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Abstract: The problem above marked as resolved is more than a hundred years known as the closure problem of 

turbulence. Extending its name follows from below presented knowledge that to be its solution successful it is necessary 

to find an effective averaging tool enabling one to describe and smooth down   any random turbulent field without any 

phenomenological limitations. To convince of necessity of such tool author in the article   previously proved the non-

differentiability of random fields of measurable turbulence characteristics. But the decisive momentum of his solution 

strategy arose from the idea that randomness is an autonomous factor of physical processes and, therefore, this property 

can be utilized as a property of independent variables of the governing PDEs. To realize this idea author picked random 

frequences of turbulent fluctuations. Author then postulated the dual property as well as bifunctionality hypothesis and 

found suitable constitutive equations enabling him: (i) to express the instantaneous behaving of any random vector and 

scalar turbulent fields; (ii) to average the non-linear N–S system for the thermally known turbulent flow  over the 

characteristic domains  in the 5–D random space; (iii) to close the averaged equations systems with the set of four 

relationships named the Energy Distribution Equations (EDE) as the key result of the closure process. The energy 

invariance principle was used to find a closing equation for the energy distribution factor. The resultant EDEs were 

successfully verified meanwhile by comparing them with data from four independent sources of experiments made in 

boundary layers of wind tunnel flows of high anisotropy. This closure problem solution was obtained without the use of 

any auxiliary parameters or assumptions of phenomenological or experimental origin. From the nature of EDEs it follows 

that all turbulent mean flows are always 3–Dimensional. The use of randomness autonomy as the property of independent 

variables at describing turbulent flows is not limited upon Newtonian fluids. 

 

Keywords: Randomness as autonomous factor; 5–D random space; Energy distribution equations; Mathematical 

expectations; Energy distribution factor; Tensor of anisotropy. 

 
1 INTRODUCTION 

 

The problem of closure in turbulence occurs when trying to 

describe random processes of turbulent fluid flow by means of 

deterministic tools. These consist of the systems of partial 

differential equations (PDE), all of which are based on their 

respective conservation laws. The cause and circumstances of 

the problem are usually described as follows: if liquids or gases 

move slowly enough, the flow remains smooth and predictable. 

Increasing the kinetic energy of the movement beyond a certain 

limit will lead to a chaotic, turbulent flow and problems with 

describing it by means of the existing PDEs. When non-linear 

PDEs are adapted to turbulent flow by averaging, then new 

unknown parameters arise of the fluctuating non-linearities. The 

unknown means of the non-linearities are problematic because 

they create an unclosed system of the closed one and, thus, the 

closure problem. Its solution requires finding the missing 

physically justified relations between the new and the original 

flow parameters. Unsuccessful attempts to close the system by 

obtaining new relations through derivation and averaging 

operations directly from N-S equations have triggered the era of 

turbulence modelling. Turbulence models retrieve missing 

relations by evaluating their phenomenological manifestations. 

The domain of application of the numerical simulation of 

turbulence effects obtained by these models is demarcated 

therefore by the validity limits of the phenomenological 

assumptions on which they are based. The “direct numerical 

solution” of the Navier–Stokes (N–S) equations is based on the 

numerical treatment of PDEs as an alternative to turbulence 

models. Therefore, it should be assessed in the context of the 

issue of the existence of solutions to deterministic PDE systems 

when applying them to random turbulent phenomena. 

The closure problem of turbulence arose after Reynolds 

(1895) published his crucial work involving his (apparent) 

turbulent stress tensor as an analogy to the viscous stress tensor. 

But his stress tensor had occurred to be a new unknown variable 

being generated by averaging as it is said above. The long 

absence of a universally accepted solution to the problem has 

inspired the development of turbulence modelling to extent, the 

sufficient info on which cannot be pressed even in a review 

article. The qualified review of the state of the discipline 30 years 

ago can be found in Lumley (1989) as well as in Ecke, R. (2005). 

Statistical fluid mechanics as the main basis for the study of 

turbulence are described in detail in the monograph by Monin 

and Yaglom (1975).  

In Volume I of the book series on Advances in Fluid 

Mechanics edited by L. Debnath and D.N. Riahy (1998) the state 

of knowledge of turbulence was evaluated by examining two 

crucial aspects: the physical background of the phenomenon and 

the mathematical techniques used to describe it. There are 

considered the problems involved with the use of the N–S 

equations as the closure problem as well as the need for an 

explanation of phenomena, such as intermittency and coherent 

structures. 

Here is suitable to write several quotations of notions which 

mostly influenced creation of strategy, objectives and title of this 
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article. The first notions are picked out from the Barenblatt, G.I. 

(1996): “turbulence is considered with good reason to be the 

number one problem of contemporary classical physics..., it 

remains an open problem: none of the results available has been 

obtained from the first principles. Obtained results are based 

essentially on strong additional assumptions, which may or not 

be correct “. 

A view of turbulence as a phenomenon that needs to be 

described using chaos theory can be found in the study by Li 

(2013), which also touches the main tool of statistical mechanics: 

namely, averaging (i.e., taking the mean flow as the 

mathematical expectation). Indeed, a quotation from his paper is 

particularly appropriate here: “Chaos is understood, but untamed 

as far as turbulence is considered, it is not known what kind of 

(method) of averaging should be used. The search for an 

effective description of turbulence started from Reynolds 

average of a stochastic signal. But Reynolds average is far from 

an effective description of turbulence. Its applying to chaos and 

turbulence leads to an unsolvable closure problem “. 

Developments and advances in the knowledge of turbulence 

have been considerably influenced by Kolmogorov's cascade 

theory of isotropic turbulence (Kolmogorov, 1941a, b). He 

defined the length, time and velocity scales of turbulent vortices, 

together with a mean rate of energy dissipation and the relations 

between them, and these have remained the focus of turbulence 

research to the present day (see Hunt and Vassilicos, 1991). It 

needs to say: Inter-scale relations resulting from Kolmogorov’s 

theory are used in this study to define the characteristic domains 

of averaging, but after author preceding extension of their 

validity upon the directional components of kinetic energy of 

non-isotropic turbulence.  

 

2 ON THE GENESIS OF THE MEANS FOR 

DESCRIPTING RANDOM DYNAMICS OF REAL 

FLUIDS 

 

The above-mentioned PDR systems were created by applying 

the physical laws of conservation to the process of their creation 

as tools for the deterministic description of the flow of real fluids. 

Given that the defining characteristic of this flow is the chaotic 

dynamics of a discontinuous microworld of molecules, it is 

useful to know the steps that make it possible to describe random 

phenomena by means of the deterministic tools of the field 

theory. 

 

2.1 The non-differentiability of random fields of measurable 

turbulence characteristics 

 

The randomness of turbulent flow characteristics is clearly 

demonstrated by experiments. It is manifested by the uncertainty 

of the values of the relevant parameters, resulting from the 

unpredictability of their occurrence. However, the continuity 

properties of functions as the deterministic tools of the field 

theory require the certainty of the values presented by these 

functions to be differentiable. This is clearly stated in Vygodsky´s 

continuity and differentiability conditions written in Sec. 1.6 

below. But random fields of turbulence characteristics are non-

differentiable    because they do not meet the conditions § 231 

and § 424 of the Sec. 2.6. There is proof of the non-

differentiability of random turbulent fields and origin of the 

average and closure problem.  

A direct consequence of the non-differentiability of the 

turbulent fields is the uncertainty of the partial derivatives, 

which, by the mere intention of using the corresponding PDEs to 

simulate a turbulent flow in any way, turns any closed PDE 

systems defined above in G(x,t) into indeterminate, unclosed 

ones. 

It coincides with the Reynolds decomposition which splits 

any random function f in G(x,t) into two dependent ones and 

doubles the number of unknowns in the respective PDE. This 

means that the property of the non-differentiability of turbulent 

fields justifies the use of decomposition in "apparently" closed 

systems, because such use does not change the uncertain status 

of the system. 

The main consequence of the proven non-differentiability of 

turbulent fields is that it does not allow turbulent flow to be 

described by existing “apparently” closed PDE systems of the 

Newtonian fluid dynamics without an aid of statistical 

mechanics. 

 

2.2 The bifunctionality of position coordinates of the 

coordinate system 

 

For the Euler expressing conservation laws the mathematical 

continuum concept is necessary.  It is procured by the known 

relations defining the total (material) derivatives of dependent 

variables  

 

  
𝑑𝑢𝑖 

𝑑𝑡
=

𝜕𝑢𝑖

 𝜕𝑡
+ ∑ 𝑢𝑗

𝜕𝑢𝑖

 𝜕𝑥𝑗
,    

𝑑𝑥𝑗 

𝑑𝑡
= 𝑢𝑗(𝒙, 𝑡), 𝑖, 𝑗 = 1,2, 3 

3
𝑗=1        (2.1) 

 

which at the same time are sources of problematic non-

linearities. Nevertheless, we put (2.1) there as an old sample of 

the bifunctionality, the functional property we want effectively 

to apply. 

The mutual independence of position coordinates 𝑥𝑖 among 

themself and with respect to time 𝑡 in the first equation of (2.1) 

is unconstrained. However, the same coordinates 𝑥𝑖 define in the 

second eq. of (2.1) the paths of mass, momentum and energy 

transfer in the role of dependent variables, evidencing by such a 

way property the of the bifunctionality of space coordinates. 

Over and above after applying Reynolds' velocity 

decomposition   in (2.1) one can adjust the second (reference) 

equations in (2.1) to an integrable form 

 

𝑢𝑖 =
𝑑𝑥𝑖 

𝑑𝑡
=

𝑑𝑥𝑖  

𝑑𝑡
+

𝑑𝑥′𝑖

𝑑𝑡
       →      𝑑𝑥𝑖 =  𝑑𝑥𝑖 + 𝑑𝑥

′
𝑖      (2.2) 

 

But this obtained can be integrated even back resulting in the 

decomposition of dependently variable 

 

𝑥𝑖 =  𝑥𝑖 + 𝑥
′
𝑖  𝑎𝑡  

𝑑𝑥𝑖  

𝑑𝑡
= 𝑢̅𝑖  𝑎𝑛𝑑  

𝑑𝑥′𝑖

𝑑𝑡
 =  𝑢′𝑖          (2.3) 

 

It is important to emphasize that only thanks to this 

bifunctionality the 𝑥𝑖 given in (2.3) does not represent 

coordinates 𝑥𝑖  in the role of independent variables in partial 

derivations 𝜕𝑓/𝜕𝑥𝑖 .  In opposite case it would imply the 

oscillation of the system of coordinates and the invalidity of the 

operations performed. In the case of turbulent flow, of course. 

The possibility to apply bifunctionality as property of the 

coordinates 𝑥𝑖 has influenced the strategy at solving the average 

and closure problem in this study.  

 

2.3 Sources and types of problematic non-linearities of 

turbulences in respective PDEs system 

 

The respective PDEs system is a closed system involving 

seven dependent variables 𝑓 (x,t|). Five of them, i.e., three 

components 𝑢𝑖  of the velocity vector 𝑢 (𝑢𝑖 ), density 𝜌,  and 

temperature T shall be considered as primary dependent 
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variables, all governed by five equations of three conservation 

laws. Momentum, kinetic energy and internal energy belong to 

derived dependent variables, included pressure p(𝜌,T), given by 

the thermodynamic equation of state. All respective PDEs 

contain non-linearities as well as a momentum flux tensor 𝜌𝑢𝑖uj. 

Besides these, viscosity 𝜇(𝑇)  and thermal conductivity 𝛞(T) as 

properties of moving fluid are of experimental origin.  Based on 

the laws of conservation PDEs can be presented in the common 

form of its left sides, 

 

𝜌
𝑑𝑓

𝑑𝑡
 =   Pf                  (2.4)  

 

by means of notations in the conservation form suitable for 

dynamical systems by using the tools of differential calculus (2) 

and (2.1) and the properties of the mass conservation equation 

itself 

 
𝑑𝜌 

𝑑𝑡
 + 𝜌div𝒖 = 0  →  

𝜕𝜌

𝜕𝑡
 + div(𝜌𝒖) = 0;          (2.5) 

 

in which 𝜌 indicates the specific mass and 𝒖 velocity vector. The 

second of the equations in (2.5) has already obtained the desired 

conservation form after eliminating the full derivation 𝑑𝜌/𝑑𝑡 
from the first one, by using the pair (2.0) and (2.1). Eq. (2.4) 

expresses the momentum conservation law if f = 𝒖, or the energy 

conservation law if f = € + E. We obtain these conservation laws 

in the desired form by making the following adjustments based 

on the continuity equation and replacing 𝑑(𝜌𝑓)/𝑑𝑡: 
 

𝜌  
𝑑𝑓

𝑑𝑡
 +𝑓 (

𝑑𝜌 

𝑑𝑡
 + 𝜌div𝒖 ) = 

𝑑(𝜌𝑓) 

𝑑𝑡
 + 𝜌𝑓div𝒖  = Pf     →   

𝜕(𝜌𝑓)

𝜕𝑡
  + 

div(𝜌𝑓𝒖) = Pf ;                    (2.6) 

 

If (2.6|) reflects the conservation of momentum 𝜌u, then Pi 

are components of the resulting vector of   body forces due to 

gravity and surface forces of pressure and friction. Its scalar 

notation is then a system of three N-S equations 

 
𝜕(𝜌𝑢𝑖)

𝜕𝑡
  + div(𝜌𝑢𝑖uj) = Pi,  𝑖, 𝑗 = 1,2, 3                       (2.7)  

 

In the case of isothermal (or thermally known) flow, their 

right sides Pi do not contain problematic nonlinearities as it 

follows from the next section. The total (material) derivative on 

the left side of (2.4) are the source of the first, basic type of 

problematic turbulence non-linearities shown by eq. (2.6) and 

(2.7). 

 

2.4 Influence of physical properties of fluids upon generating 

problematic non-linearities 

 

The dependences of pressure p, internal energy €, viscosity 

coefficient 𝜇  and thermal conductivity 𝛞 on the mass 𝜌  and 

absolute temperature T necessary for the closure of systems (2.3) 

to (2.7) are of thermodynamic origin, including the parameters 

cv, cp v indicating specific heat at the same volume or pressure. 

The dependence of coefficients 𝜇 and 𝛞 on temperature also 

means dependence on flow mode and dynamics. Therefore, we 

will comment on the need to assess these relations in terms of the 

possible formation of problematic non-linearities in the event of 

PDR adaptation to flow with turbulent temperature or density 

fluctuations. 

Given that the relations for coefficients 𝜇 and 𝛞 are always of 

an experimental (or empirical) nature, this threat can be ruled out 

if the results of experimental measurements (or observations) 

have been processed only into regular dependences, devoid of 

random fluctuations in the measured values. In the case of using 

the averaged PDR system to simulate a turbulent flow, this 

allows us to postulate the assumption that if the coefficients 𝜇 

and 𝛞 are determined as functions of the average temperature 

values 𝑇 , then 𝜇 ( 𝑇  ) and 𝛞( 𝑇 ) shall not be a source of 

problematic non-linearities.  

Nevertheless, any use of the terms isothermal flows or 

incompressible fluids concerns only the case of justified neglect 

of the temperature/compressibility effects due to practical 

reasons. 

 

2.5 The deformation energy as the effect of turbulent density 

fluctuations. 

 

The formation of the constitutive functions of the desired 

properties requires the use of the vortical properties of the kinetic 

energy of the turbulence. One of these may be surprising, so we 

shall bring it up first. The current kinetic energy E of the 

instantaneous velocity field per volume unit is defined (see L.M. 

Milne-Thomson, L.M. 1960, paragraph 3.50) as the product of 

the components 𝑢𝑖  of the velocity vector 𝒖 and the specific mass 

𝜌 in the form of. 

 

𝐸 =  
1

2
∑ 𝜌𝑢𝑖

23
𝑖=1 ,                𝑖 = 1, 2, 3                               (2.8) 

 

After applying Reynolds’s decomposition 𝑢𝑖 = 𝑢̅𝑖 + 𝑢
′
𝑖, 𝜌 =

𝜌̅ + 𝜌′ and implicitly averaging in (2.8), we obtain the averaged 

kinetic energy 𝐸 as a combination of averaged non-linearities 

 

𝐸 =
1

2
∑ 𝜌𝑢𝑖

23
𝑖=1 =

1

2
∑ [𝜌̅ (𝑢̅𝑖

2 + 𝑢´𝑖
2
) + 2𝑢̅𝑖𝜌´𝑢´𝑖 + 𝜌´𝑢

´
𝑖
2
 ]3

𝑖=1   (2.9) 

 

in which the last two terms of the sum satisfy the inequalities. 

 

2𝑢̅𝑖𝜌´𝑢´𝑖  ≥ 0    𝑜𝑟   2𝑢̅𝑖𝜌´𝑢´𝑖  ≤ 0 and 𝜌´𝑢´𝑖
2
 ≥ 0   𝑜𝑟   𝜌´𝑢´𝑖

2
 ≤ 0               

                                                                                            (2.10) 

 

Inequalities in (2.10) are valid due to fact that both fluctuating 

non-linearities 𝜌´𝑢´𝑖  and 𝜌´𝑢´𝑖
2

 alternate positive and negative 

values before averaging as the result of the randomness and 

mutual independence of the fluctuations 𝜌´  and 𝑢´𝑖  and the 

nature of their products. After averaging, they behave in this way 

because the characteristic averaging domains Δ are final and 

their boundaries are unknown and unconditional; see the 

conclusion of Chapter 3. 

For the above reasons, the area Δ shows a statistically equal 

probability of occurrence for both positive and negative values 

of the averaged fluctuating non-linearities in (2.10). However, 

the same probability of occurrence for both positive and negative 

values should also apply to their sum 

 

 𝐸𝑑 =
1

2
∑ [2𝑢̅𝑖𝜌´𝑢´𝑖 + 𝜌´𝑢

´
𝑖
2
 ]3

𝑖=1 ,    𝐸𝑑 ≥ 0   𝑜𝑟  𝐸𝑑 ≤ 0     (2.11) 

 

From the inequalities in (2.11), it follows that the process of 

averaging the kinetic energy E in (2.9) resulted into the sum of 

two qualitatively different kinds, elastic Ee and deformation Ed 

giving 

 

E = Ee +  Ed         (2.12) 

 

Of these, the only the elastic part 𝐸𝑒 given by 
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 𝐸𝑒 = 𝜌̅(𝐾 + 𝑘);  𝐾 =
1

2
∑ 𝑢̅𝑖

2;3
𝑖=1   𝑘 = 

1

2
∑ 𝑢´𝑖

2
 ;3

𝑖=1  𝐸𝑒 > 0  (2.13) 

 

remains after averaging always positively, while its part Ed 

according to (2.11) can take also negative values. 

However, this means that the implicit averaging (2.8) → (2.9) 

caused the separating transformation of kinetic energy E into 

three qualitatively different types of energy. Two of these, K and 

k, denote the two known types of kinetic energy entraining per 

mass unit. K is produced by the velocity field 𝑢̅𝑖  and k by its 

fluctuations  𝑢′𝑖 . The third of them,  𝐸𝑑  is the result of the 

qualitative transformation of part of kinetic energy E 

and becomes part of the internal energy of the flow as an 

averaging effect when the following inequalities are valid, 

 

𝐸 > 0 → 𝐸 = 𝐸𝑒 +  𝐸𝑑 > 0 → 𝐸𝑒 > 𝑎𝑏𝑠( 𝐸𝑑) 𝑖𝑓 𝐸𝑑 < 0  (2.14)                            

 

The sign of the energy  𝐸𝑑 is determined by the result of the 

sum of the averaged fluctuation products of 𝜌′  and  𝑢′𝑖 creating 

 𝐸𝑑 in (2.11). It expresses a mass compressing/diluting effect on 

the energy exchange through pressure, density and temperature 

fluctuations. Since in atmospheric physics the effects of 

compressing/diluting are recollected in connection with the 

potential temperature of air, see Bednar, J – Zikmunda, O., 

(1985), the deforming energy  𝐸𝑑 can be named also by the term 

potential energy expressed through the potential temperature 

fluctuations. 

The resulting system of averaged equations is also expected 

to determine the current value  𝐸𝑑 to be used in energy analysis 

or in the direct solution of the energy balance equation. However, 

the following two unifying effects of kinetic energy averaging, 

arising from the previous analysis, are also important for the 

current solution of the closure problem itself:  

i. The elastic kinetic energy of flow 𝐸𝑒 defined in (2.13) is not 

affected by the compressibility effect. It is applied in adiabatic 

processes through the strain energy  𝐸𝑑  generated by 

fluctuations 𝜌′, 𝑢′𝑖 . This means that the kinetic energy of both 

compressible gases and "incompressible liquids" are defined in 

the same way by the same relationship (2.13). 

ii. A.N. Kolmogorov assumed his cascade theory of the 

kinetic energy of turbulence dissipation to be valid for 

incompressible fluid flows. Since the object of his theory is the 

dissipation rate of fluctuating kinetic energy k, which is part of 

𝐸𝑒 , it follows from (i) that this property of 𝐸𝑒   can also be 

expected at compressible fluids. This justified its use in Section 

3 below at defining the characteristic domains of needed 

properties for averaging relevant PDEs. 

 

2.6 Information Support (1) and (2) 

(1) Vygodsky´s (1971) Conditions of Continuity and 

Differentiability of Functions of Several Arguments 

 

231. Differentiable Functions  

A continuous function which (at a given point) has a 

differential is called differentiable at that point. A discontinuous 

function cannot have either a derivative or a differential at 

a point of discontinuity.  

 

424 Continuity of a Function of Several Arguments 

Definition: A Function f(x,y) is called continuous at a point 

M0(x0,y0) if  the following two conditions are fulfilled:  

1. the function has definite value l at M0. 

2. the function has a limit, also equal to l, at M0  

If even one of these conditions is violated, the function is 

called discontinuous at the point   M0.  

The same holds for the case of three and more arguments. 

 

(2) Reynolds’ decomposition of linear forms of random 

dependently variable functions.    

 

Applying the decomposition f = 𝑓 + 𝑓′  of random function 

f(𝑥𝑖 , 𝑡) on its averaged part 𝑓 and random fluctuating deviation 

𝑓′ and establishing the averaging rules for operations with linear 

decomposition forms, Reynolds put into action an important tool 

of statistical mechanics. Written for velocity 𝑢𝑖 , 𝑢𝑗   𝑖, 𝑗 = 1,2,3, 

Reynolds rules valid for mean values 𝑓 consist of the relations 

   

𝑢𝑖  =  𝑢̅𝑖 + 𝑢
′
𝑖,  𝑢

′
𝑖 = 0,  𝑢̅𝑖  = 𝑢̅𝑖 ,  𝑢𝑖 + 𝑢𝑗 = 𝑢̅𝑖  + 𝑢̅𝑗,  𝑢𝑖𝑢𝑗 =  𝑢̅𝑖𝑢̅𝑗 

+ 𝑢′𝑖𝑢
′
𝑗             (2.15) 

 

Using them on decomposition f =  𝑓  + 𝑓′  one obtains also 

rules for averaging the partial derivatives   

 
 𝜕𝑓

 𝜕𝑡 
= 

𝜕𝑓

 𝜕𝑡
;     

 𝜕𝑓

 𝜕𝑥𝑖 
=

𝜕𝑓

 𝜕𝑥𝑖 
 ;        (2.16) 

 

3 RANDOMNESS OF TURBULENCE PHENOMENA IN 

THE ROLE OF A PHYSICALLY AUTONOMOUS 

FACTOR OF CHAOS AS THE BASIC STRATEGY OF 

THE AVERAGE AND CLOSURE PROBLEM SOLUTION 

 

As the one of possible steps in the effort to get rid of any non-

differentiability of the random turbulent fields proven above 

in Section 1, it is solution strategy arisen from the idea that 

randomness is an autonomous factor of physical processes and, 

therefore, this property can be utilized as a property of 

independent variables of the governing PDEs. 

Applying Reynolds’ decomposition in the “originally” closed 

PDEs one transforms this system into an unclosed one creating 

the closure problem. But use of above stated strategy to  solution 

of the problem enables one to analytically express any random 

turbulent flow in the domain G'(x,t) and its mathematical 

expectation in the domain 𝐺(x,t), performing in such manner the 

transformation 

 

random fields   f = 𝑓 + f ‘ in   G‘(x,t)    →    smooth   fields   𝑓(x,t)   

in   𝐺(x,t)        

       

without any phenomenological presumptions on turbulent flow 

properties or behaviour. 

To perform this the above postulated randomness and 

unpredictability of turbulent phenomena will be defined and used 

as the properties of independently variable parameters of 

turbulent flow. 

 

3.1 Definition of randomness and physical independence of 

random turbulent parameters. Dual property and 

bifunctionality hypothesis. 

 

The mean flow characteristics 𝑓 are regular if they remain the 

same, after the mean flow, with the same initial and boundary 

conditions being repeated. Otherwise, they are random. Two 

starting steps were made on the way to the desired solution of the 

problem: (i) we considered randomness as an autonomous factor 

of random processes and (ii) we have applied it as a useful 

property enabling the presentation of the random behaving of 

turbulent fields by standard tools of applied mathematics. In this 

case it shall be constitutive equations consisting of regular 
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functions of random variables. In the presented study, the idea of 

randomness is realized through the so-called dual property and 

to other random parameters as well as with respect to time t and 

position vector x, and (ii) they are simultaneously formal 

functions of time and position in the sense that such random 

dependence can be determined and described only through 

measurement. It is impossible to know these parameters before 

measurements have been made, because they behave in time and 

space without causal coherence, i.e. randomly. This is a mark of 

physical independence. The frequency ω of turbulent 

fluctuations of vector and scalar fields is chosen to define the 

class of independent variables in functions creating constitutive 

equations. 

 

3.2 On some tools of statistical mechanics and their 

properties applied in the article 

 

This concerns, namely, the averaging of a function defining a 

mean value, also called the mathematical expectation, and the 

Reynolds’ rules for operations with decomposed random 

functions. Two forms of averaging will be used. The first, known 

as the Reynolds’ average, means an unknown function denoted 

by an overbar, which we call the implicit average. The second 

one, called the explicit average, defines the mean value of a given 

function through a definite integral over its characteristic 

domain. Integrands of these definite integrals will be created 

explicitly from the constitutive functions. In such specified 

integrands the products of any dependent variables will be 

expressed through constitutive functions as well. Both forms, 

implicit and explicit, assume the validity of the Reynolds’ rules 

for the implicit form of averaging. The explicit averaging of 

constitutive functions will be carried out in the space of random 

independent variables 𝐺(𝜔, 𝑡) but with its mean values located 

in the space 𝐺̅(𝑥, 𝑡)  satisfying the conditions (3.1) below. 

Therefore, when specifying the domains of averaging, there shall 

be neither the possibility nor the need to consider any use of 

correlating or autocorrelating functions, or other aspects of 

probability theory. Particular attention is required when 

averaging a random but statistically steady field. The integral 

time scale T→ ∞ in this case, and the result of averaging for one 

position point in 𝐺̅(𝑥, 𝑡)  becomes constant regardless of the 

method of averaging. Therefore, the Reynolds average in the 

domain − T/2 < 0 < T/2 currently applied in experimental 

research on turbulence is consistent. This includes the 

experimental resources used in this study to confront theory with 

experimental data. Although the mean value of random functions 

can be defined differently, it does not exclude the possibility of 

comparing computation results with the results of experimental 

measurements under these conditions. 

The domain of definition for variables to appear in 

constitutive equations belongs to 𝐺(𝜔, 𝑡).  Random velocity 

components ui of the vector 𝑢 (x,t) and the scalar dependent 

variables (e.g. of density ρ) will be defined in the regular space 

𝐺̅(𝑥, 𝑡)and, through constitutive functions, also in the space 

𝐺(𝜔, 𝑡). . The space 𝐺 (𝑥, 𝑡)  is the standard four-dimensional 

space-time. The space 𝐺(𝜔, 𝑡).  is (N + 1) = 5-D, (5-

dimensional), where N = 4 is the number of active random 

frequency components. N = 4 because of three vector 

frequencies ωi and plus one due to scalars ωϱ. The domains of 

definition of the constitutive functions in 5-D space 𝐺(𝜔, 𝑡). 
satisfy the inequalities 

 

𝜔𝑖𝐷 ≤ 𝜔𝑖 ≤ 𝜔𝑖𝐻 ,    0 ≤ 𝑡 ≤ 𝑇,    𝑖 = 1,2,3, …       (3.1) 

 

Where 𝜔𝑖𝐷, 𝜔𝑖𝐻 , T are regular, non-random boundary values of 

the random frequency 𝜔𝑖  and time t. The following scheme 

depicts the role of both dependent as well as independent  

variable  ω in 

 

𝑢𝑖= 𝑢𝑖  (𝜔𝑖 , t)    in   5-D  𝐺(𝜔, 𝑡); → 𝑢̅𝑖 = 𝑢̅𝑖(ω, (x, t), t)   in    4-

D   𝐺(ω, 𝑡)                (3.2) 

 

before and after averaged turbulent velocity field in accordance 

with the dual property hypothesis. 

  

3.3 The characteristic speed of turbulent fluctuations and the 

turbulent pressure of fluctuating energy 

 

The directional components of the fluctuating kinetic energy 

𝜌̅𝑢´𝑖
2

 are also known as normal turbulent stresses. This 

bifunctionality is also manifested in Kolmogorov's cascade 

theory of energy dissipation when defining velocity scale V by 

means of the characteristic velocity of turbulent fluctuations 

according to relations 

 

V ≈ √𝑢’𝑖
2̅̅ ̅̅ ;      𝑢´𝑖

2
 =  𝑢´𝑗

2
,  𝑖 = 1, 2, 3                                 (3.3) 

 

valid for isotropic turbulence. Cascade theory determines the 

velocity scale V together with the scales of length L and time T 

to be functions of the kinematic viscosity 𝜈  and the average 

dissipation rate of fluctuating energy 𝜀̅ . By assuming the 

possibility of using some of the insights of Kolmogorov’s 

cascade theory within TED also for non-isotropic turbulences, 

we shall find an equivalent of relation (3.3) for velocity scale V 

which satisfies this requirement. 

An important feature of scale V in (3.3) is that, together with 

scale L, its values determine Re, which characterizes the local 

state of turbulence throughout the entire range of turbulent 

vortices from maximum vortices to micro-vortices, whereas Re 

=> 1 values. Such a property in the non-isotropic region of 

turbulence has a velocity scale V only if it is determined by the 

average of three normal stresses 𝜌̅𝑢´𝑖
2
, i.e., by 

 

𝑉2 =
 1

 3
∑ 𝑢´𝑖

2
 3

𝑖=1  𝑖 = 1, 2, 3                                                    (3.4) 

 

i.e. like how the kinetic energy of molecules defines pressure 

in thermodynamics, see Soo, S. L. (1962). 

The average of the normal stresses (3.4) defines in such way 

the turbulent pressure  𝑃𝑡  as well as the velocity scale V by the 

relations  

 

 𝑃𝑡 = 
 1

 3
𝜌̅ ∑ 𝑢´𝑖

2
 3

𝑖=1 ;    V = ( 𝑃𝑡 /𝜌̅)
1

2                                     (3.5) 

 

and enables us to apply some tools of the cascade theory of 

turbulent energy dissipation also to the description of non-

isotropic turbulence processes applying (3.4) in an analogy from 

thermodynamics.  defining the validity domain and averaging the 

constitutive functions. This theory of course considers energy as 

a scalar whole.  Since anisotropy of turbulent flows to be realized 

in the study and suitable method for averaging independent of 

any fluid flow state and property has to be found, it requires to 

extend the validity of the cascade scale relations to the 

directional components of energy. With this aim in mind, it is 

useful to begin with the survey of the steps leading to 
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Kolmogorov scales and inter-scales relations, see Kolmogorov, 

A.N., (1941b), or Dúbrava, L and Vajcik, S., (1988). 

 

4 EXTENSION OF THE VALIDITY OF THE 

KOLMOGOROV’S CASCADE INTER-SCALE 

RELATIONS  

 

4.1 Information support (3): Inter-scales relations of the 

Kolmogorov’s energy cascade theory 
 

Kolmogorov’s energy cascade theory of turbulence provides 

a quantitative description of internal structure of turbulent fluid 

flow. This structure is understood as a system of vortices that are 

constantly forming and disintegrating. Smaller vortices are 

always more stable than larger ones. This process is random.  But 

the Reynold´s criterion Re = VL/𝜈  that characterizes a local state 

of flow, has been determined by the mean characteristic 

parameters 

 

V = ( 𝑃𝑡 /𝜌̅)
1

2 = (2𝑘/3)
1

2 ;  k = 
1

 2
∑ 𝑢´𝑖

2
 3

𝑖=1 ;   𝑖 = 1,  2,  3      (4.1) 

 

These are the fluctuation   kinetic energy. 𝑘,   the kinematic 

viscosity 𝜈,   the characteristic diameter L and the characteristic 

velocity scale V. The last is taken from the average of three 

components of 2𝑘 in (4.1) to obtain V approximately valid as 

well as for the case of not isotropic turbulence. It stems from the 

turbulent pressure formulations by (3.4) and (3.5) in the Sec. 3.  

According to Kolmogorov’s first similarity hypothesis 

(Kolmogorov, 1941a), the dimensions of sufficiently small 

isotropic vortices are functionally dependent on just two factors: 

𝜈 [ m2/s] and the mean kinetic energy dissipation rate 𝜀̄ [m2/s3]. 

By assuming a threshold value of the Reynolds number 𝑅𝑒𝜂 , 

Kolmogorov was able to determine the threshold magnitudes of 

length scale L = η and velocity scale V = 𝑢𝜂  of the smallest 

vortices below which viscous frictional forces prevail over 

inertial forces. Since 𝑅𝑒  represents the ratio between those 

forces, the value 𝑅𝑒 = 𝑅𝑒𝜂 = 1 is the boundary at which the 

ratio changes in favor of the frictional forces. Using the threshold 

values in (4.1) leads to a relation that we shall call a locating 

equation for the sought-after microscales η and 𝑢𝜂: 

 

𝜂𝑢𝜂 = 𝜈           (4.2) 

 

This equation follows from Kolmogorov’s hypothesis on 

existence of the relationship 𝜂(𝜈, 𝜀̄). 
From dimensional analysis, such a relationship takes the form 

𝜂 = 𝑐𝜀̅𝑎𝜈𝛽 , with 𝛼 = −1/4  and 𝛽 = 3/4 . The dimensionless 

constant c is determined to be 1, so we achieve the sought-after 

smallest size scale of turbulence:  

 

𝜂 = (
𝜈3

𝜀̄
)

1

4
          (4.3) 

 

Using this result in (4.2) gives the microscale for velocity: 

 

𝑢𝜂 = (𝜈𝜀)̅
1

4             (4.4) 

 

According to the first similarity hypothesis, the validity of 

which the author himself called approximate, for characteristic 

scales of turbulent vortices on each nth level of size, the 

following dimensional relationships are applicable: 

 

𝐿 = 𝑉𝑇 → 𝐿𝑛 = 𝑉𝑛𝑇𝑛 → 𝜂 = 𝑢𝜂𝜏        (4.5) 

The final equality in (4.5) in combination with (4.3) and (4.4) 

leads directly to a microscale for time:  

 

𝜏 = (
𝜈

𝜀̄
)

1

2
                                                                                 (4.6) 

 

 Finally, the ratio of the square of the velocity from (4.4) to 

the time microscale τ from (4.6) provides a dimensionally 

consistent relationship when applied to the whole energy cascade 

under the assumption of a one-way flow of energy from larger to 

smaller vortices, as a result of which an average dissipation rate 

𝜀̄ can be written as 

 

𝜀̅ =
𝑢𝜂
2

𝜏
=

𝑉𝑛
2

𝑇𝑛
=

𝑉2

𝑇
  .         (4.7) 

 

4.2 Extension of the validity of the Kolmogorov’s cascade 

inter-scale relations up the directional components of the 

fluctuating energy of a non-isotropic turbulence 

   

Kolmogorov's cascade theory of energy dissipation refers to 

the fluctuating kinetic energy 𝑘 as a scalar whole. It assumes 

"incompressible" liquids and isotropic turbulence. The intention 

to extend its validity to compressible gases is justified above in 

the Section (2.7).  The extension of the approximate validity of 

the cascade theory onto domains of large vortices (where  𝑢´𝑖
2
≠

 𝑢´𝑗
2
) ensures a "common" rate of energy dissipation 

 

𝜀̅ =  
𝑉2

𝑇
 ,       𝑖 = 1, 2, 3                                                        (4.10) 

 

by the fact that the square of the velocity scale used in (4.10) is 

determined in (3.4) by the arithmetic mean of the three 

components of fluctuating energy k, as defined in (4.1), and by 

the turbulent pressure  𝑃𝑡 . While the average dissipation rate 𝜀  ̅

in (4.10) is studied in Kolmogorov’s cascade theory as a 

parameter of one scalar whole of isotropic turbulence, solving 

the closure problem requires finding properties and interrelations 

for the three dissipation rates of fluctuating kinetic energy 

 

𝜀𝑖̅ =
𝑉𝑖
2

𝑇𝑖
 ,   𝑉𝑖

2 = 𝑢´𝑖
2
,    𝑢´𝑖

2
≠  𝑢´𝑗

2
,   𝑖 = 1, 2, 3                      (4.11) 

 

and their three directional components 𝑉𝑖
2   =   𝑢´𝑖

2
. The third 

object of our interest is the interrelation between the integral time 

scale T and its three components  𝑇𝑖 . The basis of this 

relationship is obtained from (3.4) after eliminating the squares 

of velocity scales 𝑉2 and  𝑉𝑖
2  obtained from (4.10) and (4.11). It 

will be simple, 

 

𝜀 ̅𝑇 = 
 1

 3
 ∑ 𝜀𝑖̅𝑇𝑖

3
𝑖=1         (4.12) 

 

By this way, we expand the concept of an energy cascade to 

a vector variant that allows inter-scale relations to be defined for 

each of the three components 𝑉𝑖
2of the fluctuation energy field 

that make up the sum (4.12). This brings us to a vector space 

whose determining parameters are the characteristic velocities of 

turbulent fluctuations, further named as the characteristic 

velocities of turbulence:  

 

𝑉𝑖 = (𝑢
′
𝑖
2
)

1

2
,    𝑖 = 1,  2,  3          (4.13) 
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The number of characteristic parameters is tripled by the 

transition to a vector space, as are the number of inter-scale 

relations. This also applies to the dissipation rates 𝜀𝑖̄, in which 

the individual components will be different: 

 

𝜀1̄ ≠ 𝜀2̄ ≠ 𝜀3̄.        (4.14) 

 

The transition to a vector field requires that we apply the 

relations (4.1) – (4.7) for each of the three components (4.13) of 

the characteristic velocity 𝑉  and for each of the three 

components of the velocity microscale 𝑢𝜂. Equation (4.1) will 

give us three relations 

 

𝑉𝑖𝐿𝑖 = 𝑣𝑅𝑒𝑖,     𝑖 = 1,  2,  3,      (4.15) 

 

to define three systems of energy cascades by the Re values for 

all the directional components of energy. Since (4.2) is a location 

equation, the same goes for its three directional variants for the 

microscales 𝜂𝑖  and 𝑢𝜂𝑖 , which are connected by a common 

locating 𝑅𝑒 = 𝑅𝑒𝑐  or locating viscosity 𝜈𝑐 according to the 

equation 

 

𝑢𝜂𝑖 𝜂𝑖 = 𝑣 𝑅𝑒𝑐 = 𝑣𝑐          (4.16) 

 

In the case of a cascade located in the scalar space, the control 

𝑅𝑒 is determined by the value 𝑅𝑒 = 𝑅𝑒𝜂 = 1. Now, the value 

𝑅𝑒𝑐 in (4.16) is not known, but it will be the same for all i =1,2,3 

in (4.16) and will provide a domain in which averaging is 

assumed, the results of which will satisfy the inequalities  

 

𝑉𝑖
2 = 𝑢𝑖

2 > 0,    𝑖 = 1,  2,  3,       (4.17) 

 

Equations (3.7) also triple in number, but they perform the 

same function as before in the form 

 

𝜀𝑖̅ =
𝑢𝜂𝑖
2

𝜏𝑖
=

𝑉𝑖
2

𝑇𝑖
 ;       𝑖 = 1,2,3,        (4.18) 

 

Now we just have to write three - dimensional relations 

equivalent to both of (4.5): 

 

𝐿𝑖 = 𝑉𝑖𝑇𝑖;     𝜂𝑖 = 𝑢𝜂𝑖𝜏𝑖,     𝑖 = 1,  2,  3     (4.19) 

 

These complete a system of equations for defining nine 

microscales and nine inter scale relations. We can do this for 

each  𝑖 separately, just repeating the procedure from the previous 

scalar case. By solving the system of equations (4.16), (4.20), 

and (4.21) with respect to the microscales  𝜂𝑖 ,   𝜏𝑖, and   𝑢𝜂𝑖 , the 

functions for the dissipation rate 𝜀𝑖̄ and locating viscosity 𝜈𝑐 are 

obtained:  

𝜂𝑖 = (
𝑣𝑐
3

𝜀̅𝑖
)

1

4
;    𝜏𝑖 = (

𝜈𝑐

𝜀̅𝑖 
)

1

2
;    𝑢𝜂𝑖 = (𝜈𝑐  𝜀𝑖̅  )

1

4,  𝑖 = 1, 2, 3    (4.20) 

 

in which 𝜈𝑐 is the common parameter for all three directions i, 

formed by the control 𝑅𝑒𝑐 in (4.16).     

When compiling the equations for the three inter-scale ratios, 

the first equation comes from the ratios between the two 

equations in (4.19). The second comes from the ratio between 

the equations (4.15) and (4.16). Finally, the second equation in 

(4.18) will close the nonlinear system for the three inter-scale 

ratios. Its solution in the form of power functions of Reynolds 

numbers gives the sought for inter-scale relations 

𝑇𝑖

𝜏𝑖
= (

𝑅𝑒𝑖

𝑅𝑒𝑐
)

1

2
= (

𝑉𝑖𝐿𝑖

𝜈𝑅𝑒𝑐
)

1

2
= (

𝑉𝑖
2𝑇𝑖

𝜈𝑐
)

1

2
,  𝑖 = 1,  2,  3,      (4.21) 

 

for time scales and 

 

𝑉𝑖

𝑢𝜂𝑖
= (

𝑉𝑖
2𝑇𝑖

𝜈𝑐
)

1

4
;   
𝐿𝑖

𝜂𝑖
= (

𝑉𝑖
2𝑇𝑖

𝜈𝑐
)

3

4
,  𝑖 = 1,  2,  3,                           (4.22) 

 

for scales of velocity and length. To find a way to define the 

space of averaging of the N–S equations, the ratios from time 

scales in (4.21) will be sufficient. The actual value of the 

“control” viscosity 𝜈𝑐 is unknown, but it may be specified within 

the inequality (4.17) on a physical basis. We do this by using 

characteristic turbulent frequencies defined by time scales 

through the relations 

 

𝛺𝑖 =
1

𝑇𝑖
,   𝑖 = 1,  2,  3             (4.23) 

 

The common locating value for these frequencies is unknown, 

but, owing to the relation  

 

𝛺𝑐 =
1

𝑇𝑐
=

1

𝜏𝑐
,        (4.24) 

 

it will combine three inter-scale relations (4.21) through a 

common value of the time microscales 𝜏𝑖: 
 

𝜏1 = 𝜏2 = 𝜏3 = 𝜏𝑐 = 𝑇𝑐.       (4.25) 

 

By rewriting (4.21) with a common 𝜏𝑖 according to (4.25), we 

get the desired inter scale relations connecting any vector values 

of the dissipation rates  𝜀̅𝑖  with their common scalar  𝜀𝑐̅  which 

follows from a common fluctuation frequency (4.24) for all three 

i = 1,2,3. 

 

𝑇𝑖

𝑇𝑐
= 𝑉𝑖 (

𝑇𝑖

𝜈𝑐
)

1

2
   →   

𝑉𝑖
2

𝑇𝑖
=

𝜈𝑐

𝑇𝑐
2 =  𝜀̅𝑐 ,  𝑖 = 1,  2,  3.    (4.26) 

 

The elimination of the common right-hand side in the second 

triplet of equations (4.26) leads   directly to farther usable step   

 

𝑇𝑖

𝑇𝑗
=

𝑉𝑖
2

𝑉𝑗
2    →    

𝑉𝑖
2

𝑇𝑖
  =  

𝑉𝑗
2

𝑇𝑗
  =  𝜀̅𝑐                i, j = 1, 2, 3          (4.27) 

 

The equations in (4.27) provide important relations to solve 

the closure problem accordingly with the strategy stated above.  

The first one determines the ratios between the time scales 𝑇𝑖   
and 𝑇𝑗  directly by the ratios between the respective normal 

turbulent stresses. The second provides important physical 

information and namely that the dissipation rate of fluctuating 

energy 𝜀  ̅is "approximately" constant not only for the "vertical" 

passage through a cascade of vortices of different sizes. It is valid 

also for the "contour-wise" motion in a single vortex (or multiple 

vortices) along a line of the same size L and other parameters. 

This three-line information written with three characters 

indicates an approximate equality: 

 

𝜀̅ ≈ 𝜀𝑖̅ ≈ 𝜀𝑐̅                                                                          (4.28) 

 

The use of (4.28) in (4.12) leads to wanted relationship among 

the time scales 

 

𝑇 =
 1

 3
∑ 𝑇𝑖
3
𝑖=1                                                                                (4.29) 
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enabling one to create the characteristic domain of averaging the 

respective PDEs systems.  

It is important that (4.29) follows independently as vell as 

from this consideration: Numerator of the ratio in (4.10) defining 

the mean rate of energy dissipation 𝜀  ̅is given by average (3.4) 

which stems from the thermodynamics analogy for turbulent 

pressure. But to keep this consideration consistent, denominator 

in (4.10) would be the same as follows from (4.29). It justifies 

validity of the Kolmogorov's cascade relations over the 

directional components of energy as well as. 

Kolmogorov’s energy cascade is fixed at its lower limit by the 

value of the Reynolds number 𝑅𝑒 = 1. The above-mentioned 

relations define three cascades 𝑉𝑖
2/2  in a positive vector 

space. A fourth, given by the sum for k in (4.12), remains in the 

original scalar space. These cascades are fixed by a common 

value of the Reynolds number 𝑅𝑒 = 𝑅𝑒𝑐. We do not know the 

actual value of 𝑅𝑒𝑐 . However, it has a definite physical 

significance, which lies in the local (inner) isotropy of turbulence 

and in the common value of the averaged frequency of the 

velocity field fluctuations.  

Above in Section 3 chosen fluctuation velocity frequencies 𝜔 

for the bifunctional role of random independent variable 

parameters within the possibility to play dependent variables of 

turbulent flow has a demonstrable experimental justification. Its 

individual random numerical values 𝜔𝑛 =  1/ Tn are clearly 

identifiable on the time axis of experimental records regarding 

measured velocities, see Dúbrava, L. and Vajcík, S. (1988). They 

are given by the inverted values of individual time periods Tn, n 

= 1, 2, between adjacent opposite (+/–) speed extremes. Values 

Tn > 0 are random in magnitude and occurrence and fill the 

continuous space on the time axis. They do the same with 

relationship   𝜔𝑛 = 1/ Tn with frequencies 𝜔𝑛 ,satisfying the 

required properties of random independent variables. 

 

5 CONSTITUTIVE FUNCTIONS AND CONSTITUTIVE 

EQUATIONS OF RANDOM TURBULENT FIELDS  

 

The randomness of 𝑓′ and maximal probability of 𝑓 in the 

Reynolds decomposition f = 𝑓  + 𝑓′  enabled him to open and 

define the closure problem. These properties though needed 

seem to be not sufficient for his decomposition to become a 

constitutive equation as a tool leading also to wanted solution in 

accordance with the dual property and bifunctionality 

hypothesis.  

To avoid this limitation the general sinusoidal function was 

used as the constitutive function in suitable constitutive 

equations being able to describe any random oscillating flow due 

to its random frequency 𝜔  in the role of the independent 

variable. 

 

5.1 Constitutive equations of random fields as the effective 

statistical tool of fluid dynamics 

 

With the frequency of turbulent fluctuations playing the role 

of the random independent variable, the constitutive equations of 

the form   

 

𝑢𝑖 = 𝑈𝑖 𝑐𝑜𝑠(𝜔𝑖𝑡 + 𝜑𝑖),   𝑖 = 1,  2,  3,   in  𝐺(𝜔, 𝑡) as well as in 

𝐺̄(𝑥, 𝑡),                                                 (5.1) 

    

are chosen to define the vector of a random velocity field 

𝑢(𝑢1 , 𝑢2, 𝑢3) via the regular cosine function in two spaces of 

independent variables. The first space, 𝐺(𝜔, 𝑡), is formed from 

time 𝑡 and the three components of a random frequency vector 

𝜔(𝜔1, 𝜔2, 𝜔3)  of the velocity fluctuations. The random 

frequencies of velocity fluctuations 𝜔𝑖 , although independent in 

𝐺(𝜔, 𝑡), behave as 

 

𝜔𝑖 = 𝜔𝑖(𝑥, 𝑦, 𝑧, 𝑡)   in  𝐺̄(𝑥, 𝑡),        (5.2) 

 

i.e., as random but formal functions of time and position. They 

are “formal” because, if we know them, we can record them in a 

deterministic space in the sense of the dual property hypothesis. 

The random frequencies 𝜔𝑖  can also be understood as 

velocities of the vortex rotations caused by the fluctuations 𝑢𝑖
′ . 

The expression (5.1) contains the phase angles 𝜑𝑖  and moduli 

𝑈𝑖 ≡ |𝑈𝑖| > 0  of the velocity components 𝑢𝑖 = 𝑢̄𝑖 + 𝑢𝑖
′ . The 

parameters 𝑈𝑖  and 𝜑𝑖 are thought to be obtained as the functions 

of other mean flow parameters in order to connect 𝐺(𝜔, 𝑡) with 

the deterministic space 𝐺̄(𝑥, 𝑡) . Therefore 𝑈𝑖  and 𝜑𝑖  can be 

named as the mean connecting parameters. 

To obtain 𝑈𝑖  and 𝜑𝑖 we will subject the constitutions (5.1) to 

averaging operations in the space 𝐺(𝜔, 𝑡) . Before averaging 

(5.1) it is useful to use some substitutions and rewrite   

constitution (5.1) into its dimensionless variant in the form  

   

𝑢𝑟𝑖 = 𝑐𝑖 cos𝜑𝑖 − 𝑠𝑖 sin 𝜑𝑖,                      (5.3) 

 

where the dimensionless velocity 𝑢𝑟𝑖  and the trigonometric 

functions of time t and frequencies 𝜔𝑖  are 

 

 𝑢𝑟𝑖 =
𝑢𝑖

𝑈𝑖
;     ci =  cos𝜔𝑖t;   si = sin𝜔𝑖t  ;   𝑖 = 1,  2,  3      (5.4) 

 

Since the averaging meanwhile can be only implicit, we 

average the constitutive equation (5.3) indicating resulted means 

meanwhile by overbars. The equation thus obtained can be used 

to determine the wanted connecting parameters 𝑠𝑖𝑛 𝜑𝑖  and 

𝑐𝑜𝑠 𝜑𝑖. This is possible with help of the known relation 𝑠𝑖𝑛2𝜑𝑖 +
𝑐𝑜𝑠2𝜑𝑖 = 1. Utilizing this and the average of equation (5.3), we 

obtain the parameters to be eliminated in the constitution (5.3),  

 

sin𝜑𝑖 =
−𝑢̄𝑟𝑖 𝑠̄𝑖±𝑐𝑖̄√𝐷𝑖

𝑀𝑖
,   cos𝜑𝑖 =

𝑢̄𝑟𝑖 𝑐𝑖̄±𝑠̄𝑖√𝐷𝑖

𝑀𝑖
,       (5.5) 

 

as functions of the mean velocity field 𝑢̄𝑖  and other mean 

quantities defined in 𝐺̄(𝑥, 𝑡), i.e.: 

 

𝑠̄𝑖 = sin𝜔𝑖𝑡,   𝑐̄𝑖 = 𝑐𝑜𝑠𝜔𝑖𝑡,              (5.6) 

 

𝑀𝑖 = 𝑠̄
2
𝑖 + 𝑐̄

2
𝑖,    𝐷𝑖 = 𝑀𝑖 − 𝑢̄

2
𝑟𝑖,   𝑢̄𝑟𝑖 =

𝑢̄𝑖

𝑈𝑖
                     (5.7) 

 

After elimination of the mean connecting parameters 𝑠𝑖𝑛 𝜑𝑖 
and cos𝜑𝑖 as well as multiplication of the equation (5.3) by the 

modulus 𝑈𝑖 , the constitutive equation (5.3) can be written in 

concise form  

 

𝑢𝑖 = 𝑎𝑖𝑢̄𝑖 ± 𝑏𝑖𝑈𝑖√𝐷𝑖,   𝑖 = 1,  2,  3           (5.8) 

 

in which the key constitutive functions  𝑎𝑖(𝜔𝑖 , 𝑡) and 𝑏𝑖(𝜔𝑖 , 𝑡) 
are given by the relations 

 

𝑎𝑖 =
1

𝑀𝑖
 (𝑐̄𝑖𝑐𝑖 + 𝑠̄𝑖𝑠𝑖),    𝑏𝑖 =

1

𝑀𝑖
 (𝑠̄𝑖𝑐𝑖 − 𝑐̄𝑖𝑠𝑖)            (5.9) 

 

It can be seen immediately that these functions after their 

implicit averaging have constant values  
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𝑎̄𝑖 = 1,    𝑏𝑖 = 0,    𝑖 = 1,  2,  3,…      (5.10) 

 

which, thanks to (5.10) and 𝑀𝑖  in (5.7), changes the averaged 

constitutive equation (5.8) into an identity regardless of the 

current state of the random velocity field and the method by 

which it is averaged. This identity results from determining the 

parameters (5.5) from the implicitly averaged equation (5.3). The 

validity of (5.10) is important for the inner cohesion of solution 

of the problem, because if (5.10) does not hold, the averaging 

(5.8) introduces new relations among the mean flow parameters 

without any physical justification. The domain of definition of 

the expression (5.1) lies in 𝐺(𝜔, 𝑡). The process of obtaining and 

eliminating the fixing phase angles 𝜑𝑖 as functions of mean flow 

parameters leads to a transformation of the expression into the 

form (5.8), which is also defined in the space 𝐺̄(𝑥, 𝑡) in terms of 

averaged flow parameters. Therefore, the validity of (5.10) 

implies that the transformation is also correct.  

 

5.2 Uniqueness of kinetic energy of a mean velocity field 

 

According to (4.10) and (4.11), the kinetic energy of the 

random velocity field (5.8) is defined by the sum  

 

𝐾 + 𝑘 =
1

2
∑ 𝑢𝑖𝑢𝑖
𝑖=3
𝑖=1    for   𝑖 = 𝑗,   𝑖, 𝑗 = 1,2,3,…    (5.11) 

 

in which the directional components  

 

𝑢𝑖𝑢𝑖 = 𝑢𝑖
2
𝑎𝑖𝑎𝑖 ± 2 𝑢𝑖𝑈𝑖𝑎𝑖𝑏𝑖√𝐷𝑖 + 𝐷𝑖𝑈𝑖

2𝑏𝑖𝑏𝑖 ,    𝑖 = 𝑗,  

𝑖, 𝑗 = 1,2,3        (5.12) 

 

have been obtained through implicit averaging of the squares of 

the velocities given by (5.8).  

In the equation (5.12), two sources of possible non-uniqueness 

have appeared on the right-hand side, even in the case where the 

energy components themselves are 𝑢𝑖𝑢𝑖 = 𝑢𝑖
2 > 0. The first of 

these is the existence of two signs + and −. The second lies in the 

value of the discriminant 𝐷𝑖. This is defined by the first equation 

in (5.4) and the second in (5.7).  These equations do not 

guarantee a non-negative value of 𝐷𝑖 . Besides this, the first 

equation in (5.4) determines its dependence on the unknown 

value of the velocity modulus. Since this energy is determined 

by averaging a system of positive elements (squares of velocity), 

it is natural to expect the positivity and uniqueness of the result 

of the operation prescribed by the equation (5.12). The stated 

properties of energy can be ensured by a suitable choice of an 

unknown velocity modulus 𝑈𝑖  in the second equation in (5.7). 

Uniqueness of all components of the turbulent stress tensor in 

(5.12) and a non-negative energy at 𝑖 = 𝑗  will ensure a zero 

discriminant 𝐷𝑖, i.e. 

 

𝐷𝑖 = 𝑀𝑖 − 𝑢̄
2
𝑟𝑖 = 0       (5.13) 

 

By eliminating 𝑢̄𝑟𝑖  from (5.13) using the third equation in 

(4.7), we also determine the modulus of the velocity through the 

relation 

 

𝑈𝑖 =
|𝑢̄𝑖|

√𝑀𝑖
,   𝑖 = 1,  2,  3,…       (5.14)  

 

Since the condition (5.13) holds, the constitutive equation for 

the turbulent velocity field (5.8) can be written in the simple form  

𝑢𝑖 = 𝑎𝑖𝑢̄𝑖 ,     𝑖 = 1,  2,  3,…                   (5.15) 

 

which is a consequence of its being defined in the space 𝐺̄(𝑥, 𝑡) 
and the assumption of the uniqueness and positivity of the kinetic 

energy applied in equation (5.12). The constitutive function 𝑎𝑖 =
𝑎𝑖(𝜔𝑖 , 𝑡) defined by the first equation in (5.9) plays a key role in 

EDT.  The first equation in (5.9) with functions ci and si from 

(5.4) puts the constitutive equation (5.15) into the open form 

 
𝑢𝑖

𝑢̄𝑖
=

1

𝑀𝑖
(𝑠̄𝑖sin𝜔𝑖𝑡 + 𝑐̄𝑖cos𝜔𝑖𝑡),      𝑖 = 1,2,3, …    (5.16) 

 

Owing to the presence of the random independent variable 

𝜔𝑖  and the mean velocity  𝑢̅𝑖, equation (5.16) can be called the 

equation of random velocity oscillations around the equilibrium 

mean. 

Integrating the products of the velocity vector components 

(5.15) over the characteristic domain of 𝐺(𝜔, 𝑡) one defines the 

explicitly averaged non-linearities  

  

𝑢𝑖𝑢𝑗= 𝑢̅𝑖𝑢̅𝑗𝑎𝑖𝑎𝑗        𝑖 = 1,2, 3      (5.17) 

 

which for 𝑖 = 𝑗 imply three relationships between the directional 

components of the kinetic energies 𝑢̄2𝑖 and 𝑢′𝑖
2
. The following 

requirement was applied when deriving them: Any kinetic 

energy of turbulent flow if defined by the mean square of the 

random velocity field has to be unique and non-negative. For 𝑖 ≠
𝑗 and  𝜌 = const. three tangential components of the turbulent. 

stress tensor 𝑢𝑖
′𝑢𝑗
′  are defined by (5.17) after its explicit 

averaging.  

The constitutive equations of a random turbulent field (5.1) 

are defined in the space of random independent variables 

𝐺(𝜔, 𝑡). Their normalized forms (5.15) and (5.16) resulting from 

the above operations are fixed by a mean velocity field and are 

thus also defined in the regular space 𝐺̄(𝑥, 𝑡). 
 

5.3 Constitutive equation of random scalar fields 

 

Density 𝜌 in the case of compressible fluids as well as other 

scalar quantities also behave randomly in a turbulent flow. Since 

we see no reason to use another form of constitutive function for 

random scalar fields, we proceed with them in the same way as 

with the components of the velocity field. The resulting form of 

the constitutive equation, for example for 𝜌, will then be similar 

as (5.15), i.e., 

 

𝜌 = 𝑎𝜌𝜌̄.            (5.18) 

 

The constitutive function for 𝜌 will be the same as for 𝑢𝑖  in 

the first equations in (5.9): 

 

𝑎𝜌 =
1

𝑀𝜌
(𝑐𝜌̅𝑐𝜌 + 𝑠̅𝜌𝑠𝜌),    𝑀𝜌 = 𝑠̄

2
𝜌 + 𝑐̄

2
𝜌       (5.19) 

 

Similarly, for explicit functions of time 𝑡  and random 

frequency 𝜔𝜌(𝑥, 𝑦, 𝑧, 𝑡), 

 

𝜌𝑟𝜌 =
𝜌𝑟

𝛺𝜌
,   𝑐𝜌 = cos𝜔𝜌 𝑡,   𝑠𝜌 = 𝑠𝑖𝑛(𝜔𝜌𝑡)        (5.20) 

 

The constitutive function (5.18) will be applied in the 

averaging processes of nonlinear terms of the N–S equations for 

fluids with variable density 𝜌 . The constitutive function of a 

random field (5.19) satisfies the condition 

𝑎̄𝜌 = 1         (5.21) 
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as in the case of 𝑎𝑖 for the velocity field. 

 

6 DISTRIBUTION EQUATIONS OF THE KINETIC 

ENERGY OF TURBULENT FLOW 

 

The desired relations in (5.17) are formulated through implicit 

averaging of given random functions. The final form of these 

relations will be found first for the normal stresses, i.e., for 

energy components. Let us create the square of the constitutive 

function given by the first equation in (5.9). The result will 

contain products and squares of the trigonometric functions 

defined in (5.4). After replacing them with their corresponding 

equivalents by means of double angles, the result of taking the 

square has the form 

 

𝑎𝑖
2 =

1

2𝑀𝑖
2 [𝑀𝑖 + (𝑐̄

2
𝑖 − 𝑠̄

2
𝑖)𝑐𝑖2 + 2𝑐̄𝑖 𝑠̄𝑖𝑠𝑖2]       (6.1) 

 

In this equation, two new functions of the random variables 

𝜔𝑖  appear, namely 

 

𝑠𝑖2 = 𝑠𝑖𝑛(2𝜔𝑖𝑡),   𝑐𝑖2 = 𝑐𝑜𝑠(2𝜔𝑖𝑡)             (6.2) 

 

since 𝑀𝑖  is already defined in (5.7) as an averaged function. 

Because the functions (6.2) appear linearly in (6.1), we obtain 

the average of the square 𝑎𝑖
2 still in its implicit form via  

 

𝑎𝑖𝑎𝑖 =
𝑀𝑖+𝐴𝑖

2𝑀𝑖
2 ,   𝑖 = 1,  2,  3,              (6.3) 

 

where 

 

𝐴𝑖 = (𝑐̄2𝑖 − 𝑠̄
2
𝑖)𝑐̄𝑖2 + 2𝑐̄𝑖𝑠̄𝑖𝑠̄𝑖2        (6.4) 

 

The implicitly averaged functions of the random double 

angles in (6.4),  

 

𝑠̄𝑖2 = 𝑠𝑖𝑛(2𝜔𝑖𝑡),     𝑐̄𝑖2 = 𝑐𝑜𝑠(2𝜔𝑖𝑡)             (6.5) 

 

will be replaced in the further development by their explicit 

equivalents. We shall call the average of the square of the 

constitutive function given by (6.3) the distribution function of 

the kinetic energy of turbulence since it will describe dividing 

total kinetic energy of flow on the energy of mean flow and the 

energy of its turbulent velocity fluctuations.  

 

6.1 Characteristic domain of averaging and tensor of 

turbulence anisotropy   

 

The averaging operations performed so far have been implicit 

in character. Forming the constitutive functions of vector and 

scalar fields allows us to utilize the strategic advantage of the 

theory, namely, the explicit form of averaging. The explicit 

average 𝑓  of a function 𝑓(𝑥1, 𝑥2, … 𝑥𝑁 , 𝑡 ) , 𝑁 > 0 , of N+1 

independent variables will be given by the definite integral 

 

𝑓 =
1

𝛥
∫ ∫ ∫ 𝑓

𝑇

0

𝑥2𝐻

𝑥2𝐷

𝑥1𝐻

𝑥1𝐷
⋯ 𝑑𝑥1 𝑑𝑥2⋯𝑑𝑥𝑁 𝑑𝑡  in  𝐺(𝜔, 𝑡)      (6.6) 

 

through the characteristic domain 

 

𝛥 = 𝑇𝛥1𝛥2⋯𝛥𝑁,    𝛥1 = 𝑥1𝐻 − 𝑥1𝐷 ,   𝛥2 = 𝑥2𝐻 − 𝑥2𝐷,   𝛥𝑁 =
𝑥𝑁𝐻 − 𝑥𝑁𝐷 ,                                                (6.7)  

 

where 𝑥1, 𝑥2, … , 𝑥𝑁  are random and therefore physically 

independent parameters of the turbulent flow, and T is an integral 

time scale. The domain of averaging 𝛥 is called characteristic 

because its boundaries are characteristic. They are not random, 

but deterministic limits 𝑇, 𝑥𝑛𝐷 , 𝑥𝑛𝐻 .  They are characteristic 

because they are not chosen arbitrarily, but as unknown 

dependent variables characterizing the state of the system of 

which they are a part. This recalls the role of the free liquid 

surface in problems with a moving unknown flow boundary 

(Kosorin, 1995, 2011). 

When the theory is applied to the system of N–S equations 

(7.3) and (7,4) for isothermal flow several types of domains of 

averaging will come into consideration. The role of independent 

variables in (6.6) will be taken by frequencies of turbulent 

fluctuations of the scalars 𝜔𝜌  and velocities 𝜔𝑖 , 𝑖 = 1,  2,  3 . 

Mutual combination of indices 𝑖 and n as well as the resulting 

total number of random independent variables 𝑁  in each 

𝑓(𝑥𝑛; 𝑡)  is evident from the Table 1, which gives the 

dimensionalities of the characteristic domains 𝛥 for the integral 

(6.6) in 𝐺(𝜔, 𝑡) . The total dimensionality of any 𝛥  is 𝑁 + 1, 

where N is the number of random variables 𝜔𝑖  and 𝜔𝜌 occurring 

in (6.6) and the 1 comes from the presence of time t.  

The boundaries of the random frequencies in (6.6) are 

expected to characterize the state of turbulence between the 

upper 𝜔𝑖𝐻 and lower 𝜔𝑖𝐷 limits during the time period 0 ≤ 𝑡 ≤
𝑇. The parameters derived from the characteristic velocities 𝑉𝑖  
defined by (4.18) can reasonably be expected to meet the above 

requirement.  They express the intensity of turbulence, which is 

directly proportional to the velocities 𝑉𝑖 , 𝑖 = 1,  2,  3 . This 

reasoning leads to the definition of a lower limit 𝜔𝑖𝐷 through the 

relation (4.23), 

 

𝜔𝑖𝐷 = 𝛺𝑖 =
1

𝑇𝑖
,   𝑖 = 1,  2,  3,        (6.8) 

 

and an upper limit 𝜔𝑖𝐻 according to (4.24), 

 

𝜔𝑖𝐻 = 𝛺𝑐 =
1

𝑇𝑐
              (6.9) 

 

These characteristic times Ti and 𝑇𝑐  together with the 

velocities 𝑉𝑖  and 𝑉𝑐  determine the length characteristics of 

vortices, 𝐿1 ≡ 𝐿𝑥, 𝐿2 ≡ 𝐿𝑦, 𝐿3 ≡ 𝐿𝑧. If these vortices are larger, 

more unstable, or show signs of anisotropy, then 𝐿1 ≠ 𝐿2 ≠ 𝐿3, 

and their various dimensions are approximated by the equations 

 

𝐿𝑖 = 𝑉𝑖𝑇𝑖 ,   𝑖 = 1,  2,  3       (6.10) 

 

Different values of 𝐿𝑖  simulate the axial dimensions of an 

unstable ellipsoid. With sufficiently small vortices, their 

dimensions 𝐿𝑖 become closer in value and more stable, and the 

vortices take on a spherical shape with 𝐿𝑖 = 𝐿𝑐, 𝑇𝑖 = 𝑇𝑐. Such a 

formulation of boundaries in (6.6) allows the integration in (6.6) 

to be interpreted as an integration of the function 𝑓(𝜔𝑖 , 𝑡) in the 

domain of 𝐺(𝜔, 𝑡) with a random 𝜔𝑖  between the lower (6.8) 

and upper (6.9) boundaries in the given time period T. This is an 

integration of 𝑓  in (6.6) over domains ranging between large 

anisotropic vortices with dimensions 𝐿𝑖  and small isotropic 

vortices with dimensions 𝐿𝑐. 
To derive the distribution equations in a definite form, it is 

necessary to find the explicit equivalents of the implicit averages 

(5.6) and (6.5) through the integral (6.6). The dimensionality of 

the integration space is in this case determined by the first and 

second columns of Table 1. The randomness for (6.6) has 

dimensionality 𝑁 = 1 , and the integration space is two-
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dimensional. The result of the integration in (6.6) will be fixed 

in the deterministic four-dimensional space 𝐺̄(𝑥, 𝑡)  via the 

boundaries (6.8) and (6.9) and the integral time scale T.  

The mean values (5.6) calculated according to (6.6) are given 

by the definite integrals 

 

𝑠̄𝑖 =
1

𝛥𝑖
∫ ∫ 𝑠𝑖𝑛𝜔𝑖

𝑇

0

𝛺𝑐

𝛺𝑖
 𝑡 𝑑𝑡 𝑑𝜔𝑖 =

1

𝛥𝑖
[𝐶𝑠 (

𝑇

𝑇𝑐
) − 𝐶𝑠 (

𝑇

𝑇𝑖
)]    (6.11) 

 

𝑐̄𝑖 =
1

𝛥𝑖
∫ ∫ 𝑐𝑜𝑠𝜔𝑖

𝑇

0

𝛺𝑐

𝛺𝑖
 𝑡 𝑑𝑡 𝑑𝜔𝑖 =

1

𝛥𝑖
[𝑆𝑖 (

𝑇

𝑇𝑐
) − 𝑆𝑖 (

𝑇

𝑇𝑖
)]    (6.12) 

 

in which the indefinite integrals are expressed by the power 

series  

 

𝑆𝑖(𝑥) = 𝑥 −
𝑥3

3.3!
+

𝑥5

5.5!
+⋯+ (−1)𝑛+1

𝑥2𝑛−1

(2𝑛−1)(2𝑛−1)!
,    (6.13) 

 

𝐶𝑠(𝑥) =
𝑥2

2.2!
−

𝑥4

4.4!
+⋯+ (−1)𝑛+1

𝑥2𝑛

2𝑛(2𝑛)!
.     (6.14) 

 

Here (6.13) is the integral sine, and (6.14) is related to the 

integral cosine 𝐶𝑖(𝑥) by 𝐶𝑠(𝑥) + 𝐶𝑖(𝑥) + 𝑙𝑛 𝑥 = 𝐶, where C is 

the Euler–Mascheroni constant. The characteristic spaces 𝛥  

given in (6.7) – (6.9) become 

 

𝛥𝑖 = 𝑇(𝛺𝑐 − 𝛺𝑖) =
𝑇

𝑇𝑐
−

𝑇

𝑇𝑖
       (6.15) 

 

The definite integrals of the functions of double angles, (6.5), 

differ from (6.11) and (6.12) by the double values of the 

arguments: 

 

𝑠̄𝑖2 =
1

2𝛥𝑖
[𝐶𝑠 (2

𝑇

𝑇𝑐
) − 𝐶𝑠 (2

𝑇

𝑇𝑖
)]      (6.16) 

 

𝑐̄𝑖2 =
1

2𝛥𝑖
[𝑆𝑖 (2

𝑇

𝑇𝑐
) − 𝑆𝑖 (2

𝑇

𝑇𝑖
)]      (6.17) 

 

In the explicitly averaged functions, four unknown ratios 

between the time scales appear: three T/Ti and a fourth T/Tc. We 

begin to solve the problem of determining the unknown ratios of 

time scales as functions of other flow parameters by asking about 

the relations between the scale T and the scales Ti. The integral 

scale T is a common time scale for all averaging operations, 

including those over the N-S equations. Since T and Ti. cannot 

be independent of one another, we define the relation between 

them in the simplest possible way, namely, by the arithmetic 

average: 

 

𝑇 =
1

3
(𝑇1 + 𝑇2 + 𝑇3)       (6.18) 

 

The adoption of (6.18) recalls the expression for pressure 𝑝 as 

the arithmetic mean of three normal stresses 𝑝11, 𝑝22, 𝑝33 of the 

stress tensor in the derivation of the basic equations of fluid 

mechanics (Lojcianskij, 1954 or Milne-Thomson, 1960, §19). 

Actually, the relation (6.18) also concerns the normal stresses, in 

this case the turbulent u’i
2̅̅ ̅̅ .. The linearity of (6.18) allows us to 

use the inter-scale relations (4.27) to make an important shift in 

solving the problem. Let us divide the equation (6.18) by each Ti 

in turn for i =1,2,3. We get 

 
𝑇

𝑇1
=

1

3
(1 +

𝑇2

𝑇1
+

𝑇3

𝑇1
)       (6.19) 

 
𝑇

𝑇2
=

1

3
(
𝑇1

𝑇2
+ 1 +

𝑇3

𝑇2
)       (6.20) 

 
𝑇

𝑇3
=

1

3
(
𝑇1

𝑇3
+

𝑇2

𝑇3
+ 1)       (6.21) 

 

The equations (4.27) yield all the ratios between the time 

scales Ti in (6.19) – (6.21) as functions of the ratios between the 

squares of the respective velocities 𝑉𝑖
2 ≡ 𝑢’𝑖

2̅̅ ̅̅  . This allows us to 

eliminate them and thus obtain the desired relations for three of 

the four unknown ratios in (6.19) – (6.21). Let us call these ratios 

the anisotropy indices ii and write them  

 

𝑖1 ≡ 𝑖𝑥 =
𝑇

𝑇1
=

1

3
(1 +

𝑢′2
2

𝑢′1
2
+

𝑢′3
2

𝑢′1
2
)      (6.22) 

 

𝑖2 ≡ 𝑖𝑦 =
𝑇

𝑇2
=

1

3
(
𝑢′1
2

𝑢′2
2
+ 1 +

𝑢′3
2

𝑢′2
2
)      (6.23) 

 

𝑖3 ≡ 𝑖𝑧 =
𝑇

𝑇3
=

1

3
(
𝑢′1
2

𝑢′3
2
+

𝑢′2
2

𝑢′3
2
+ 1)      (6.24) 

 

The three anisotropy indices (6.22) – (6.24) form the 

components of the anisotropy vector 𝑖𝑎(𝑖1 , 𝑖2, 𝑖3) , which can 

also be considered as an anisotropy tensor 

 

𝑇𝑎 =
1

3

{
  
 

  
 1

𝑢′2
2

𝑢′1
2

𝑢′3
2

𝑢′1
2

𝑢′1
2

𝑢′2
2

1
𝑢′3
2

𝑢′2
2

𝑢′1
2

𝑢′3
2

𝑢′2
2

𝑢′3
2

1
}
  
 

  
 

= {
𝑖1
𝑖2
𝑖3

}      (6.25) 

 

formed by the ratios of the normal turbulent stresses u’i
2̅̅ ̅̅ .    

Meanwhile, it remains to determine the ratio of time scales T/Tc 

in (6.11) – (6.17),  

 

𝜉 =
𝑇

𝑇𝑐
         (6.26) 

 

as a function of the other flow parameters. It can be named as the 

energy distribution factor. 

After performing the operations prescribed by the series 

(6.13) and (6.14) and using (6.22) and (6.24), we find that the 

averaged functions (6.11) and (6.12) take the forms 

 

𝑠̄𝑖 =
1

𝛥𝑖
[
𝜉2−𝑖𝑖

2

2⋅2!
−

𝜉4−𝑖𝑖
4

4⋅4!
+⋯+ (−1)𝑛+1

𝜉2𝑛−𝑖𝑖
2𝑛

2𝑛⋅(2𝑛)!
]     (6.27) 

 

𝑐̄𝑖 =
1

𝛥𝑖
[𝜉 − 𝑖𝑖 −

𝜉3−𝑖𝑖
3

3⋅3!
+⋯+ (−1)𝑛+1

𝜉2𝑛−1−𝑖𝑖
2𝑛−1

(2𝑛−1)⋅(2𝑛−1)!
]    (6.28) 

 

After the same operations, the definite integrals (6.16) and 

(6.17) take the similar forms 

 

𝑠̄𝑖2 =
1

2𝛥𝑖
[
22(𝜉2−𝑖𝑖

2)

2⋅2!
−

24(𝜉4−𝑖𝑖
4)

4⋅4!
+⋯+ (−1)𝑛+1

22𝑛(𝜉2𝑛−𝑖𝑖
2𝑛)

2𝑛⋅(2𝑛)!
]

         (6.29) 

 

𝑐̄𝑖2 =
1

2𝛥𝑖
[2(𝜉 − 𝑖𝑖) −

23(𝜉3−𝑖𝑖
3)

3⋅3!
+⋯+

(−1)𝑛+1
22𝑛−1(𝜉2𝑛−1−𝑖𝑖

2𝑛−1)

(2𝑛−1)⋅(2𝑛−1)!
]       (6.30) 
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Table 1. Dimensionalities of the characteristic domains 𝛥  for the integral (6.6) in 𝐺(𝜔, 𝑡). 
 

Functions/products Functions Double products (dyads) Triple products (triads) 

𝑓(𝑥𝑛 , 𝑡) ≡ 𝑓(𝜔𝑖 , 𝑡) 
 

 n=1, 2 ,.. N,  i=1,2,3 

𝜌, 𝑢𝑖     
 𝑁 = 1 

 𝑢𝑖 𝑢𝑗  

 𝑖 = 𝑗 
 𝑁 = 1 

 𝑢𝑖  𝑢𝑗 

 𝑖 ≠ 𝑗 
 𝑁 = 2 

 𝜌𝑢𝑖 
 

 𝑁 = 2 

 𝜌𝑢𝑖𝑢𝑗  

 𝑖 = 𝑗 
 𝑁 = 2 

 𝜌𝑢𝑖𝑢𝑗  

 𝑖 ≠ 𝑗 
 𝑁 = 3 

  

As a consequence, each element of the series in (6.27) – (6.30) 

can be written as the product of the domain of averaging 

 

𝛥𝑖 = 𝜉 − 𝑖𝑖         (6.31) 

 

and polynomials 𝑃𝑖𝑚, which follows from the decomposition of 

the power functions 𝑃𝑖𝑛 for each element of the sums in the series 

(5.27) – (5.30). The result of this decomposition is given by the 

relations 

 

𝑃𝑖𝑛 = (𝜉 − 𝑖𝑖)𝑃𝑖𝑚;  𝑚 = 𝑚(𝑛);   𝑛 = 1,2,3, …𝑁    (6.32) 

 

𝑃𝑖𝑚 = 𝜉𝑚 + 𝑖𝑖𝜉
𝑚−1 + 𝑖1

2𝜉𝑚−2 +⋯+ 𝜉2𝑖𝑖
𝑚−2 + 𝜉𝑖𝑚−1 +

𝑖𝑖
𝑚;   𝑚 = 𝑛 − 1                 (6.33) 

 

Use of the decompositions (6.32) and (6.33) in (6.27) – (6.30) 

with 𝛥𝑖  given by (6.31) leads to vanishing of 𝛥𝑖  and thus to the 

independence of the averaged functions on the sizes 𝛥𝑖  of the 

characteristic domains of averaging. The resulting explicit forms 

are then 

 

𝑠̅𝑖 =
𝜉+𝑖𝑖

2.2!
−

𝜉3+𝜉2𝑖𝑖+𝜉𝑖𝑖
3

4.4!
+⋯+

(−1)𝑛+1 𝑃𝑖𝑚

2𝑛.(2𝑛)!
;  𝑚𝑠 = 2𝑛 − 1     (6.34) 

 

𝑐𝑖̅ = 1 −
𝜉2+𝜉𝑖𝑖+𝑖𝑖

2

3.3!
+⋯+

(−1)𝑛+1 𝑃𝑖𝑚

(2𝑛−1).(2𝑛−1)!
;  𝑚𝑐 = 2(𝑛 − 1)    (6.35) 

 

𝑠̅𝑖2 =
2(𝜉+𝑖𝑖)

2.2!
−

23(𝜉3+𝜉2𝑖𝑖+𝜉𝑖𝑖
2+𝑖𝑖

3)

4.4!
+⋯+

(−1)𝑛+1 22𝑛 𝑃𝑖𝑚

2𝑛.(2𝑛)!
    (6.36) 

 

𝑐𝑖̅2 = 1 −
22(𝜉2+𝜉𝑖𝑖+𝑖𝑖

2)

3.3!
+⋯+

(−1)𝑛+1 22𝑛−1 𝑃𝑖𝑚

(2𝑛−1).(2𝑛−1)!
;   𝑖 = 1,2,3 (6.37) 

 

The properties of the equations (6.31) – (6.33) ensure the 

validity of the mean values of the constitutive functions (6.34) – 

(6.37) for any values of the domain of averaging −∞ < 𝛥𝑖< ∞, 

including 𝛥𝑖 = 0. The functions (6.34) – (6.37), being obtained 

by explicit averaging, complete the representation of the energy 

distribution functions (6.3) as functions of the anisotropy vector 

𝑖𝑎(𝑖1 , 𝑖2, 𝑖3)  and the energy distribution factor 𝜉 . Becoming 

independent of the size of the averaging domains 𝛥𝑖  eqs. (6.3) 

can be written in their final form as  

 

𝛷𝑖(𝜉, 𝑖𝑖) = 𝑎𝑖𝑎𝑖 =
𝑀𝑖(𝜉,𝑖𝑖)+𝐴𝑖(𝜉,𝑖𝑖)

2𝑀𝑖
2(𝜉,𝑖𝑖)

,   𝑖 = 1,2,3     (6.38) 

 

Their base functions (6.34) – (6.37) are depicted in Fig. 1 at 

the anisotropy index 𝑖𝑖 = 1. 

Thus, the effort to complete the first three of the four desired 

relations for the closure problem solution has been successful. 

These follow from (6.38) written for i = 1,2,3, as   

 

𝑢′1
2 + 𝑢̅1

2  = 𝑢̅1
2𝛷1(𝜉, 𝑖1)       (6.39) 

 

𝑢′2
2 + 𝑢̅2

2 = 𝑢̅2
2𝛷2(𝜉, 𝑖2)        (6.40) 

 

𝑢′3
2 + 𝑢̅3

2 = 𝑢̅3
2𝛷3(𝜉, 𝑖3)       (6.41) 

 

where anisotropy indexes  𝑖𝑖  as arguments of the distribution 

functions  𝛷𝑖   are defined  by equations (6.22) – (6.24) as the 

functions of the normal turbulent stresses u’i
2̅̅ ̅̅ . 

 

 
Fig. 1 Means of the basic constitutive functions  𝑠𝑖(𝜉, 𝑖𝑖) = 𝑠𝑖𝑛𝜔𝑖𝑡, 

𝑐̄𝑖 = 𝑐𝑜𝑠𝜔𝑖𝑡 , 𝑠𝑖2(𝜉, 𝑖𝑖) = 𝑠𝑖𝑛 2𝜔𝑖𝑡 , and 𝑐𝑖2(𝜉, 𝑖𝑖) =  𝑐𝑜𝑠 2𝜔𝑖𝑡  in 

the case of isotropy (𝑖1 = 𝑖2 = 𝑖3 = 1). Their anisotropic forms are 

given by (6.34) – (6.37). The energy distribution factor 𝜉  can be 

obtained from (6.52) as a function of k/K. 

 

In the equations (6.39) – (6.41), in addition to the unknown 

ratio 𝜉, there occur only the directional components of energy 

𝑢̄2𝑖 and 𝑢′𝑖
2. These equations are therefore the equations of the 

kinetic energy distribution, further (EDE) of a turbulent velocity 

field in the four-dimensional space 𝐺̄(𝑥, 𝑡). The unknown ratio 

of time scales 𝜉 = 𝑇/𝑇𝑐  has still to be found as a function of 

other flow parameters. 

 

6.2 Characteristic velocity of turbulence and application of 

the energy invariance principle  

 

Anisotropy of turbulent flow can be caused by two factors. 

The first physical, one follows from limits on the degree of 

freedom of movement imposed by solid boundaries of the flow. 

The second, formal one is connected with the mathematical tools 

applied to the description of vector fields in terms of a coordinate 

system. In EDT, the effect of anisotropy is expressed by the 

anisotropy index vector 𝑖𝑎(𝑖1 , 𝑖2, 𝑖3)  given in (6.22) – (6.24). 

From (6.39) – (6.41), it can be seen that its values are positive 

but not limited from above. The energy invariance principle will 

be used when solving for the unknown parameter 𝜉 in the system 

(6.39) – (6.41). 

The consideration starts with the system (4.10) – (4.13). The 

characteristic velocities of turbulence 𝑉𝑖 , and the kinetic energies 

𝐾 and 𝑘 are now related by 
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𝑉𝑖 = ±√𝑢’𝑖
2̅̅ ̅̅  ,  2𝐾 = ∑ 𝑢̄2𝑖

3
𝑖=1 ,   2𝑘 = ∑ 𝑉𝑖

23
𝑖=1 ,   𝐾 > 0, 𝑘 > 0,   

𝑖 = 1, 2 , 3  in  𝐺̅,        (6.42) 

 

which define a pair of vectors 𝒖̅(𝑢̅1, 𝑢̅2, 𝑢̅3 ) and 𝑉(𝑉1, 𝑉2, 𝑉3) at 

each point of the turbulent flow. By projections of the absolute 

values of the vectors onto the coordinate axes, the components 

of the vectors 

 

𝑢̅𝑖 = |𝒖̅| cos 𝛼𝑖 , 𝑉𝑖 = |𝑉| 𝑐𝑜𝑠 𝛽𝑖, |𝒖̅| = √2𝐾, |𝑉| = √2𝑘   (6.43) 

 

are determined through their direction cosines 𝑐𝑜𝑠 𝛼𝑖 and 𝑐𝑜𝑠 𝛽𝑖, 
𝑖 = 1,2,3. Let the vectors 𝒖̅ and V have a common initial point 

that coincides with the origin of the rectangular coordinate 

system. We now replace this coordinate system by a new one 

with the same origin, i.e., we rotate the axes. Let us do so in such 

a way that the axis of symmetry of the new coordinate trihedron 

coincides with the vector V. Owing to symmetry, the direction 

cosines of the axis of the trihedron in the new coordinate system 

have the same value 1/√3 . Since the characteristic velocity 

vector V is collinear with the axis of the trihedron, all the 𝑐𝑜𝑠 𝛽𝑖, 

𝑖 = 1,2,3, in the new coordinates also have the same value 1/√3. 

Application of the energy invariance principle now means 

that the energies K and 𝑘 are conserved after the above rotation 

of the coordinate system. Then, of course, one must accept 

changes in the direction energy components arising owing to 

changes in the velocity components through their projections on 

the new coordinates. The characteristic velocity components 𝑉𝑖  
have acquired new values 𝑉𝑖𝑟 , but are equal to each other because 

the direction cosines have the same value. This reasoning applied 

to (6.43) leads to  

 

𝑉1𝑟 = 𝑉2𝑟 = 𝑉3𝑟 = |𝑽|/√3 = √2𝑘/3     (6.44) 

 

The equality of the velocity components in (6.44) implies a 

similar equality between the normal components of the stress 

tensor 𝑢𝑖
′𝑢𝑖
′ = 𝑉𝑖

2 = 𝜏𝑖𝑖. According to (6.39) – (6.41), this leads 

to the expected change in the anisotropy indices such that they 

take the common value 

 

𝑖1 = 𝑖2 = 𝑖3 = 1        (6.45) 

 

The components of the velocity vector 𝑢̄(𝑢̄1, 𝑢̄2, 𝑢̄3) change 

to 𝒖̅𝑟(𝑢̅1𝑟 , 𝑢̅2𝑟 , 𝑢̅3𝑟),  and taking (6.45) in the distribution 

functions 𝛷𝑖(𝜉, 𝑖𝑖), we find the distribution equations (6.39) –

(6.41) taking the form 

 

2𝑘 ∕ 3 + 𝑢̅1𝑟
2 = 𝑢̅1𝑟

2 Φ1(ξ, 1)      (6.46) 

 

2𝑘 ∕ 3 + 𝑢̅2𝑟
2 = 𝑢̅2𝑟

2 Φ2(ξ, 1)      (6.47) 

 

2𝑘 ∕ 3 + 𝑢̅3𝑟
2 = 𝑢̅3𝑟

2 Φ3(ξ, 1)      (6.48) 

 

The distribution functions 𝛷𝑖(𝜉, 𝑖𝑖)  differ only in the 

anisotropy indices 𝑖𝑖. Therefore, when (6.45) is used in (6.46) – 

(6.48), they become equal: 

 

𝛷1(𝜉, 1) = 𝛷2(𝜉, 1) = 𝛷3(𝜉, 1) = 𝛷𝑒(𝜉)     (6.49) 

 

The sum of the three equations (6.46) – (6.48) now gives 

 

2𝑘 + (1 − Φ𝑒(ξ))(𝑢̅1𝑟
2 + 𝑢̅2𝑟

2 + 𝑢̅3𝑟
2 ) = 0     (6.50) 

 

Energy invariance during rotation of the coordinate system 

requires from the sum of velocity squares in (6.50) to satisfy 

relation 

 

𝑢̅1𝑟
2 + 𝑢̅2𝑟

2 + 𝑢̅3𝑟
2 = 2𝐾        (6.51) 

 

But this allows us to write (6.50) in the form 

 

𝛷𝑒(𝜉) = 1 +
𝑘

𝐾
        (6.52) 

Since the system (6.46) – (6.48) contains three new dependent 

variables 𝑢̅𝑖𝑟 , none of its three equations provides useful 

information. This also applies in their possible combinations, 

except for the one that we used. This was simply their sum, 

which, owing to energy invariance, has led us to the new relation 

(6.52). 

Obtaining (6.52) was the decisive step in solving the closure 

problem of turbulence. Fig.2 shows the key dependence 𝛷𝑒(𝜉) =
𝛷𝑖(𝜉, 1), as well as 𝐴𝑒(𝜉) = 𝐴𝑖(𝜉, 1) with 𝑀𝑒(𝜉) = 𝑀𝑖(𝜉, 1).  

 

Fig. 2. Isotropic case 𝛷𝑒(𝜉) = 𝛷𝑖(𝜉, 1) of the distribution function 

𝛷𝑖(𝜉, 𝑖𝑖)and its components. The vertical line 𝜉 = 1 depicts the lower 

limit of the parameter 𝜉. 

 

The free parameter 𝜉 = 𝑇/𝑇𝑐  in the distribution functions 

𝛷𝑖(𝜉, 𝑖𝑖) was the last of those that needed to be defined by an 

appropriate relation with other parameters of turbulent flow. 

𝛷𝑒(𝜉) itself is explicitly defined by (6.38) and (6.49) and allows 

the unknown parameter 𝜉  to be determined via (6.52) as a 

function of the energy ratio 𝑘/𝐾. After that we can name 𝜉 the 

energy distribution factor.  

The functions 𝑠̄𝑖 = 𝑠𝑖𝑛𝜔𝑖 𝑡, 𝑐̄𝑖 = 𝑐𝑜𝑠 𝜔𝑖 𝑡, 𝑠̄𝑖2 = 𝑠𝑖𝑛(2𝜔𝑖𝑡), 

and 𝑐̄𝑖2 = 𝑐𝑜𝑠(2𝜔𝑖𝑡)  are the underlying elements of EDT, 

through which all dependent variable parameters of turbulent 

flow are defined. They are explicitly given by (6.34) – (6.37) as 

functions of the distribution factor 𝜉 and the three components 

of the anisotropy vector 𝒊𝑎(𝑖1 , 𝑖2, 𝑖3). Figure 1 depicts them for 

the one-dimensional isotropic case, when the anisotropy indices 

𝑖1 = 𝑖2 = 𝑖3 = 1.  Their full four-dimensional form is 

numerically investigated through the distribution function (6.38) 

during the confrontation of EDT with experiment described in 

Section 8. 

The energy distribution equations (6.39) – (6.41) together 

with (6.52) are the key output of the EDT, reflecting the current 

state of the kinetic energy distribution of the flow. The 

distribution function (6.38) is the determining element of the 

system of distribution equations. Its isotropic case from (6.52) 

for calculating the distribution factor 𝜉 is shown in Fig. 2. The 
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behavior of the presented functions when the arguments grow 

without limit has not yet been rigorously investigated. 

 

7 STRAIGHT AVERAGING OF THE ISOTHERMAL N–S 

AND CONTINUITY EQUATIONS 

 

From the point of view of the turbulence closure problem, the 

equations of energy distribution (6.49) – (6.41) mean the crucial 

result of Part II. of this study. Using it as the main tool of the 

theory, the straight closure process can be completed success-

fully for governing equations of liquid as well as gas flows. For 

mass and momentum conservation laws it is shown below. 

 

7.1 Implicit averaging of the N–S equations 

 

The dynamics of real fluids are described by the following 

equations for the conservation of mass and momentum (Lojcian-

skij, 1954, II, p. 137) or (Milne-Thomson, L. M., (1960), § 

19.03): 

 
𝜕𝜌

𝜕𝑡
+ div (𝜌𝒖) = 0   (7.1) 

 

𝜌
𝑑𝒖  

𝑑𝑡
= 𝜌𝑭 − grad 𝑝 + div 𝝉 (7.2) 

 

where F denotes the vector of external forces, p is a pressure and  

𝝉 means a viscous stress tensor, see subsection 7.5.  For isother-

mal flow, viscosity𝜇 will be constant and 𝝉 a linear function of 

spatial derivatives of the velocity fields. The vector notation 

(7.2) of three momentum equations, after a small modification 

mentioned below, will be ready for the direct implicit averaging 

operation. The modified system can be implicitly averaged re-

sulting in 

 
𝜕𝜌𝒖

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝒖𝒖) = 𝜌̅𝑭 − grad 𝑝̅ + div 𝝉        (7.3) 

 
𝜕𝜌̅

𝜕𝑡
+ 𝑑𝑖𝑣 𝜌𝒖 = 0 (7.4) 

 

when eq. (7.2) before its averaging was rewritten in the conser-

vation form (7.3) in the way as it is shown in equations line (2.6) 

of Sec. 2.5 in Part I. of the study. The product 𝜌𝑢𝑢 in. (7.2) cre-

ating tensor of nine nonlinearities would be explicitly averaged. 

We will call it the momentum flux tensor. 

  

7.2 Straight explicit averaging of N–S and continuity equa-

tions in a random space 𝑮(𝝎, 𝒕) 
 

The energy distribution equations (6.39) – (6.41) together 

with (6.52) provide three implicit relations for the normal turbu-

lent stresses defined in (5.17). Since all these relations were de-

rived independently of the N-S equations, the definition of the 

tensor (5.17) provides explicit dependences also for the remain-

ing three tangential components of the tensor. They will all de-

pend on the energy and velocity fields of the mean flow. How-

ever, the constitutive functions and the existence of energy dis-

tribution equations allow us to close the averaged N-S system 

(7.3), (7.4) after   averaging of all nonlinear terms of the system. 

We determine the mean values of nonlinearities in the system 

(7.3), (7.4) through the definite integrals of the type in (6.6). The 

integrand functions appearing in (7.3) and (7.4) in the form of 

twin and triple products of distribution functions 𝑎𝑖 for velocities 

𝑢𝑖  and 𝑎𝜌 for density ρ are given by (5.9) or (5.19).  

For 𝑎𝜌, we must define the boundaries of the characteristic 

domain 𝜔𝜌𝐷 and 𝜔𝜌𝐻. Owing to isotropy, i.e., the same (higher) 

frequencies of turbulent disturbances, the upper limit will be the 

same as for velocities, i.e. 

 

𝜔𝜌𝐻 = 𝛺𝑐 =
1

𝑇𝑐
. (7.5) 

 

We still have to choose the lower boundary 𝜔𝜌𝐷. The mean 

specific density 𝜌̄ is the result of turbulent mixing, and there is 

no reason to assume anisotropy. Therefore, the lower limit will 

be determined by the average time scale T, and so the lower limit 

of the frequency 𝜔𝜌𝐷 will be 

 

𝜔𝜌𝐷 = 𝛺𝜌 =
1

𝑇
. (7.6) 

 

To achieve the main goal of this study, it is still necessary to 

determine the explicit means of the dyad and triad non-linearities 

that appear in the system (7.3) – (7.4). The above steps allowed 

us to discover such integrand functions and its definite integrals 

which yield the means of the non-linearities having the needed 

property of the mathematical expectation. Such integrand func-

tions representing in (7.3) – (7.4) the vector of momentum 𝜌𝒖 

and tensor of the momentum stream 𝜌𝒖𝒖 for gases as well as 

𝒖𝒖 for liquids will be given by the products  

 

𝜌𝒖 = [𝜌 ̅𝑢̅𝑖𝑎𝜌 𝑎𝑖];  𝒖𝒖 = [𝑢̅𝑖𝑢̅𝑗𝑎𝑖𝑎𝑗];  𝜌𝒖𝒖 = [𝜌 ̅𝑢̅𝑖𝑢̅𝑗𝑎𝜌 𝑎𝑖𝑎𝑗] ; 

𝑖, 𝑗 = 1,2, 3,..   (7.7) 

 

in which constitution functions 𝑎𝑖 and 𝑎𝑗 are given by (5.9) and 

𝑎𝜌 by (4.19). To get 𝑎𝜌, it is still necessary to define averages 

𝑠𝑖𝑛(𝜔𝜌𝑡) and 𝑐𝑜𝑠(𝜔𝜌𝑡) by integration between the limits given 

in (6.5) and (6.6), which yields 

 

𝑠̄𝜌 =
1

𝑇(𝛺𝑐−𝛺𝜌)
∫ ∫ 𝑠𝑖𝑛(𝜔𝜌𝑡)

𝛺𝑐

𝛺𝜌

𝑇

0
𝑑𝜔𝜌𝑑𝑡 = 𝑠̄𝜉 = 𝑠̄𝑖(𝜉, 1) (7.8) 

 

𝑐̄𝜌 =
1

𝑇(𝛺𝑐−𝛺𝜌)
∫ ∫ 𝑐𝑜𝑠(𝜔𝜌𝑡)

𝛺𝑐

𝛺𝜌

𝑇

0
 𝑑𝜔𝜌𝑑𝑡 = 𝑐̄𝜉 = 𝑐̄𝑖(𝜉, 1) (7.9) 

 

These results are identical with (6.11) and (6.12) because 𝑖𝑖 = 

1 owing to the bound (7.6). One gets the explicit average of (7.7) 

by applying definite integral (6.6) to all integrands (7.7) whilst 

respecting the rules (2.15). Then the mean gas momentum field 

𝜌𝑢𝑖 will be made by 

 

𝜌𝑢𝑖 =
𝜌̄𝑢̄𝑖

𝑀𝜌𝑀𝑖𝛥𝑖𝜌
∫ ∫ ∫ (𝑐̄𝜌𝑐𝜌 + 𝑠̄𝜌𝑠𝜌)

𝛺𝑐

𝛺𝑖

𝛺𝑐

𝛺𝜌

𝑇

0
(𝑐̄𝑖 𝑐𝑖 +

𝑠̄𝑖𝑠𝑖) 𝑑𝜔𝜌 𝑑𝜔𝑖𝑑𝑡,   𝑖 = 1,2,3                    (7.10) 

     

The dyads 𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅ yield by-products 𝜌𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅ the momentum flux 

tensor for liquids being given by 

 

𝑢𝑖𝑢𝑗 =
𝑢̄𝑖 𝑢̄𝑗

𝑀𝑖𝑀𝑗𝛥𝑖𝑗
∫ ∫ ∫ (𝑐̄𝑖𝑐𝑖 + 𝑠̄𝑖𝑠𝑖)

𝛺𝑐

𝛺𝑗

𝛺𝑐

𝛺𝑖

𝑇

0
(𝑐̄𝑗𝑐𝑗 + 𝑠̄𝑗𝑠𝑗) 𝑑𝜔𝑗 𝑑𝜔𝑖  𝑑𝑡 ,   

𝑖 ≠ 𝑗,   𝑖, 𝑗 = 1,2,3. (7.11) 

 

But (7.11) bears further information concerning liquids. De-

composition 𝜌𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅ = 𝜌𝑢̅𝑖𝑢̅𝑗 + 𝜌𝑢’𝑖𝑢’𝑗̅̅ ̅̅ ̅̅ ̅ for 𝑖 ≠ 𝑗 yields the Reyn-

olds’ (apparent) stress tensor 𝜌𝑢’𝑖𝑢’𝑗̅̅ ̅̅ ̅̅ ̅  and (6.11) for i = j is iden-

tical to the energy distribution equations we have obtained. The 

integration domains in (7.10) and (7.11) are 

 

𝛥𝑖𝜌 = 𝑇(𝛺𝑐 − 𝛺𝜌)(𝛺𝑐 − 𝛺𝑖), 𝛥𝑖𝑗 = 𝑇(𝛺𝑐 − 𝛺𝑖)(𝛺𝑐 − 𝛺𝑗),  
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𝑖 ≠ 𝑗. (7.12) 

 

The triad in (7.7) describing the mean momentum flux tensor 

for gas is defined by the integral 

 

𝜌𝑢𝑖𝑢𝑗 =
𝑀𝜌𝑖𝑗

𝛥𝜌𝑖𝑗
∫ ∫ ∫ ∫ (𝑐̄𝜌𝑐𝜌 + 𝑠̄𝜌𝑠𝜌)

𝛺𝑐

𝛺𝑗

𝛺𝑐

𝛺𝑖

𝛺𝑐

𝛺𝜌

𝑇

0
(𝑐̄𝑖𝑐𝑖 + 𝑠̄𝑖𝑠𝑖)(𝑐̄𝑗𝑐𝑗 +

𝑠̄𝑗𝑠𝑗) 𝑑𝜔𝜌 𝑑𝜔𝑖 𝑑𝜔𝑗  𝑑𝑡, (7.13) 

 

with integration domains 

𝛥𝜌𝑖𝑗 = 𝑇𝛥𝜌𝛥𝑖𝛥𝑗,   𝛥𝜌 = 𝛺𝑐 − 𝛺𝜌,   𝛥𝑖 = 𝛺𝑐 − 𝛺𝑖,   𝛥𝑗 = 𝛺𝑐 −

𝛺𝑗, (7.14) 

 

and the factor 

 

𝑀𝜌𝑖𝑗 =
𝜌̄ 𝑢̄𝑖 𝑢̄𝑗

𝑀𝜌 𝑀𝑖 𝑀𝑗
,   𝑖 = 1,2,3, (7.15) 

 

All the above multiple integrals can be evaluated directly by 

series expansion of the trigonometric functions. We will show 

that power series defined by the integrals (7.8) – (7.18) will have 

the same properties as (6.31) and (6.33), leading to independence 

of the averaged functions on the size of the domain of averaging. 

The definite integral (7.13) consists of eight separate products of 

three power series. Each term of each series resulting from the 

multiplication operation has the form of the m-th product  

 

(𝜔𝑖𝑡)
𝑝(𝜔𝑗𝑡)

𝑞
(𝜔𝜌𝑡)

𝑟
, 𝑝, 𝑞, 𝑟 = 0,1,2,3, … 𝑠 = 𝑝 + 𝑞 + 𝑟  (7.16) 

 

for m = 1, 2, 3, ..., mc, where mc follows from the amount of the 

power series terms included. 

Realizing all averaging operations in random space 𝐺(𝜔, 𝑡) 

to be of probabilistic nature the validity of the Reynolds rule  𝑢̅𝑖  
= 𝑢̅𝑖  was accepted during integration for all integrands, includ-

ing those in (7.10) – (7.13). Therefore, the resultant definite in-

tegral in (7.13) divided by the integration domain defines the m-

th averaged function Jm as 

 

𝐽𝑚 =
1

𝛥𝜌𝑖𝑗
∫ ∫ ∫ ∫ (𝜔𝑖𝑡)

𝑝(𝜔𝑗𝑡)
𝑞
(𝜔𝜌𝑡)

𝑟𝛺𝑐

𝛺𝑗

𝛺𝑐

𝛺𝑖

𝛺𝑐

𝛺𝜌

𝑇

0
𝑑𝜔𝜌 𝑑𝜔𝑖 𝑑𝜔𝑗  𝑑𝑡 =

[𝜔𝑖
𝑝+1

𝜔𝑗
𝑞+1

𝜔𝜌
𝑟+1𝑡𝑠+1]

𝐷𝐻

𝐻𝐻

𝛥𝜌𝑖𝑗(𝑝+1)(𝑞+1)(𝑟+1)(𝑠+1)
               (7.17) 

          

If we apply for the upper and lower limits HH and DH in 

(7.17)   the limits of domains (7.14), then Jm acquires the form 

 

𝐽𝑚 =
(𝛺𝑐

𝑝+1−𝛺𝑖
𝑝+1)(𝛺𝑐

𝑞+1−𝛺𝑗
𝑞+1)(𝛺𝑐

𝑟+1−𝛺𝜌
𝑟+1)𝑇𝑠+1

𝛥𝜌𝑖𝑗(𝑝+1)(𝑞+1)(𝑟+1)(𝑠+1)
       (7.18) 

 

If we decompose the first set of parentheses in the numerator 

of (7.18) into powers, multiply it by 𝑇𝑝, and take (7.14) into ac-

count, then we obtain  

 

𝑇𝑝(𝛺𝑐
𝑝+1 − 𝛺𝑖

𝑝+1) = 𝛥𝑖𝑇
𝑝(𝛺𝑐

𝑝 + 𝛺𝑖𝛺𝑐
𝑝−1 + 𝛺𝑖

2𝛺𝑐
𝑝−2 +

⋯+ 𝛺𝑐
2𝛺𝑖

𝑝−2 + 𝛺𝑐𝛺𝑖
𝑝−1 + 𝛺𝑖

𝑝). (7.19) 

 

Since each product of the integral time scale T with the bound-

ing frequencies 𝛺 satisfies the relations 

 

𝑇𝛺𝑐 = 𝜉,   𝑇𝛺𝑖 = 𝑖𝑖,   𝑇𝛺𝑗 = 𝑖𝑗,   𝑇𝛺𝜌 = 1,   𝑖 = 1,2,3 (7.20) 

 

any k-th product 𝛺𝑖
𝑘𝛺𝑐

𝑝−𝑘 in (7.19) can be rewritten, after mul-

tiplication by 𝑇𝑝, in the form 

 

𝑇𝑝𝛺𝑖
𝑘𝛺𝑐

𝑝−𝑘 = (𝛺𝑖𝑇)
𝑘(𝛺𝑐𝑇)

𝑝−𝑘 = 𝑖𝑖
𝑘  𝜉𝑝−𝑘 , 𝑘 = 0,1,2,3,… , 𝑝

 (7.21) 

 

By the operation (7.21) one can rewrite the right-hand side of 

(7.19) with polynomial 𝑃𝑖𝑝 obtaining 

 

𝑇𝑝(Ω𝑐
𝑝+1

− Ω𝑖
𝑝+1
) = Δ𝑖𝑃𝑖𝑝 (7.22) 

 

and repeating the procedure used in (7.19) up (7.21) with the 

other two sets of parentheses in the numerator (7.18), but this 

time for powers q and r leads to 

 

𝑇𝑞(Ω𝑐
𝑞+1

− Ω𝑗
𝑞+1
) = Δ𝑗𝑃𝑗𝑞 (7.23) 

 

𝑇𝑟(Ω𝑐
𝑟+1 − Ω𝜌

𝑟+1) = Δ𝜌𝑃𝜌𝑟 (7.24) 

 

with the polynomials (7.33) given now for maximal powers  

𝑚 = 𝑛 − 1= p, q, r ;   i, j =1,2,3 

 

𝑃𝑖𝑝  = 𝜉𝑝 + 𝑖𝑖  𝜉
𝑝−1 + 𝑖𝑖

2 𝜉𝑝−2 +⋯+ 𝜉2 𝑖𝑖
𝑝−2

+ 𝜉 𝑖𝑖
𝑝−1

+ 𝑖𝑖
𝑝
 (7.25) 

 

𝑃𝑗𝑞 =  𝜉
𝑞 + 𝑖𝑗  𝜉

𝑞−1 + 𝑖𝑗
2 𝜉𝑞−2 +⋯+ 𝜉2 𝑖𝑗

𝑞−2
+ 𝜉 𝑖𝑗

𝑞−1
+ 𝑖𝑗

𝑞
 (7.26) 

 

𝑃𝜌𝑟 = 𝜉
𝑟 + 𝜉𝑟−1 +  𝜉𝑟−2 +⋯+ 𝜉2 + 𝜉 + 1  (7.27) 

 

Since the properties of the polynomials (7.25) – (7.27) are 

identical to those defined by (6.31) – (6.33), using (7.22) – (7.24) 

in (7.18) we get resulted form for the functions averaged by 

(7.17)  

 

Jm = 
𝑃𝑖𝑝𝑃𝑗𝑞𝑃𝜌𝑟

(𝑝+1)(𝑞+1)(𝑟+1)(𝑠+1)
  ;  i,j  = 1,2,3,  p,q,r =  0,1,2,… for  triads   

𝜌𝑢𝑖𝑢𝑗                 (7.28) 

 

for triads 𝜌𝑢𝑖𝑢𝑗 ,  while for dyads 𝜌𝑢𝑖  q = 0, 𝑃𝑗𝑞 = 1  and for 

𝑢𝑖𝑢𝑗 r = 0,  𝑃𝜌𝑟 = 1. Since products Jm do not depend on sizes 𝜟𝒊 

of the domain of averaging (7.14), the averaged dyad and triad 

non-linearities gain the property of a mathematical expectation. 

They arose from the integrands defined by the constitutive func-

tions in (7.7) and resulted in the wanted explicit means 

 

 𝑢𝑖𝑢𝑗 = 𝑢̅𝑖𝑢̅𝑗Φ𝑖𝑗(𝜉, 𝑖𝑖 , 𝑖𝑗)                                   (7.29) 

 

𝜌𝑢𝑖 =  𝜌̅𝑢̅𝑖Ψ𝑖(𝜉, 𝑖𝑖 , 1)        (7.30) 

 

 𝜌𝑢𝑖𝑢𝑗 = 𝜌̅𝑢̅𝑖𝑢̅𝑗𝛹𝑖𝑗(𝜉, 𝑖𝑖 , 𝑖𝑗 , 1)                        (7.31)  

 

being expressed through distribution functions 𝛹𝑖  and 𝛹𝑖𝑗 of the 

momentum vector 𝜌𝑢 and the momentum flux tensor 𝜌𝑢𝑢  for 

gases as well as through distribution functions Φ𝑖𝑗 of the tensor 

of momentum flux 𝑢𝑢  for liquids. All these functions are de-

fined by integrals (7.32) – (7.34) as 

  

Φ𝑖𝑗 =
1

M𝑖M𝑗
( 𝑠̅𝑖𝑠̅𝑗𝑠𝑖𝑠𝑗̅̅ ̅̅ + 𝑠̅𝑖𝑐𝑗̅𝑠𝑖𝑐𝑗̅̅ ̅̅ + 𝑐𝑖̅𝑠̅𝑗𝑐𝑖𝑠𝑗̅̅ ̅̅ + 𝑐𝑖̅𝑐𝑗̅𝑐𝑖𝑐𝑗̅̅ ̅̅̅);   𝑖, 𝑗 =

1,2, 3                                  (7.32) 

 

𝛹𝑖 =
1

M𝑖M𝜌
( 𝑠̅𝑖𝑠̅𝜌𝑠𝑖𝑠𝜌̅̅ ̅̅ ̅ + 𝑠̅𝑖𝑐𝜌̅𝑠𝑖𝑐𝜌̅̅ ̅̅ ̅ + 𝑐𝑖̅𝑠̅𝜌𝑐𝑖𝑠𝜌̅̅ ̅̅ ̅ + 𝑐𝑖̅𝑐𝜌̅𝑐𝑖𝑐𝜌̅̅ ̅̅ ̅);  

𝑖 = 1,2, 3                        (7.33) 

 



Karol Kosorin  

334 348 

𝛹𝑖𝑗 =
1

M𝜌M𝑖M𝑗
(𝑐𝜌̅𝑐𝑖̅𝑐𝑗̅𝑐𝜌𝑐𝑖𝑐𝑗 + 𝑐𝜌̅𝑐𝑖̅ 𝑠̅𝑗𝑐𝜌𝑐𝑖𝑠𝑗 + 𝑐𝜌̅𝑠̅𝑖𝑐𝑗̅𝑐𝜌𝑠𝑖𝑐𝑗 +

𝑐𝜌̅𝑠̅𝑖𝑠̅𝑗𝑐𝜌𝑠𝑖𝑠𝑗 + 𝑠̅𝜌𝑐𝑖̅𝑐𝑗̅𝑠𝜌𝑐𝑖𝑐𝑗 + 𝑠̅𝜌𝑐𝑖̅ 𝑠̅𝑗𝑠𝜌𝑐𝑖𝑠𝑗 + 𝑠̅𝜌𝑠̅𝑖𝑐𝑗̅𝑠𝜌𝑠𝑖𝑐𝑗 +

𝑠̅𝜌𝑠̅𝑖 𝑠̅𝑗𝑠𝜌𝑠𝑖𝑠𝑗)       𝑖, 𝑗 = 1,2, 3                 (7.34) 

 

7.3 A few samples of averaging of the above dyad products 

of trigonometric functions 

 

The means of deriving and the properties of these distribution 

functions have been consistently described above, beginning 

with equation (7.10). Their resultant explicit form was reached 

using routine tools of applied mathematics by means of the prod-

ucts of polynomials (7.28). The following samples illustrate the 

mentioned proceedings. The development of averaging of the 

dyad products of trigonometric functions in (7.32) and (7.33) can 

be shown by the following equations: 

 

𝑠𝑖𝑠𝜌 = 𝑡
2𝜔𝑖𝜔𝜌 −

𝑡4

3!
(𝜔𝑖

3𝜔𝜌+. . ) → 𝑠𝑖𝑠𝜌̅̅ ̅̅ ̅ =
1

3
 
𝑃𝑖1𝑃𝜌1

2 .  2
−

1

5 .  3!
(
𝑃𝑖3𝑃𝜌1

4 .  2
+. . . )  (7.35) 

 

𝑠𝑖𝑐𝑗 = 𝑡𝜔𝑖 − 𝑡
3 (

𝜔𝑖
3

3!
+

𝜔𝑖𝜔𝑗
2

2!
)+. . . →  𝑠𝑖𝑐𝑗̅̅ ̅̅ =  

𝑃𝑖1

2 .  2
−

1

4
(
𝑃𝑖3

4 .  3!
+

𝑃𝑖1𝑃𝑗2

2 .  3 .  2!
) +…  (7.36)  

 

The sample of averaging of any triad in (7.34) demands two 

lines, 

 

𝑠𝑖𝑐𝑗𝑠𝜌 = 𝑡
2𝜔𝜌𝜔𝑖 − 𝑡

4 (
𝜔𝜌𝜔𝑖

3+𝜔𝜌
3𝜔𝑖

3!
+

𝜔𝜌𝜔𝑖𝜔𝑗
2

2!
) +

𝑡6 (
𝜔𝜌𝜔𝑗

5+..

5!
+. . . ) − ⋯  (7.37) 

 

𝑠𝑖𝑐𝑗𝑠𝜌 =
𝑃𝜌1𝑃𝑖1

3 .  2 .  2
−

1

5
(
𝑃𝜌1𝑃𝑖3+𝑃𝜌3𝑃𝑖1

2 .  3!
+

𝑃𝜌1𝑃𝑖1𝑃𝑗2

2 .  2  .  3 .  2!
) +

1

7
(
𝑃𝜌1𝑃𝑖5+..

2 .  6 .  5
+. . . ) − ⋯ (7.38) 

 

Finally, it is applicable to remember that polynomials 𝑃𝑖𝑝,

𝑃𝑗𝑞 ,   𝑃𝜌𝑟 are explicitly defined in (7.25) – (7.27) as functions of 

the distribution factor 𝜉 and the anisotropy indexes 𝑖𝑖 , 𝑖𝑗, while 

𝜉  given  by (6.52) and indexes 𝑖𝑖 , 𝑖𝑗 in (6.22) – (6.24) are func-

tions of mean turbulent energy and velocity fields. The number 

mc of products Jm in (7.28) depends on the highest expansion 

level 𝑝, 𝑞, 𝑟considered. 

Equations (7.10) – (7.29) define all the non-linear terms in the 

averaged N–S system (7.3), (7.4). 

The most important averaged fluctuation non-linearities oc-

curring in the closed system are the normal turbulent stresses 𝑢′𝑖
2. 

They determine the anisotropy indices 𝒊𝒊 by (6.22–6.24) and the 

distribution factor 𝝃 by (6.52) creating in such way the argu-

ments of all the distribution functions Φ𝑖𝑗 ,  𝛹𝑖  and 𝛹𝑖𝑗, written 

above as the products of integration in (7.10) – (7.13). The first 

of them, Φ𝑖𝑗 equals at i = j the energy distribution function Φ𝑖 

given by (6.38), so  

 

Φ𝑖𝑖 = Φ𝑖 at i = j;              𝑖, 𝑗 = 1,2,3. (7.39) 

 

The above non-linearities of turbulent flow are defined and 

averaged in the multidimensional characteristic domain of aver-

aging 𝐺(𝜔, 𝑡) of the finite but unknown size 𝛥𝜌𝑖𝑗 = 𝑇𝛥𝜌𝛥𝑖𝛥𝑗 . 

Being averaged they become functions of the mean velocity field 

𝑢̅  and fluctuation energy k. These dependences are expressed 

through the distribution factor 𝝃 and the anisotropy indices 𝒊𝒊 
bounded below by 𝝃 > 1 and ii > 1/3. 

 

7.4 The closed equation system as resultant of the closure 

problem solution for isothermal flows 

 

In the vectorial notation of implicitly averaged N–S equations 

(7.3) and (7.4), vector 𝜌𝒖 = [𝜌𝑢𝑖] determines the momentum of 

the fluids per fluid volume unit. Tensor 𝜌𝒖𝒖 = [ 𝜌𝑢𝑖𝑢𝑗  ]   de-

notes the implicitly averaged flux (propagation velocity) of mo-

mentum 𝜌𝒖. The direct explicit form of averaging dyadic and tri-

adic non-linearities 𝜌𝒖, 𝒖𝒖 and  𝜌𝒖𝒖 is provided by certain in-

tegrals of these non-linearities in (7.10) to (7.13) over the char-

acteristic domains 𝐺(𝝎, 𝑡) of time 𝑡 and of the random turbulent 

fluctuation frequencies of velocity 𝜔𝑖  and density 𝜔𝜌. Defining 

the integrands of averaging integrals by the relations (7.7) via the 

constitutive functions 𝒂𝒊 , 𝒂𝒋  and 𝒂𝝆  is the decisive theoretical 

step of this study. The wanted form of explicitly averaging the 

first kind of non-linearities of the system (7.3) – (7.4) has already 

been obtained by standard operations of applied mathematics. 

Accepting that the viscosity 𝜇(𝑇) is regular  function of a mean 

absolute temperature 𝑇  the viscous tensor 𝜏 components in this 

system are linear functions of products 𝜇 grad 𝑢𝑖; see Section 10 

below. Averaging  𝜏 → 𝜏  was therefore possible to carry out di-

rectly applying Reynolds’ rule of averaging partial derivatives in 

the velocity gradients. 

   The momentum vector  𝜌𝒖 if explicitly averaged by integral 

(7.10) is given through its components 

 

𝜌𝑢𝑖 = 𝜌 ̅𝑢̅𝑖𝛹𝑖     𝑖 = 1,2, 3 (7.40) 

 

The symmetric tensor of flux of momentum h = 𝜌𝒖𝒖 after be-

ing averaged by means of integral (7.13) has been presented by 

the matrix form through its vector  𝒉𝒊  and  tensor   𝑢̅𝑖𝑢̅𝑗𝛹𝑖𝑗  com-

ponents  

 

𝜌𝒖𝒖 = 𝜌𝑢𝑖𝑢𝑗 = {

 𝒉𝟏

 𝒉𝟐

 𝒉𝟑

} = 𝜌̅ {

  𝑢̅1𝑢̅1𝛹11   𝑢̅1𝑢̅2𝛹12   𝑢̅1𝑢̅3𝛹13
  𝑢̅1𝑢̅2𝛹21   𝑢̅2𝑢̅2𝛹22   𝑢̅2𝑢̅3𝛹23
  𝑢̅1𝑢̅3𝛹31   𝑢̅2𝑢̅3𝛹32   𝑢̅3𝑢̅3𝛹33

}, 

𝑖, 𝑗 = 1,2, 3         (7.41) 

 

In the case of liquids and assuming that  𝜌 = 𝜌 ̅= const. the 

mean momentum flux tensor stems from the integral (7.11) 

written in the matrix form 

 

  𝜌𝒖𝒖 =  𝜌 𝑢𝑖𝑢𝑗 =  {

 𝒉𝟏

 𝒉𝟐

 𝒉𝟑

} =

𝜌 {

  𝑢̅1𝑢̅1𝛷11   𝑢̅1𝑢̅2𝛷12   𝑢̅1𝑢̅3𝛷13
  𝑢̅1𝑢̅2𝛷21   𝑢̅2𝑢̅2𝛷22   𝑢̅2𝑢̅3𝛷23
  𝑢̅1𝑢̅3𝛷31   𝑢̅2𝑢̅3𝛷32   𝑢̅3𝑢̅3𝛷33

} , 𝑖, 𝑗 = 1,2, 3    (7.42) 

 

Equations (7.3) and (7.4) imply the vectorial but implicit no-

tation of the wanted averaged N–S system governing turbulent 

flow of Newtonian fluids. Its resulting explicit notation  

 
𝜕(𝜌 ̅𝑢1𝛹1)

𝜕𝑡
+

𝜕(𝜌 ̅𝑢1𝑢1𝛹11)

𝜕𝑥1
+

𝜕(𝜌 ̅𝑢1𝑢2𝛹12)

𝜕𝑥2
+

𝜕(𝜌 ̅𝑢1𝑢3𝛹13)

𝜕𝑥3
= 𝜌̅𝐹𝑥 −

𝜕𝑝̅

𝜕𝑥1
+ div 𝝉̅𝟏  
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𝜕(𝜌 ̅𝑢2𝛹2) 

𝜕𝑡
+

𝜕(𝜌̅𝑢2𝑢1𝛹21)

𝜕𝑥1
+

𝜕(𝜌̅𝑢2𝑢2𝛹22)

𝜕𝑥2
+

𝜕(𝜌̅𝑢2𝑢3𝛹23)

𝜕𝑥3
= 𝜌̅𝐹𝑦 −

𝜕𝑝̅

𝜕𝑥2
+ div 𝝉̅𝟐  (7.43) 

 
𝜕(𝜌 ̅𝑢3𝛹3) 

𝜕𝑡
+

𝜕(𝜌̅𝑢3𝑢1𝛹31)

𝜕𝑥1
+

𝜕(𝜌̅𝑢3𝑢2𝛹32)

𝜕𝑥2
+

𝜕(𝜌̅𝑢3𝑢3𝛹33)

𝜕𝑥3
= 𝜌̅𝐹𝑧 −

𝜕𝑝̅

𝜕𝑥3
+ div 𝝉̅𝟑   

 
𝜕𝜌̅

𝜕𝑡
+

𝜕(𝜌 ̅𝑢1𝛹1)

𝜕𝑥1
+

𝜕(𝜌 ̅𝑢2𝛹2) 

𝜕𝑥2
+

𝜕(𝜌 ̅𝑢3𝛹3) 

𝜕𝑥3
= 0 (7.44) 

 

has been completed into the final closed shape by the EDE (en-

ergy distribution equations) 

𝑢’𝑖
2̅̅ ̅̅  + 𝑢̅𝑖

2[1 - 𝛷𝑖(𝜉, 𝑖𝑖)] = 0,𝑖 = 1, 2 , 3  (7.45)    

 

where the distribution factor  𝜉 = T/Tc depends on the energy ra-

tio k/K satisfying relations 

 

𝛷𝑒(𝜉) = 1 + k/K; 𝛷𝑒(𝜉) =  𝛷𝑖(𝜉, 1)at   𝑖1 = 𝑖2 =  𝑖3 = 1;  (7.46) 

  

and three anisotropy indices 𝑖𝑖  are determined as functions of 

normal turbulent stresses 𝑢’𝑖
2̅̅ ̅̅  by 

 

𝑖1 =
1

3
(1 +

𝑢′2
2

𝑢′1
2
+

𝑢′3
2

𝑢′1
2
) ;  𝑖2 =

1

3
(
𝑢′1
2

𝑢′2
2
+ 1 +

𝑢′3
2

𝑢′2
2
) ;  𝑖3 =

1

3
(
𝑢′1
2

𝑢′3
2
+

𝑢′2
2

𝑢′3
2
+ 1) (7.47) 

 

The resulted system of averaged PDEs for liquid flows with  

𝜌 = 𝑐𝑜𝑛𝑠𝑡. differs from previous little: 

 
𝜕𝑢1

𝜕𝑡
+
𝜕(𝑢1𝑢1𝛷11)

𝜕𝑥1
+
𝜕(𝑢1𝑢2𝛷12)

𝜕𝑥2
+
𝜕(𝑢1𝑢3𝛷13)

𝜕𝑥3
= 𝐹𝑥 −

1

𝜌̅
(
𝜕𝑝̅

𝜕𝑥1
+ div 𝝉̅𝟏)   

 
𝜕𝑢2

𝜕𝑡
+
𝜕(𝑢2𝑢1𝛷21)

𝜕𝑥1
+
𝜕(𝑢2𝑢2𝛷22)

𝜕𝑥2
+
𝜕(𝑢2𝑢3𝛷23)

𝜕𝑥3
= 𝐹𝑦 −

1

𝜌̅
(
𝜕𝑝̅

𝜕𝑥2
+ div 𝝉̅𝟐)  

 
𝜕𝑢3  

𝜕𝑡
+
𝜕(𝑢3𝑢1𝛷31)

𝜕𝑥1
+
𝜕(𝑢3𝑢2𝛷32)

𝜕𝑥2
+
𝜕(𝑢3𝑢3𝛷33)

𝜕𝑥3
= 𝐹𝑧 −

1

𝜌̅
(
𝜕𝑝̅

𝜕𝑥3
+

div 𝝉̅𝟑)   (7.48) 

  

div(𝒖) = 0  (7.49) 

 

The momentum flux tensors ℎ̅ given by (7.41) and (7.42) en-

able one to write down the resultant PDE systems (7.43) and 

(7.48) shortly. To do so we put these systems at the same time 

into purely evolution form for the mean velocity field 𝑢𝑖  
 
𝜕𝑢𝑖 

𝜕𝑡
+

1 

𝜌̅ 𝛹𝑖 
( 𝑢𝑖

𝜕(𝜌̅ 𝛹𝑖)

𝜕𝑡
+ div 𝒉𝒊 +

𝜕𝑝̅

𝜕𝑥𝑖
) =

1 

𝜌̅ 𝛹𝑖 
(𝜌̅𝑭𝑖 + div 𝝉̅𝒊 ) (7.50) 

 

which after including divergences of the vector components  𝒉𝒊  
 

div ℎ𝟏 =
𝜕(𝜌 ̅𝑢1𝑢1𝛹11)

𝜕𝑥1
+

𝜕(𝜌 ̅𝑢1𝑢2𝛹12)

𝜕𝑥2
+

𝜕(𝜌 ̅𝑢1𝑢3𝛹13)

𝜕𝑥3
     

 

div ℎ2  =
𝜕(𝜌̅𝑢2𝑢1𝛹21)

𝜕𝑥1
+

𝜕(𝜌̅𝑢2𝑢2𝛹22)

𝜕𝑥2
+

𝜕(𝜌̅𝑢2𝑢3𝛹23)

𝜕𝑥3
 (7.51) 

 

div ℎ3  =
𝜕(𝜌̅𝑢3𝑢1𝛹31)

𝜕𝑥1
+

𝜕(𝜌̅𝑢3𝑢2𝛹32)

𝜕𝑥2
+

𝜕(𝜌̅𝑢3𝑢3𝛹33)

𝜕𝑥3
            

 

complete the averaged and closed dynamic PDEs system for tur-

bulent gas flows. Writing down 

 

𝜕𝑢𝑖 

𝜕𝑡
+

1 

𝜌̅  
( div 𝒉𝒊 + grad 𝑝̅) = 𝑭𝑖 +

1 

𝜌̅  
div 𝜏𝑖̅       ( 𝑖 =  1,2,3 =

 𝑥, 𝑦, 𝑧)   (7.52) 

 

together  with divergence  div(𝒖) = 0   and  

 

div ℎ1 =
𝜕(𝜌 ̅𝑢1𝑢1𝛷11)

𝜕𝑥1
+

𝜕(𝜌 ̅𝑢1𝑢2𝛷12)

𝜕𝑥2
+

𝜕(𝜌 ̅𝑢1𝑢3𝛷13)

𝜕𝑥3
       

  

div ℎ2  =
𝜕(𝜌̅𝑢2𝑢1𝛷21)

𝜕𝑥1
+

𝜕(𝜌̅𝑢2𝑢2𝛷22)

𝜕𝑥2
+

𝜕(𝜌̅𝑢2𝑢3𝛷23)

𝜕𝑥3
 (7.53) 

 

div ℎ3  =
𝜕(𝜌̅𝑢3𝑢1𝛷31)

𝜕𝑥1
+

𝜕(𝜌̅𝑢3𝑢2𝛷32)

𝜕𝑥2
+

𝜕(𝜌̅𝑢3𝑢3𝛷33)

𝜕𝑥3
       

 

the same is done for turbulent liquid flows with  𝜌 ̅= const. lead-

ing the momentum distribution function 𝛹𝑖𝑗  to 𝛹𝑖𝑗 = 1.   The 

formal definition of the vector components ℎ𝑖 is analogical with 

𝝉𝒊 and can be seen in the Section 11. 

The momentum distribution functions 𝛹𝑖  in (7.40) and the 

distribution functions 𝛹𝑖𝑗  and  𝛷𝑖𝑗  of the momentum flux in 

equations (7.41) and (7.42) are defined by relations (7.29) to 

(7.31) in combination with integrals (7.10), (7.11) and (7.13) as 

products of these averaging integrals. 

The obtained averaged N–S system (7.43), (7.44) treats five 

unknown flow parameters, i.e., three velocity components, pres-

sure p and density 𝜌. To be closed, it requires the known equa-

tion of the state p = 𝑝(𝜌,T) to be added. The system (7.48), (7.49) 

for liquids becomes closed for given constant density𝜌. Never-

theless, to do without the energy balance equation, the known 

relationship 𝜇(𝑇) as well a constant or known temperature are 

needed, but in case of turbulent flow both the equation of state 

as well as of energy balance need to be averaged. 

7.5 Relation between constitution functions of turbulent flow 

and its random fluctuations.  Computing the Reynolds (ap-

parent) stress tensor and other averaged nonlinearities, if 

wanted    

In the above averaged and closed system of the Navier-Stokes 

PDEs no averaged products of turbulent fluctuations appear to 

be needed if applying resultant equations (7.40) – (7.53) in any 

task. But relevant non-linearities, if wanted, can be averaged and 

used successively in current numerical models after satisfying 

some compatibility conditions. 

Random velocity ui being expressed usually by the Reynolds’ 

decomposition ui = 𝑢̅𝑖 + 𝑢
′
𝑖  has been presented in this study by 

means of constitution function ai(𝜔𝑖 , 𝑡) through product ui = 

𝑢̅𝑖ai. 

It yields the valid constitutional equation for velocity fluctua-

tions 𝑢′𝑖 
 

ui = 𝑢̅𝑖 +  𝑢′𝑖  = 𝑢̅𝑖 ai →  𝑢′𝑖  = 𝑢̅𝑖(ai −1 ),  𝑎̅𝑖 = 1 ,  𝑢′𝑖 = 0 ,   

i =1,2,3   (7.54) 

 

After the same operation for random 𝜌 we obtain the follow-

ing constitutional equation for density fluctuations 

 

 𝜌′ = 𝜌 ̅(aϱ – 1), 𝑎̅𝜚 = 1   𝜌′  =  0                                            (7.55) 

 

and the need to compute the means of the products of fluctua-

tions given in (7.54) and (7.55), integrating them through the 

characteristic domain in (7.10) – (7.13). But one can do so by 

a simpler way using the means 𝑢𝑖𝑢𝑗 , 𝜌𝑢𝑖 and 𝜌𝑢𝑖𝑢𝑗 already de-
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fined by the averaging integrals over the same characteristic do-

main and given in final form by equations (7.29) – (7.31). Re-

placing the random functions 𝜌 and ui on the left sides of (7.29) 

– (7.31) by Reynolds’ decompositions and realising the required 

formal (implicit) average of these equations, one obtains the nec-

essary linear algebraic system for computing wanted averaged 

non-linearities. Its solution is simple and yields 

  

𝑢′𝑖𝑢
′
𝑗=  𝑢̅𝑖𝑢̅𝑗(𝛷𝑖𝑗 − 1) (7.56) 

 

𝜌′𝑢′
𝑖
  =  𝜌 ̅𝑢̅𝑖(𝛹𝑖 − 1) (7.57) 

 

𝜌′𝑢′
𝑗
 =  𝜌 ̅𝑢̅𝑗(𝛹𝑗 − 1) (7.58) 

 

 𝜌′𝑢′
𝑖
𝑢′𝑗 = 𝜌 ̅𝑢̅𝑖𝑢̅𝑗( 𝛹𝑖𝑗 −𝛹𝑖 − 𝛹𝑗 −  𝛷𝑖𝑗 + 2) (7.59) 

 

The first of them, in (7.56), is known to readers. Its products 

𝜌 ̅𝑢′𝑖𝑢
′
𝑗  represent at 𝑖 ≠ 𝑗 the Reynolds’ (apparent) stresses in 

turbulent liquid flows and became the most frequent object of 

approximate phenomenological modelling. Its applications 

through the Prandtl’s mixing length theory, Von Kármán’s sim-

ilarity hypothesis, and others, occur still in the recent modelling 

of turbulence flow even in a compressible atmosphere, see Bed-

nar, J. Zikmunda, O. (1985). 

 

7.6 The relations defining deformation energy as the effect of 

turbulent density fluctuations 

 

The instantaneous random kinetic energy field E of turbulent 

flow defined by 

 

𝐸 =  
1

2
∑ 𝜌𝑢𝑖

23
𝑖=1                     𝑖 = 1, 2,  (7.60) 

 

was in subsection 1.7 implicitly averaged after applying Reyn-

olds’ decomposition 𝑢𝑖 = 𝑢̅𝑖 + 𝑢
′
𝑖, 𝜌 = 𝜌̅ + 𝜌′ in (2.8). Analy-

sis of its average 𝐸 resulted in the following sum of two qualita-

tively different parts, elastic  𝐸𝑒 and deformation  𝐸𝑑 

 

𝐸 = 𝐸𝑒 +  𝐸𝑑   (7.61) 

 

Of these, the elastic part 𝐸𝑒 given by 

 

𝐸𝑒 = 𝜌̅(𝐾 + 𝑘); 𝐾 =
1

2
∑ 𝑢̅𝑖

2;3
𝑖=1   𝑘 = 

1

2
∑ 𝑢´𝑖

2
 ;3

𝑖=1    𝐸𝑒 > 0    (7.62) 

 

is known as the product of Reynolds’ (implicit) averaging of the 

N-S system if written for liquid flows. 

However, its deformation part 

 

𝐸𝑑 =
1

2
∑ [2𝑢̅𝑖𝜌´𝑢´𝑖 + 𝜌´𝑢

´
𝑖
2
]3

𝑖=1 , 𝐸𝑑 ≥ 0  𝑜𝑟  𝐸𝑑 ≤ 0, 𝑖 = 1, 2, 3

 (7.63) 

 

acquiring due to pressure, velocity and density fluctuations both 

positive or negative values, belongs to internal (potential) 

energy. Therefore, it should be considered along with the  𝐸𝑑 

energy in the treatement of properties and application of the 

energy balance equation. Such possibility follows from the 

above found averaged non-linearitíes (7.56) – (7.59). It enables 

one to obtain the means needed for (7.63) 

 

𝜌′𝑢′
𝑖
 = 𝜌 ̅𝑢̅𝑖(𝛹𝑖 − 1), 𝜌´𝑢

´
𝑖
2
 = 𝜌̅𝑢̅𝑖

2(𝛹𝑖𝑖 − 1) (7.64)  

and compute wanted deformation energy by  

 

𝐸𝑑 =
𝜌̅

2
∑ [2𝛹𝑖 +𝛹𝑖𝑖 − 3]
3
𝑖=1 𝑢̅𝑖

2 (7.65) 

 

The above results allow us to describe the gas and energy 

flows without incompressibility approximation and to remove by 

such a way the frequent problem as treated by V. L. Yushkov 

(2015). 

 

8 VERIFYING EDE BY EXPERIMENTAL DATA ON 

WALL BOUNDED TURBULENCE 

 

The EDE (energy distribution equations) (6.39) – (6.41) play 

a key role at closing the averaged N–S system (7.3), (7.4). It is 

therefore important to answer the question of whether and how 

the distribution equations fit the data from relevant experiments. 

The part of the answer is written in Section 4. The sample and 

practical realizing this possibility has been shown in Section 9. 

Therefore, in the selection of experimental sources, the focus 

here will be on normal turbulent stress and flows with 

sufficiently large anisotropy. The first reason for this stems from 

the fact that normal stresses are essential for the verification of 

distribution equations. The second is a surprising but important 

property of the obtained energy distribution equations that is 

relevant to the possibility of comparing measured \tangential 

turbulent stresses with theoretical ones. This property is the 

three-dimensionality of the mean velocity field of any turbulent 

flow. These reasons have led us to select four independent 

sources of experimental data: Reichardt (1938), Klebanoff 

(1954). All of these relate to experimental investigation of 

boundary layers in parallel turbulent flow in wind tunnels. 

Although there are other frequently cited studies that could also 

have been included, such as those by Mäsiar and Dúbrava 

(1975), the sources that we chose were favored owing to the 

negligible differences in error deviations 𝑒𝑟𝑖 between them. We 

can, however, assume that a similar closeness of the results 

would be the case for other sources.  

An evaluation of relevant inputs and outputs of experimental 

sources is part of the supplementary materials available from the 

author upon request. 

 

9 ON SOME PROPERTIES OF THE CONSTITUTIVE 

AND THE ENERGY DISTRIBUTION EQUATIONS  

 

Explicit averaging of the products of the constitutive 

functions using the integrals in (7.10), (7.11), and (7.13) 

provided the required number of closing equations for the 

averaged N–S system (7.3), (7.4). The distribution equations of 

kinetic energy (6.39) – (6.41) and (6.52) played a decisive role 

in this completion. The basic form of these equations is 

surprisingly simple: 

 

𝑢𝑖𝑢𝑖 = 𝛷𝑖𝑢̄
2
𝑖 → 𝛷𝑖(𝜉, 𝑖𝑎) = 1 +

𝑢′2

𝑢̄2
, 𝛷𝑒(𝜉) = 1 +

𝑘

𝐾
 ,  𝑢𝑖

′𝑢𝑖
′  > 0, 

1 < Φ𝑖< ∞,  𝑖 = 1,2,3.         (9.1) 

 

However, in (9.1), the three distribution functions themselves, 

𝛷𝑖(𝜉, 𝑖𝑖)  are no longer simple. The evidence for this is the 

equation (6.38) and all the others through which it is defined, 

including, for example, (6.46) – (6.48). The structure of the 

distribution equations determines their validity and thus the 

validity of EDE for that part of the space 𝐺̄(𝑥, 𝑡) in which the 

inequalities in (9.1) hold. But such conditions are satisfied only 

by a three-dimensional velocity field whose streamlines or vector 
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lines are spatial curves at each point of the turbulent flow, 

excepting singularities.  

 

9.1 Ability of constitution equation (5.16) to describe a 

random velocity field of turbulent flow  

 

In all standard operations with a constitutive function, the 

declared property of mutual independence of random 

frequencies 𝜔𝑖  has been strictly respected, as has their 

independence of time and position in the space 𝐺(𝜔, 𝑡) . In 

averaging operations via multiple integrals, the independence of 

𝜔𝑖  will also be respected in operations with partial derivative in 

this section. Its formal dependence (5.2) comes into 

consideration when evaluating experimentally obtained velocity 

fields in 𝐺̄(𝑥, 𝑡).  
The ability mentioned in the title of this section concerns the 

equation of random oscillations (5.16) now written in the form   

 
𝑢𝑖

𝑢̄𝑖
=

1

𝑀𝑖
(𝑠̄𝑖 𝑠𝑖𝑛 𝜔𝑖 𝑡 + 𝑐̄𝑖 𝑐𝑜𝑠 𝜔𝑖 𝑡),   𝑢̄𝑖 ≠ 0,   𝑖 = 1,2,3.      (9.2) 

 

The constitutive function of the random frequency 𝜔𝑖  time t 

and some mean parameters defines the random velocity field 𝑢𝑖  
through the constitutive equation (9.2). We consider the 

constitutive equation (9.2) to be capable of describing an 

arbitrary random field 𝒖𝒊  if the relation (9.2) yields the 

possibility of determining in an appropriate way the random 

frequency 𝜔𝑖  for each measured random 𝑢𝑖  in an arbitrary 

turbulent flow. 

As the appropriate way in the above condition, we adopt the 

following approach. First, we need the inputs to be used in (9.2) 

as the time record of the measured velocity field 𝑢𝑖  at a point of 

the turbulent flow, together with the corresponding parameters 

of the averaged flows, 𝑢̄𝑖, 𝑠̄𝑖 , and 𝑐̄𝑖 , for (9.2). The time record 

will also provide the rate of change 𝜕𝑢/𝜕𝑡 . The mean 

characteristics can be obtained either from the solution of the 

initial value problem for the closed system (7.3), (7.4) or from 

experimental data processed as in Section 8 in the case of 

statistically steady flow. 

Let us seek the missing relation determining the random 

frequency 𝜔𝑖 . Equation (9.2) applies to a domain bounded in 

𝐺(𝜔, 𝑡) by the rectangle  

  

𝛥𝑖 = 𝑇 (
1

𝑇𝑐
−

1

𝑇𝑖
),    0 ≤ 𝑡 ≤ 𝑇,   𝑖 = 1,2,3       (9.3) 

 

This comes from averaging the original constitutive equation 

(5.1) on the rectangle 𝛥𝑖  given in (9.3). Owing to the averaging 

of (5.1) and its connection to 𝐺̄(𝑥, 𝑡) through the phase angle 𝜑𝑖 
(and not through a condition in time 𝑡 = 0), it is not possible to 

find a time coordinate 𝑡 in (9.2) corresponding to a time 𝑡 in the 

experimental record of 𝑢𝑖  (x0, t). Therefore, if we want to obtain 

a random frequency 𝜔𝑖  from (9.2) as a function of the given 

inputs at any point of the experimental record, we need to remove 

the explicit time 𝑡 from (9.2). This is possible by differentiating 

(9.2) with respect to time. Then, from (9.2), it leads to equation 

n 

 
1

𝑢̄𝑖

𝜕𝑢𝑖

𝜕𝑡
=

𝜔𝑖

𝑀𝑖
(𝑠̄𝑖 𝑐𝑜𝑠 𝜔𝑖 𝑡 − 𝑐̄𝑖 𝑠𝑖𝑛 𝜔𝑖 𝑡) in 𝐺(𝜔, 𝑡), 𝑖 = 1,2,3.  (9.4) 

 

The functions 𝑠𝑖𝑛 𝜔𝑖 𝑡 and 𝑐𝑜𝑠 𝜔𝑖 𝑡 can be obtained from the 

two equations (9.2) and (9.4). Putting these into the still valid 

relations between their squares, after a small adjustment, one 

obtains the desired relation 

𝜔𝑖
2 =

𝑀𝑖

𝑢̄2𝑖−𝑀𝑖 𝑢𝑖
2 (

𝜕𝑢𝑖

𝜕𝑡
)
2

 in 𝐺(𝜔, 𝑡) and 𝐺̄(𝑥, 𝑡),  𝑖 = 1,2,3.      (9.5) 

 

If we have the given inputs at our disposal, then, from the 

random values of the velocity 𝑢𝑖  and its rate of change 𝜕𝑢𝑖/𝜕𝑡, 
we can obtain the values of a random independent variable 𝜔𝑖  
from the square root of (9.5). We will choose from the two signs 

of the root. If we take 𝜔𝑖  as a frequency of velocity fluctuations, 

then we accept that the sign of 𝜔𝑖  can only be positive. If we 

consider 𝜔𝑖  as the rotational velocity of a three-dimensional 

vortex, there is no restriction on the choice of sign. The relation 

(9.5) can also be obtained by inversion of (9.2) and taking the 

limit at the point 𝑡 = 0  using l’Hôpital’s rule. The mean 

parameters in the differentiation of (9.2). are considered as 

constant due to Raynolds rules of averaging.  Equation (9.5) 

provides real-valued 𝜔𝑖  only for 

𝑢̄2𝑖 −𝑀𝑖 𝑢𝑖
2 > 0.          (9.6) 

 

If it is not met, then 𝜔𝑖  will be complex - valued. The value 

Mi in the condition (9.6) is given by 

 

𝑀𝑖(𝜉, 𝑖𝑖) = 𝑠̄2𝑖 + 𝑐̄
2
𝑖.         (9.7) 

 

For example, when processing the experimental data in 

Section 8, the values of the quantity Mi ranged from Mi(1.1) = 

0.92 to Mi(10,1) = 0.09. Validity of the relation (9.5) justifies the 

assumption that the constitutive equation (9.2) can describe any 

random turbulent scalar or vector field. It is important that   

constitutive equation (9.2) holds this ability as well as when the 

time derivatives of the mean flow velocities ∂ 𝑢̄𝑖 /∂t in the 

deriving (9.5) are accepted. In such case the above treatment 

leads to other but again quadratic equation with respect to 

unknown random frequency 𝜔𝑖  yielding again possibility to 

determine its value and proving wanted ability of the constitutive 

equations.  

 

9.2 On numerical solution of the Energy Distribution 

Equations  

 

If there is a relationship between fluid pressure and density, 

or 𝜌̅ is known, then the four PDEs in (7.3) and (7.4) together with 

the four energy distribution equations and integrals in (7.10), 

(7.11), and (7.13) form a closed system. After the integrations in 

(7.10) and (7.13) are performed, it becomes a system of 

nonlinear differential and algebraic equations. In the eventual 

application of this system to the solution of the initial (Cauchy) 

problem, the solution will start at each time step by solving the 

system of distribution equations (9.1), because, when the 

components of the velocity field  𝑢̅𝑖 are entered as an initial 

condition, the system (9.1) becomes closed. Its solution will 

provide the normal turbulent stresses, and the equations (7.10) – 

(7.13) will provide the remaining dependent variables. 

 One of possible methods for solving a nonlinear system like 

(9.1) was successfully tested in section 8.  

 

10 INFORMATION SUPPORT (4) AND (5)  

 

10.1 Information Support (4): Viscous stress tensor and its 

vector and tensor components   

 

In the vector notation of the momentum PDRs (7.3) all 

internal friction forces are presented by the viscous stress tensor 
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𝜏 = {

𝝉𝑥
𝝉𝑦
𝝉𝑧
} = {

𝜏𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑦𝑥 𝜏𝑦𝑦 𝜏𝑦𝑧
𝜏𝑧𝑥 𝜏𝑧𝑦 𝜏𝑧𝑧

}                                        (10.1)     

 

by means of three vector components  𝝉𝑖 ,   ( i = 1,2,3 = x, y, z) 

 

𝝉𝑥 = 𝝉1 = i 𝜏𝑥𝑥+ j 𝜏𝑥𝑦+ k 𝜏𝑥𝑧          

 

𝝉𝒚 = 𝝉2 = i 𝜏𝑦𝑥+ j 𝜏𝑦𝑦+ k 𝜏𝑦𝑧                     (10.2)                                                                                                                                                                                                                                                                                                  

 

𝝉𝒛  = 𝝉3 = i 𝜏𝑧𝑥 + j 𝜏𝑧𝑦+ k 𝜏𝑧𝑧          

 

and its nine tensor components  

 

𝜏𝑥𝑥 = 𝜇 (2
𝜕𝑢1

𝜕𝑥
−

2

3
𝑑𝑖𝑣 𝒖) ;     𝜏𝑥𝑦 = 𝜏𝑦𝑥 =  𝜇 (

𝜕𝑢1

𝜕𝑦
+

𝜕𝑢2

𝜕𝑥
)  

  

𝜏𝑦𝑦 = 𝜇 (2
𝜕𝑢2

𝜕𝑦
 −

2

3
𝑑𝑖𝑣 𝒖) ;    𝜏𝑦𝑧 = 𝜏𝑧𝑦 =  𝜇 (

𝜕𝑢2

𝜕𝑧
+

𝜕𝑢3

𝜕𝑦
) (10.3)

  

𝜏𝑧𝑧 = 𝜇 (2
𝜕𝑢3

𝜕𝑧
 −

2

3
𝑑𝑖𝑣 𝒖) ;    𝜏𝑥𝑧 = 𝜏𝑧𝑥 =  𝜇 (

𝜕𝑢3

𝜕𝑥
+

𝜕𝑢1

𝜕𝑧
)  

  

as linear functions of velocity gradients built on the Stokes 

hypothesis, see Lojcianskij, L. G. (1954), Milne-Thomson L.M. 

(1960) or Schlichting, H. (1960). The dynamics viscosity  𝜇(𝑇) 

assumes to be the known function of the mean temperature 𝑇. 
The divergences of vectors defined in (10.2) follow from (10.3) 

and (10.4),    

 

𝑑𝑖𝑣 𝜏𝑥 =
𝜕𝜏𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑥𝑦

𝜕𝑦
+

𝜕𝜏𝑥𝑧

𝜕𝑧
    

 

 𝑑𝑖𝑣 𝜏𝑦 =
𝜕𝜏𝑦𝑥

𝜕𝑥
+

𝜕𝜏𝑦𝑦

𝜕𝑦
+

𝜕𝜏𝑦𝑧

𝜕𝑧
      (10.4) 

 

 𝑑𝑖𝑣 𝜏𝑧 =
𝜕𝜏𝑧𝑥

𝜕𝑥
+

𝜕𝜏𝑧𝑦

𝜕𝑦
+

𝜕𝜏𝑧𝑧

𝜕𝑧
         

 

10.2 Information Support (5): On momentum flux tensor h 

and its components including the Reynolds’ stresses tensor 

 

The symmetric tensor of the momentum flux h = 𝜌𝒖𝒖 

represents the effects of inertial forces in momentum equations 

(7.2) and (7.4). As the main source of non-linearities it occurs in 

the resultant equations systems (7.41) up to (7.53) in the 

explicitly averaged final shapes. Its vector components are 

defined equally as done for vectors 𝜏𝑖  in (10.2) as well as for 

divergences in (10.4). 

The averaged products 𝜌 ̅𝑢′𝑖𝑢
′
𝑗 of its fluctuations represent at 

𝑖 ≠ 𝑗  and constant 𝜌 ̅  the components of the Reynolds’ 

(apparent) stresses tensor in turbulent liquid flows which became 

the most frequent object of approximate phenomenological 

turbulent modelling. Section 7.5 contains more about this. 

 

11. SURVEY OF RESULTS AND CONCLUSIONS 

11.1 Summarizing remarks  

 

The first three sections of the study were mainly on preparing 

a suitable strategy for the treatment of and solution to the closure 

problem. From the author’s insight into the foundations of fluid 

mechanics it followed that, while thermodynamics has reflected 

no effects of turbulence phenomena into relevant PDEs, the 

statistical tools of Reynolds have directed attention upon the roll 

of its randomness. Applying the idea that randomness as an 

autonomous factor of physical processes could be utilized as a 

property of independent variables of PDEs, the frequency of 

turbulent fluctuations was chosen for this role. The property of 

bifunctionality of spatial coordinates treated in Sect. 2.4 helped 

this choice due to its obvious analogy. 

The third Section has been devoted to creating the 

characteristic domain of averaging. Demonstrating the 

simultaneous existence of deformation (potential) energy 

together with elastic (kinetic) energy as the effects of turbulent 

density and velocity fluctuation, the author justified the 

extension of the validity of Kolmogorov’s inter-scale relations 

upon anisotropic turbulence. It allowed the characteristic 

domains of needed properties for averaging relevant PDEs 

describing any random turbulent fields in the 5–D random space 

to be created. 

The wanted equations closing the averaged N-S system (7.1) 

– (7.2)” in this study consist of the derived Energy Distribution 

Equations, EDEs (6.39) – (6.41) and equation (6.52) for 

computing the energy distribution factor𝜉. This solution can be 

called “direct” since it is expressed through a mere three definite 

integrals yielding all wanted averaged non-linearities of the 

double and triple products as defined in (7.10) – (7.15). The 

resultant closed system of averaged N–S equations for 

isothermal fluid flow is presented in equations (7.40) – (7.49). 

All results of the averaging process have been expressed 

through distribution functions 𝛹𝑖  of the vector of momentum 

𝜌𝑢𝑖 , 𝛹𝑖𝑗   of the momentum flax tensor  𝜌𝑢𝑖𝑢𝑗   for gases, as 

well as through distribution functions Φ𝑖𝑗 of the momentum flux 

tensor 𝜌𝑢𝑖𝑢𝑗   for liquids, all in (7.32) – (7.34). 

The structure of the EDE requires anyone to realize that the 

turbulent mean flow is always three-dimensional, with a spatially 

curved stream or vector lines. This property led to expected 

contradictions when the theory was confronted with data from 

experiments made in wind tunnel boundary layers assuming 

straight parallel flow there. The conflict, caused also by different 

ways of averaging the random fields, was removed by 

redistribution of the measured energy into all its directional parts 

in accordance with the numerical solution of the relevant EDEs. 

The errors that remained were below 2.5% for all comparisons 

with experiments, see in supplementary material. It convinced 

the author that this verification of the resultant EDE was 

successful. 

In Sect. 9.1 the important property of the constitution equation 

(4.16) is verified. It is its ability to describe any random velocity 

fields of turbulent flow. In Sect. 9.2 the method of unique 

numerical solution of the non-linear EDE algebraic system was 

described in connection with setting up the Cauchy initial value 

problem for (7.40) – (7.49). 

 

11.2 On verifying resultant  𝐞𝐪𝐮𝐚𝐭𝐢𝐨𝐧𝐬  𝐬𝐲𝐬𝐭𝐞𝐦𝐬  by 

experimental measurements 

 

Mean turbulent steady as well as unsteady fields are defined 

as the mathematical expectations, which cannot be measured. 

This can lead to presumption, that results of the statistical 

methods in fluid dynamics cannot be tested by measurements. 

But below it is shown that the steady mean fields can be tested 

comparing with measurements by means of the experimental 

expectations. This analogy to mathematical expectations works 

as follows: 

The term experimental expectation for 𝑓 e(𝒙)  = 𝑓 e(x, t) − 

fe
´ (𝒙, 𝑡) stems from the time averaging the 

measured  random  𝑓 e(x,t) over sufficiently long time te and 

signifies the comparing equivalent to any steady mean turbulent 

field 𝑓(𝒙) =𝑓(𝒙, 𝑡) − 𝑓′(𝒙, 𝑡). If 𝑓(𝒙)  is solution of steady task 
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to above resultant system and error deviations abs (𝑓 – s𝑓e) is 

small enough during the whole te. in the tested points of  𝐺(𝒙, 𝑡), 
then such test by experiment of the found resultant system can 

be accepted as successful. 

The validity of results of above treated testing of mean steady 

turbulent flow for the mean unsteady flow follows from 

assumption that used description tool is suitable to respect and 

record mean values of all flow characteristics including non-

stationarity. Nevertheless, the particular limits for 

error deviations are needed to state for each mean flow testing 

by measurements as well as its extension of validity needs own 

specific justification. 

 

11.3 On the ability to solve the average and closure problem 

at non-Newtonian fluids flows  

 

The properties of the constitutive functions found in this 

article allow to effectively average also the non-linearities of 

other kinds including those in the energy balance equation. But 

this ability does not vouch for the possibility to apply these tools 

without any problems also at describing turbulent fields of non-

Newtonian fluids flow.  

 

Availability of data 

The data supporting the findings of this study are available 

within the article and its supplementary material available from 

author, if asked. 
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