]HH
i P DH

“j

(7.17)

Apij(P+D(q+DE+1)(s+1)

If we apply for the upper and lower limits HH and DH in
(7.17) the limits of domains (7.14), then J,, acquires the form

_ (ncp+1_nip+1)(ncq+1_ﬂjq+1)(ﬂcr+1_npr+1)7~s+1

Apij(p+D(q+D)(r+1)(s+1)

Jm (7.18)

If we decompose the first set of parentheses in the numerator
of (7.18) into powers, multiply it by T?, and take (7.14) into ac-
count, then we obtain

TP(Q P = 0P = ATP (0 + 0,077 + 020,77 +
e+ 0207+ 0.0+ 0P). (7.19)

Since each product of the integral time scale T with the bound-
ing frequencies 2 satisfies the relations
T.QC = {:, T.QL = ii, T.Q] = l], T.Qp = 1, i= 1,2,3 (720)

any k-th product £2,%0.77% in (7.19) can be rewritten, after mul-
tiplication by T?, in the form

TP 0P7% = (T (2 T)P* = ik &Pk = 0,1,2,3,...,p
(7.21)

By the operation (7.21) one can rewrite the right-hand side of
(7.19) with polynomial P;,, obtaining
TP(Q2™ —al*Y) = AP, (7.22)
and repeating the procedure used in (7.19) up (7.21) with the
other two sets of parentheses in the numerator (7.18), but this
time for powers g and r leads to

T —l™) = AP, (7.23)

T7(Qr — Qptt) = AR, (7.24)
with the polynomials (7.33) given now for maximal powers
m=n—-1=p,q,r; i,j=123

Py =P 41; EPl 2 P2 4 g g2 ilp—z +Eilp_1 +ilp (7.25)
Pig= &1410; ET71 47§72 4 4 82 l-]q—z +fi]q_1 +i7 (7.26)

Pp=8"+& 4+ &2+ 4+ +E+1 (7.27)

Since the properties of the polynomials (7.25) — (7.27) are
identical to those defined by (6.31) — (6.33), using (7.22) — (7.24)
in (7.18) we get resulted form for the functions averaged by
(7.17)

3. = PipPjqPpr .
M7 P+ (q+1)(T+1)(s+1) '
puiuj

i,j =123, p,q,r=0,1,2,... for triads
(7.28)

for triads pu;u;, while for dyads pu; g = 0, P, =1 and for
w;u; r=0, F,, = 1. Since products J, do not depend on sizes 4;
of the domain of averaging (7.14), the averaged dyad and triad
non-linearities gain the property of a mathematical expectation.
They arose from the integrands defined by the constitutive func-
tions in (7.7) and resulted in the wanted explicit means

u,-uj = ﬁlﬁ]‘bu(f' ii' l]) (729)
pu; = pugy W (€, 0,0, 1) (7.31)

being expressed through distribution functions ¥; and ¥;; of the
momentum vector pu and the momentum flux tensor puu for
gases as well as through distribution functions @;; of the tensor
of momentum flux wu for liquids. All these functions are de-
fined by integrals (7.32) — (7.34) as

1 P - R I
D;; = MiMj(SiSf \S; T 5iCjS,C; + C;5;C.S;, + C; jclc]), Lj=
12,3 (7.32)
1 — — - JE— JE—
= VEV ( 5i5p5.Sp + 5;CpS,Cp + C;SpC,Sp + cicpclcp),
i=123 (7.33)
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1 e e — - e — e e —
ij = m(cpcicjcpcicj + CpCiSjCyCiSj + CpSiCiCySiC +
pMiM j

(7.34)

7.3 A few samples of averaging of the above dyad products
of trigonometric functions

The means of deriving and the properties of these distribution
functions have been consistently described above, beginning
with equation (7.10). Their resultant explicit form was reached
using routine tools of applied mathematics by means of the prod-
ucts of polynomials (7.28). The following samples illustrate the
mentioned proceedings. The development of averaging of the
dyad products of trigonometric functions in (7.32) and (7.33) can
be shown by the following equations:

1 PiiPp1

4
o theog —_
515, = t2wjw, — - (a)lwp+..)—>slsp—3 —

1 (PisPp1
(et
5. 3! 4.2

3
SiCj = t(UL' - t3 (%‘l‘

Pi1Pj2)
2.3.2!

(7.35)

2
wiw?; P; 1( P;
J = i1 i3
hutied 1) DYTNNEN S S (it - B
2! ) T SG 2.2 4(4.3!

(7.36)

The sample of averaging of any triad in (7.34) demands two
lines,

3 3 Y
2 4 [Wpwitwpwp | Wpwiw]
SiCiSy = trwyw; — t ( " + ” +
5
wWowi+..
6 (— i +) — (7.37)
5!
STs = Pp1Pi1 l(Pp1Pi3+Pp3Pi1 Pp1Pi1Pja ) +
I 3.2.2 5 2. 3! 2.2.3.2!
1 (PpyPig+.
_(—ﬂ L _|____)_... (7.38)
7\2.6.5

Finally, it is applicable to remember that polynomials P;,,
Py, P, are explicitly defined in (7.25) — (7.27) as functions of
the distribution factor ¢ and the anisotropy indexes i; , i;, while
¢ given by (6.52) and indexes i;, i; in (6.22) — (6.24) are func-
tions of mean turbulent energy and velocity fields. The number
mc of products Jn in (7.28) depends on the highest expansion
level p, g, rconsidered.

Equations (7.10) — (7.29) define all the non-linear terms in the
averaged N-S system (7.3), (7.4).

The most important averaged fluctuation non-linearities oc-

curring in the closed system are the normal turbulent stresses u'?.
They determine the anisotropy indices i; by (6.22—6.24) and the
distribution factor & by (6.52) creating in such way the argu-
ments of all the distribution functions ®;; , ¥; and ¥;;, written
above as the products of integration in (7.10) — (7.13). The first
of them, ®;; equals at i = j the energy distribution function ®;
given by (6.38), so
q)ii = q)i at | :J, l,] = 1,2,3. (739)

The above non-linearities of turbulent flow are defined and
averaged in the multidimensional characteristic domain of aver-
aging G (w, t) of the finite but unknown size 4,;; = T4,4;4;.
Being averaged they become functions of the mean velocity field
u and fluctuation energy k. These dependences are expressed

through the distribution factor § and the anisotropy indices i;
bounded below by & > 1 and i; > 1/3.

7.4 The closed equation system as resultant of the closure
problem solution for isothermal flows

In the vectorial notation of implicitly averaged N-S equations
(7.3) and (7.4), vector pu = [pu;] determines the momentum of
the fluids per fluid volume unit. Tensor puu = [ puy; | de-
notes the implicitly averaged flux (propagation velocity) of mo-
mentum pu. The direct explicit form of averaging dyadic and tri-
adic non-linearities pu, uu and puu is provided by certain in-
tegrals of these non-linearities in (7.10) to (7.13) over the char-
acteristic domains G (w, t) of time t and of the random turbulent
fluctuation frequencies of velocity w; and density w),. Defining
the integrands of averaging integrals by the relations (7.7) via the
constitutive functions a;, a; and a,, is the decisive theoretical
step of this study. The wanted form of explicitly averaging the
first kind of non-linearities of the system (7.3) — (7.4) has already
been obtained by standard operations of applied mathematics.
Accepting that the viscosity u(T) is regular function of a mean

absolute temperature T the viscous tensor T components in this
system are linear functions of products u grad u;; see Section 10
below. Averaging 7 — T was therefore possible to carry out di-
rectly applying Reynolds’ rule of averaging partial derivatives in
the velocity gradients.

The momentum vector pu if explicitly averaged by integral
(7.10) is given through its components
pu;=pu¥; i=123 (7.40)

The symmetric tensor of flux of momentum h = puu after be-

ing averaged by means of integral (7.13) has been presented by
the matrix form through its vector h; and tensor u;u;¥;; com-
ponents

E Ui ¥1 W, wus¥ss
puu=puu; = { hyp =p 1:111:125”21 1}21:12'1”22 1:1212311'23 )

h_3 U UzW31  Uplz¥W3y  Uzlz¥as
ij=123 (7.42)

In the case of liquids and assuming that p = p = const. the
mean momentum flux tensor stems from the integral (7.11)
written in the matrix form

hy
puu = puju; = { hy p =
hy
WPy WU Py U U3 Py
Py Wl ®y1  Uplp Py UpUzPo3y,ij =1,2,3 (7.42)
U Uz P31 UplUzP3y  UzlUaP3z

Equations (7.3) and (7.4) imply the vectorial but implicit no-
tation of the wanted averaged N-S system governing turbulent
flow of Newtonian fluids. Its resulting explicit notation

(P u1¥1) , 0(PU1U1¥11) | (P U U W12) | O(P U U3W13) 5F
at 9x1 9%y dx3 Ptx

ap L
—+divT
0xq + 1
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0P uz¥2) | 0Pty ¥z1) | O(PUlpW22) | O(PUzliz¥a3) _ 5F —
at dx, x, x5 Pty
op -
o +divT, (7.43)
9(p uz¥s) + 0(pusts ¥31) | 0(pUsl,¥3a) | O(PUstiz3s) _ OF, —
at 0xq 0xy dx3
ap -
5%s +divT,
ap + 9(puy¥1) + 0(p uz¥2) + 0(pus¥s) _ 0 (7.44)

ot dxq G dx3

has been completed into the final closed shape by the EDE (en-
ergy distribution equations)

w2+ wP[1-9(§,i)]=0i=12,3 (7.45)

where the distribution factor & = T/T. depends on the energy ra-
tio k/K satisfying relations

Pe(§) =1+ KK () = &;(§, Dat iy =i, = i3 = 1; (7.46)

and three anisotropy indices i; are determined as functions of
normal turbulent stresses u'? by

2 2 2 2 2

i 1 u'; u'3 . 1fu'y u's i 1({u']
h=-1+2+2); =2 +1+2); ip=-(2+

3 u'] u'f 3 u's u'y 3 u's

(7.47)

The resulted system of averaged PDEs for liquid flows with
p = const. differs from previous little:

0wy | (WU Pyq) | (WU Pep) | 0(U1U3Py3) _ 1 (617 - )
at ax, + ax, axs Ey 7 \ox, +divt,
0u, | (WU ®yy) | 0(WallyPyp) | O(UpU3P23) 1 (617 s = )
—-— =F —=—|— i

ac + ax, ax, 9x3 Y p\ox, +div,
ou. (usuq, @ (U, @ d(usuz®d 1(0p

Uz (U3tt; P34) (U3t P32) + (U3u3P33) — Fz _ :(_17 +

ot x4 9x, x5 P \9x3

div ;) (7.48)
div(w) =0 (7.49)

The momentum flux tensors h given by (7.41) and (7.42) en-
able one to write down the resultant PDE systems (7.43) and
(7.48) shortly. To do so we put these systems at the same time
into purely evolution form for the mean velocity field u;

U, 1 (-00%) | Givi +22) = L (5F. + divEs
6t+f)l{'i(ul o +d1vh,+axi)—’_)% (pF; + divT;) (7.50)

which after including divergences of the vector components h;

. T I(p u U ¥ A(p U UL ¥ A(pu uz¥-
leh1= (P Uu1U1¥11) (P u1U2¥12) (p uyU3¥13)

0xq 0xy 0x3
divie, = A(pU 1 ¥21) | 0(PURUaW32) | O(PUU3W23) (7.51)
2 x4 %, dx3 '

. T 0(pusu1¥31) 0(pU3zUL¥32) |, O(puztiz¥Wss)
leh3= PpuU3U1 731 puzuz 7’32 puUzuU3z 33
0xq 0xyp 0x3

complete the averaged and closed dynamic PDEs system for tur-
bulent gas flows. Writing down

0 1/ 4. 3 _ — '
a—;+ﬁ—(dlvhi +gradp) = F; +ﬁ—d1vri (i =123 =
%Y%) (7.52)
together with divergence div(u) =0 and
dth_1 = 0Py P11) | 0P U P1p) | O(P U1TzPi3)

dxy axy x5
dth_z - (P Pp1) |, O(PUrU Do) |, O(PUaUzP23) (753)

0xq 0xyp Ox3

T d(pusui,®31) | 0(PUzlP32) , 0(puzliz®33)
leh3= puzuP3y puzuzP3z puzuz P33
0xq 0xy Ox3

the same is done for turbulent liquid flows with p = const. lead-
ing the momentum distribution function ¥;; to ¥;; = 1. The
formal definition of the vector components h; is analogical with
T; and can be seen in the Section 11.

The momentum distribution functions ¥; in (7.40) and the
distribution functions ¥;; and @;; of the momentum flux in
equations (7.41) and (7.42) are defined by relations (7.29) to
(7.31) in combination with integrals (7.10), (7.11) and (7.13) as
products of these averaging integrals.

The obtained averaged N-S system (7.43), (7.44) treats five
unknown flow parameters, i.e., three velocity components, pres-
sure p and density p. To be closed, it requires the known equa-
tion of the state p = p(p,T) to be added. The system (7.48), (7.49)
for liquids becomes closed for given constant densityp. Never-
theless, to do without the energy balance equation, the known
relationship /1(7) as well a constant or known temperature are
needed, but in case of turbulent flow both the equation of state
as well as of energy balance need to be averaged.

7.5 Relation between constitution functions of turbulent flow
and its random fluctuations. Computing the Reynolds (ap-
parent) stress tensor and other averaged nonlinearities, if
wanted

In the above averaged and closed system of the Navier-Stokes
PDEs no averaged products of turbulent fluctuations appear to
be needed if applying resultant equations (7.40) — (7.53) in any
task. But relevant non-linearities, if wanted, can be averaged and
used successively in current numerical models after satisfying
some compatibility conditions.

Random velocity u; being expressed usually by the Reynolds’
decomposition u; = ©; + u'; has been presented in this study by
means of constitution function a;j(w;, t) through product u; =
uiai.

It yields the valid constitutional equation for velocity fluctua-
tions u’;

w =0,

(7.54)

Ui = ﬁi + u,i = ﬁiai 9 u,i = ﬁi(ai _1), &i = 1,
i=12,3

After the same operation for random p we obtain the follow-
ing constitutional equation for density fluctuations

p'=p(a,-1),3=1 p =0 (7.55)
and the need to compute the means of the products of fluctua-
tions given in (7.54) and (7.55), integrating them through the
characteristic domain in (7.10) — (7.13). But one can do so by
a simpler way using the means u;u;, pu; and pu;u; already de-
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fined by the averaging integrals over the same characteristic do-
main and given in final form by equations (7.29) — (7.31). Re-
placing the random functions p and u; on the left sides of (7.29)
—(7.31) by Reynolds’ decompositions and realising the required
formal (implicit) average of these equations, one obtains the nec-
essary linear algebraic system for computing wanted averaged
non-linearities. Its solution is simple and yields

= ﬁl_j(cbij — 1) (7.56)
pu, = pu(¥—1) (7.57)
P = P - 1) (7.58)
pru 'y = puiy (W — W — ¥ — @y +2) (7.59)

The first of them, in (7.56), is known to readers. Its products
pu';u’; represent at i # j the Reynolds’ (apparent) stresses in
turbulent liquid flows and became the most frequent object of
approximate phenomenological modelling. Its applications
through the Prandtl’s mixing length theory, Von Karman’s sim-
ilarity hypothesis, and others, occur still in the recent modelling
of turbulence flow even in a compressible atmosphere, see Bed-
nar, J. Zikmunda, O. (1985).

7.6 The relations defining deformation energy as the effect of
turbulent density fluctuations

The instantaneous random Kinetic energy field E of turbulent
flow defined by
i=12,

ZL 1puf (7.60)

was in subsection 1.7 implicitly averaged after applying Reyn-
olds’ decomposition u; = 4; + u'y, p = p + p' in (2.8). Analy-
sis of its average E resulted in the following sum of two qualita-
tively different parts, elastic E, and deformation E,

E=E,+ E, (7.61)

Of these, the elastic part E, given by

Ee=p(K+k); K =-38, 0% k=-%i,u}; E >0 (1.62)

is known as the product of Reynolds’ (implicit) averaging of the
N-S system if written for liquid flows.
However, its deformation part

Eq =%, [Zﬁip'u'i +pui|,E,>00r E; <0, i=1,23
(7.63)

acquiring due to pressure, velocity and density fluctuations both
positive or negative values, belongs to internal (potential)
energy. Therefore, it should be considered along with the E,
energy in the treatement of properties and application of the
energy balance equation. Such possibility follows from the
above found averaged non-linearities (7.56) — (7.59). It enables
one to obtain the means needed for (7.63)

pu; (¥ — 1) (7.64)

P = p (W — 1), pu =

and compute wanted deformation energy by

Eq =2%3,[2%, + ¥, — 3] @ (7.65)

The above results allow us to describe the gas and energy
flows without incompressibility approximation and to remove by
such a way the frequent problem as treated by V. L. Yushkov
(2015).

8 VERIFYING EDE BY EXPERIMENTAL DATA ON
WALL BOUNDED TURBULENCE

The EDE (energy distribution equations) (6.39) — (6.41) play
a key role at closing the averaged N-S system (7.3), (7.4). It is
therefore important to answer the question of whether and how
the distribution equations fit the data from relevant experiments.
The part of the answer is written in Section 4. The sample and
practical realizing this possibility has been shown in Section 9.

Therefore, in the selection of experimental sources, the focus
here will be on normal turbulent stress and flows with
sufficiently large anisotropy. The first reason for this stems from
the fact that normal stresses are essential for the verification of
distribution equations. The second is a surprising but important
property of the obtained energy distribution equations that is
relevant to the possibility of comparing measured \tangential
turbulent stresses with theoretical ones. This property is the
three-dimensionality of the mean velocity field of any turbulent
flow. These reasons have led us to select four independent
sources of experimental data: Reichardt (1938), Klebanoff
(1954). All of these relate to experimental investigation of
boundary layers in parallel turbulent flow in wind tunnels.
Although there are other frequently cited studies that could also
have been included, such as those by Maésiar and Dubrava
(1975), the sources that we chose were favored owing to the
negligible differences in error deviations er; between them. We
can, however, assume that a similar closeness of the results
would be the case for other sources.

An evaluation of relevant inputs and outputs of experimental
sources is part of the supplementary materials available from the
author upon request.

9 ON SOME PROPERTIES OF THE CONSTITUTIVE
AND THE ENERGY DISTRIBUTION EQUATIONS

Explicit averaging of the products of the constitutive
functions using the integrals in (7.10), (7.11), and (7.13)
provided the required number of closing equations for the
averaged N-S system (7.3), (7.4). The distribution equations of
kinetic energy (6.39) — (6.41) and (6.52) played a decisive role
in this completion. The basic form of these equations is
surprisingly simple:

- _ . u'z kK
wu; = Pt - d(é,i) =1+ 1;—2 Q) =1+, wu; >0,
1<d;<o0, i =1,2,3. (9.1)

However, in (9.1), the three distribution functions themselves,
@;(&,i;) are no longer simple. The evidence for this is the
equation (6.38) and all the others through which it is defined,
including, for example, (6.46) — (6.48). The structure of the
distribution equations determines their validity and thus the
validity of EDE for that part of the space G (x, t) in which the
inequalities in (9.1) hold. But such conditions are satisfied only
by a three-dimensional velocity field whose streamlines or vector
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lines are spatial curves at each point of the turbulent flow,
excepting singularities.

9.1 Ability of constitution equation (5.16) to describe a
random velocity field of turbulent flow

In all standard operations with a constitutive function, the
declared property of mutual independence of random
frequencies w; has been strictly respected, as has their
independence of time and position in the space G(w,t). In
averaging operations via multiple integrals, the independence of
w; will also be respected in operations with partial derivative in
this section. Its formal dependence (5.2) comes into
consideration when evaluating experimentally obtained velocity
fields in G (x, t).

The ability mentioned in the title of this section concerns the
equation of random oscillations (5.16) now written in the form
Ui

P Mii(Ei sinw;t+¢;cosw;t), w; #0, i =1,23.

9.2)

The constitutive function of the random frequency w; time t
and some mean parameters defines the random velocity field u;
through the constitutive equation (9.2). We consider the
constitutive equation (9.2) to be capable of describing an
arbitrary random field u; if the relation (9.2) yields the
possibility of determining in an appropriate way the random
frequency w; for each measured random w; in an arbitrary
turbulent flow.

As the appropriate way in the above condition, we adopt the
following approach. First, we need the inputs to be used in (9.2)
as the time record of the measured velocity field u; at a point of
the turbulent flow, together with the corresponding parameters
of the averaged flows, @;, 5; , and ¢;, for (9.2). The time record
will also provide the rate of change du/dt . The mean
characteristics can be obtained either from the solution of the
initial value problem for the closed system (7.3), (7.4) or from
experimental data processed as in Section 8 in the case of
statistically steady flow.

Let us seek the missing relation determining the random
frequency w;. Equation (9.2) applies to a domain bounded in
G(w, t) by the rectangle

£;=T(>-2), 0<t<T, i=123

T 9.3)

This comes from averaging the original constitutive equation
(5.1) on the rectangle 4; given in (9.3). Owing to the averaging
of (5.1) and its connection to G (x, t) through the phase angle ¢;
(and not through a condition in time ¢t = 0), it is not possible to
find a time coordinate t in (9.2) corresponding to a time t in the
experimental record of u; (X, t). Therefore, if we want to obtain
a random frequency w; from (9.2) as a function of the given
inputs at any point of the experimental record, we need to remove
the explicit time t from (9.2). This is possible by differentiating
(9.2) with respect to time. Then, from (9.2), it leads to equation
n

L0 _ 9s coswt — ¢ sinw, t) in G(w,t), i = 1,2,3. (9.4)
uj ot M;

The functions sin w; t and cos w; t can be obtained from the
two equations (9.2) and (9.4). Putting these into the still valid
relations between their squares, after a small adjustment, one
obtains the desired relation

4 un2 . -
0? = =" (24) in G(w,t) and G(x,1), i =123. (9.5)

uZ;—M; ul-z at

If we have the given inputs at our disposal, then, from the
random values of the velocity u; and its rate of change du;/dt,
we can obtain the values of a random independent variable w;
from the square root of (9.5). We will choose from the two signs
of the root. If we take w; as a frequency of velocity fluctuations,
then we accept that the sign of w; can only be positive. If we
consider w; as the rotational velocity of a three-dimensional
vortex, there is no restriction on the choice of sign. The relation
(9.5) can also be obtained by inversion of (9.2) and taking the
limit at the point ¢t = 0 using I’Hépital’s rule. The mean
parameters in the differentiation of (9.2). are considered as
constant due to Raynolds rules of averaging. Equation (9.5)
provides real-valued w; only for
L'tzi — Mi uiz > 0. (96)

If it is not met, then w; will be complex - valued. The value
Miin the condition (9.6) is given by
M;(&,i) = 8% + %, 9.7

For example, when processing the experimental data in
Section 8, the values of the quantity M; ranged from M;(1.1) =
0.92 to M;i(10,1) = 0.09. Validity of the relation (9.5) justifies the
assumption that the constitutive equation (9.2) can describe any
random turbulent scalar or vector field. It is important that
constitutive equation (9.2) holds this ability as well as when the
time derivatives of the mean flow velocities du; /ot in the
deriving (9.5) are accepted. In such case the above treatment
leads to other but again quadratic equation with respect to
unknown random frequency w; yielding again possibility to
determine its value and proving wanted ability of the constitutive
equations.

9.2 On numerical solution of the Energy Distribution
Equations

If there is a relationship between fluid pressure and density,
or p is known, then the four PDEs in (7.3) and (7.4) together with
the four energy distribution equations and integrals in (7.10),
(7.11), and (7.13) form a closed system. After the integrations in
(7.10) and (7.13) are performed, it becomes a system of
nonlinear differential and algebraic equations. In the eventual
application of this system to the solution of the initial (Cauchy)
problem, the solution will start at each time step by solving the
system of distribution equations (9.1), because, when the
components of the velocity field #; are entered as an initial
condition, the system (9.1) becomes closed. Its solution will
provide the normal turbulent stresses, and the equations (7.10) —
(7.13) will provide the remaining dependent variables.

One of possible methods for solving a nonlinear system like
(9.1) was successfully tested in section 8.

10 INFORMATION SUPPORT (4) AND (5)

10.1 Information Support (4): Viscous stress tensor and its
vector and tensor components

In the vector notation of the momentum PDRs (7.3) all
internal friction forces are presented by the viscous stress tensor
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Ty Txx Txy Txz
T= {Ty} = [Tyx Tyy TyZ} (10.1)
T, Tzx Tzy Tzz
by means of three vector components z;, (i=1,23=Xx,Y,2)

Ty =Ty = 1Tyt Tyt KTy,

T, =T, =0T+ [T+ KTy, (10.2)
1, =13 =isz+szy+ szz
and its nine tensor components

= w2 4 ) -7 = (% 6&)
Txx—u(Z P 3dwu P Ty =Tyx = U ay+ax

= duz _ 2 ) -7 = ("ﬂ %)
Tyy = ,u( 5y 3dlvu STy =Ty = p(g ot 2y (10.3)

dugz dus ouq

‘rzz=,u(2¥ —gdivu); Ty = Tyx = ,u(;+¥)

as linear functions of velocity gradients built on the Stokes
hypothesis, see Lojcianskij, L. G. (1954), Milne-Thomson L.M.

(1960) or Schlichting, H. (1960). The dynamics viscosity u(T)
assumes to be the known function of the mean temperature T.

The divergences of vectors defined in (10.2) follow from (10.3)
and (10.4),

. at 0Ty atT.
divt, =242 4%
x dx + ay 0z
it atT atT
divt, =2+ 42 104
y 0x + ay + 0z ( )
. 0t 0t at
divt,=—-2+4+ -2 4%

ox ay 0z

10.2 Information Support (5): On momentum flux tensor h
and its components including the Reynolds’ stresses tensor

The symmetric tensor of the momentum flux h = puu
represents the effects of inertial forces in momentum equations
(7.2) and (7.4). As the main source of non-linearities it occurs in
the resultant equations systems (7.41) up to (7.53) in the
explicitly averaged final shapes. Its vector components are
defined equally as done for vectors z; in (10.2) as well as for
divergences in (10.4).

The averaged products pu’;u’; of its fluctuations represent at
i#j and constant p the components of the Reynolds’
(apparent) stresses tensor in turbulent liquid flows which became
the most frequent object of approximate phenomenological
turbulent modelling. Section 7.5 contains more about this.

11. SURVEY OF RESULTS AND CONCLUSIONS
11.1 Summarizing remarks

The first three sections of the study were mainly on preparing
a suitable strategy for the treatment of and solution to the closure
problem. From the author’s insight into the foundations of fluid
mechanics it followed that, while thermodynamics has reflected
no effects of turbulence phenomena into relevant PDEs, the
statistical tools of Reynolds have directed attention upon the roll
of its randomness. Applying the idea that randomness as an
autonomous factor of physical processes could be utilized as a

property of independent variables of PDEs, the frequency of
turbulent fluctuations was chosen for this role. The property of
bifunctionality of spatial coordinates treated in Sect. 2.4 helped
this choice due to its obvious analogy.

The third Section has been devoted to creating the
characteristic domain of averaging. Demonstrating the
simultaneous existence of deformation (potential) energy
together with elastic (kinetic) energy as the effects of turbulent
density and velocity fluctuation, the author justified the
extension of the validity of Kolmogorov’s inter-scale relations
upon anisotropic turbulence. It allowed the characteristic
domains of needed properties for averaging relevant PDEs
describing any random turbulent fields in the 5-D random space
to be created.

The wanted equations closing the averaged N-S system (7.1)
— (7.2)” in this study consist of the derived Energy Distribution
Equations, EDEs (6.39) — (6.41) and equation (6.52) for
computing the energy distribution factoré. This solution can be
called “direct” since it is expressed through a mere three definite
integrals yielding all wanted averaged non-linearities of the
double and triple products as defined in (7.10) — (7.15). The
resultant closed system of averaged N-S equations for
isothermal fluid flow is presented in equations (7.40) — (7.49).

All results of the averaging process have been expressed
through distribution functions ¥; of the vector of momentum
pu; , ¥;; of the momentum flax tensor pu;u; for gases, as
well as through distribution functions ®;; of the momentum flux
tensor pu;u; for liquids, all in (7.32) — (7.34).

The structure of the EDE requires anyone to realize that the
turbulent mean flow is always three-dimensional, with a spatially
curved stream or vector lines. This property led to expected
contradictions when the theory was confronted with data from
experiments made in wind tunnel boundary layers assuming
straight parallel flow there. The conflict, caused also by different
ways of averaging the random fields, was removed by
redistribution of the measured energy into all its directional parts
in accordance with the numerical solution of the relevant EDEs.
The errors that remained were below 2.5% for all comparisons
with experiments, see in supplementary material. It convinced
the author that this verification of the resultant EDE was
successful.

In Sect. 9.1 the important property of the constitution equation
(4.16) is verified. It is its ability to describe any random velocity
fields of turbulent flow. In Sect. 9.2 the method of unique
numerical solution of the non-linear EDE algebraic system was
described in connection with setting up the Cauchy initial value
problem for (7.40) — (7.49).

11.2 On verifying resultant
experimental measurements

equations systems by

Mean turbulent steady as well as unsteady fields are defined
as the mathematical expectations, which cannot be measured.
This can lead to presumption, that results of the statistical
methods in fluid dynamics cannot be tested by measurements.
But below it is shown that the steady mean fields can be tested
comparing with measurements by means of the experimental
expectations. This analogy to mathematical expectations works
as follows:

The term experimental expectation for fe(x) = fe(X, t) —
fo (x,t) stems from the time averaging the
measured random f ¢(x,t) over sufficiently long time t. and
signifies the comparing equivalent to any steady mean turbulent

field £ (x) =f (x,t) — f'(x,t). If f(x) is solution of steady task
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to above resultant system and error deviations abs (f — sfe) is

small enough during the whole t.. in the tested points of f(x, t),
then such test by experiment of the found resultant system can
be accepted as successful.

The validity of results of above treated testing of mean steady
turbulent flow for the mean unsteady flow follows from
assumption that used description tool is suitable to respect and
record mean values of all flow characteristics including non-
stationarity.  Nevertheless, the particular limits for
error deviations are needed to state for each mean flow testing
by measurements as well as its extension of validity needs own
specific justification.

11.3 On the ability to solve the average and closure problem
at non-Newtonian fluids flows

The properties of the constitutive functions found in this
article allow to effectively average also the non-linearities of
other kinds including those in the energy balance equation. But
this ability does not vouch for the possibility to apply these tools
without any problems also at describing turbulent fields of non-
Newtonian fluids flow.

Availability of data

The data supporting the findings of this study are available
within the article and its supplementary material available from
author, if asked.
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