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Abstract 

Finite Markov chain modelling is a commonly used type of stochastic modelling 
employed in performance analysis of net games. Finite Markov chains are based 
on a state transition model which can be used to depict the game structure of net 
games as a succession of states which are defined as equivalence classes for game 
situations, e.g. service and return. Furthermore, the theory of finite Markov chains 
allows for the calculation of model variables which are of significant interest not 
only for validation but also for performance analysis, like wining probabilities or 
expected rally lengths starting from different states. By simulation, of a more-or-
less of tactical behaviors one may study the impact of these tactics on overall 
success. A novel state transition model for table tennis is introduced in this study 
as extension of an existing model in the literature containing only the first offensive 
shot. The new model additionally contains subsequent shots since they may be 
perceived as being influenced by the first offensive shot. A sample of 105 single 
matches (49 female, 56 male) at the 2020 Tokyo Olympics was examined. The 
validation of the Markov property resulted in satisfactory results. The relevance of 
26 transitions denoting specific tactical behaviors was obtained using simulation 
and subsequently compared between sexes. Results provide insights concerning the 
game structure of table tennis with a particular emphasis on the transition from the 
initial phase of rallies to the first offensive shot. 

KEYWORDS: TABLE TENNIS, MARKOV-CHAIN MODELLING, VALIDATION. 
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Introduction 

Finding adequate structural representations for game sports can be seen as a key challenge in 
theoretical performance analysis and sports informatics. This is due to their inherently complex 
nature and the corresponding difficulty of quantifying performance in this context (Lames, 
2023). Game sports are determined by variant, dynamic and context dependent tactical behavior 
of the interacting players or teams (Lames & McGarry, 2007; Sampaio & Leite, 2013). These 
properties lead to the notion of game sports as dynamical interaction processes with emergent 
behavior (Lames, 2023) and substantiate the need to find adequate methods to quantify sports 
performance (McGarry, 2009).  

The most common metrics for quantifying game sports performance are arguably performance 
indicators. In game sports, performance indicators largely represent absolute or relative 
frequencies of actions obtained through notational analysis. In discrete form, performance 
indicators therefore capture individual aspects of tactical behavior during a match (Hughes & 
Bartlett, 2002). In a broader context, performance indicators are also used with the aim of 
identifying specific playing characteristics in players or teams depicted as performance profiles 
(Hughes, Evans, & Wells, 2001; O✁Donoghue, 2005). Considering the inherent structural 
properties of game sports which are defined by variant tactical behavior, this form of quantifying 
performance warrants conceptual objections. In all of the described forms, performance 
indicators omit the context of captured tactical behaviors as they neglect the underlying sequence 
of events leading to those tactical behaviors as well as interactions with the opponent (Lames & 
McGarry, 2007; Sampaio & Leite, 2013). Moreover, this poses the issue of identifying the 
relationship between tactical behavior and outcomes (McGarry, 2009).  

As a consequence, finding more adequate model representations for game sports is crucial to 
account for their inherent characteristics and to provide a comprehensive understanding of game 
structure (Lames, 2023). To that end, importing models from other fields to performance analysis 
has yielded promising results in the past. For an application in theoretical performance analysis 
of game sports there are however several factors which should be taken into consideration. Two 
crucial properties required in this context are a model✁s adaptability to a sports context as well 
as the possibility for empirical and structural validation (Lames, 2023). Both properties have 
arguably been demonstrated for finite Markov chain modelling in a variety of applications, 
especially in net games.  

Markov chains represent a form of stochastic modelling, where a process is modelled as a 
sequence of states. These states represent equivalence classes for certain elements of the process 
(Kemeny & Snell, 1976; Lames, 2020). The process moves forward through transitions between 
states. A transition matrix comprised of these states consists of the empirical transition 
probabilities between the states and is typically a very informative representation of the process 
as a whole. Assuming the Markov property, which is a prerequisite for simulations, requires that 
a transition to a subsequent state only depends on the present state of the process (Kemeny & 
Snell, 1976; Lames, 2020). Furthermore, in finite Markov chains the number of states and 
transitions is limited. Frequently, finite Markov chains include one or more absorbing states 
which represent the end point of the modelled process (Kemeny & Snell, 1976; Lames, 2020).  

In performance analysis, these properties allow to capture the structure of game sports based on 
the underlying sequence of actions. This is especially applicable to net games due their clear 
sequence of alternating shots with each taking place in a stroke class i.e. in a state (Lames, 2020). 
✂ ✄☎✆✝✞✟✄✟✠✝ ✡✆✄☎✟☛ ✠☞ ✆ ✡✆✄✌✍ ✟✝ ✆ ✝✎✄ ✏✆✡✎ ☎✎✑☎✎✞✎✝✄✞ ✄✍✎ ✒✍✠✓✎ ✡✆✄✌✍ ✆✞ ✆ ✔✞✕✑✎☎-☎✆✓✓✖✗ ✒✟✄✍

the starting state service and absorbing states point or error. The specific value for performance 
analysis lies in the transitions between states as they can then be viewed as equivalent to certain 
✄✆✌✄✟✌✆✓ ✘✎✍✆✙✟✠☎✞✚ ✛✍✟✞ ✟✞ ✞✑✎✌✟☞✟✌✆✓✓✖ ✄☎✕✎ ☞✠☎ ✄✍✎ ✄☎✆✝✞✟✄✟✠✝✞ ✄✠ ✆✘✞✠☎✘✟✝✏ ✞✄✆✄✎✞ ✔✑✠✟✝✄✗ ✆✝✜
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✔✎☎☎✠☎✗ ✄✍✆✄ ✄✎☎✡✟✝✆✄✎ ✆ ☎✆✓✓✖ ✆✝✜ ✆☎✎ ✜✎✌✟✞✟✙✎ ✞✍✠✄✞ ✟✝ ✝✎✄ ✏✆✡✎✞ (Lames, 2020).  

Finite Markov chains in the context of performance analysis have been used for a variety of 
applications. An early application can be found in Pfeifer and Deutsch (1981) and Parlebas 
(1985) for the assessment of scoring systems in volleyball. Newton and Aslam (2009) used a 
Markov chain Monte Carlo Method to predict match winners in Tennis. Other applications 
focused on the evaluation of player and team performances. Galeano et al. (2022)  for instance 
evaluated player performances in badminton based on a Markov chain model which incorporates 
different playing patterns associated to playing styles. Kolbush and Sokol (2017) used a logistic 
regression / Markov chain model to evaluate team performance in American football based on 
match outcomes.  Furthermore, various publications focused on specific tactical aspects. For 
example Liu et al. (2022) analyzed attacking patterns of different playing styles in football 
(soccer) using a Markov chain model based on field zones. Likewise, Marino et al. (2023) 
examined the emergence of critical incidences and their association with different tactical actions 
in Rugby union matches. Lames (1991) introduced the concept of simulating changes in tactical 
behavior by manipulating associated state transitions to determine the relevance to overall match 
performance in net games. This early model was improved and adapted to modern tennis by 
Rothe and Lames (2023). In table tennis specifically, Pfeiffer, Zhang, and Hohmann (2010) used 
this concept to examine the relevance of different shot techniques. 

The simulative approach of determining the relevance of tactical behaviors under assumption of 
the Markov property is described in detail in the method section. In principle, by simulating 
changes in the frequency of certain state transitions in the general transition matrix it is possible 
to calculate the impact of these changes on the overall point winning probability. The impact on 
overall point winning probability is subsequently used as a metric to quantify the relevance of 
underlying tactical behaviors in a match or the game structure in general (Lames, 2020). This 
method may thereby provide insights to relevant aspects of theoretical and practical performance 
analysis like the structure of performance or tactical behaviors which should be considered as 
priority targets for training. 

This paper uses the approach introduced by Lames (1991) for tennis with a novel state transition 
system which was adapted to table tennis, emphasizing the initial transition between defensive 
and offensive play. The state transition system which serves as a basis for finite Markov chain 
modelling incorporates the concept of first offensive shots (FOS) introduced by Fuchs and 
Lames (2021). In table tennis, first offensive shots refer to the first shot after the service which 
is played without backspin (Fuchs & Lames, 2021). Therefore, the FOS serves as a turning point 
in the rally where an initial transition from defensive backspin shots to offensive shots (e.g. top 
spin or flip) occurs. Further, Fuchs and Lames (2021) found unique properties in the shots 
immediately following the FOS, which is also emphasized in the novel state transition model for 
table tennis. 

The aim of the present study was to examine table tennis tactical behavior using a novel state 
transition model in the form of a finite Markov chain. Before doing so the assumption of the 
Markov property has to be validated which is done here by comparing predicted winning rates 
assuming the Markov property with observed ones. This allows leveraging the theory of finite 
Markov chains by conducting simulations resulting in estimates for the relevance of individual 
tactical behaviors. Furthermore, we provide descriptive statistics on the relevance of several 
tactical behaviors specifically regarding the FOS and compare both sexes to infer possible 
differences in tactical behavior between male and female players. 
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Generally, a state transition model serves as procedural representation of a real-world process as 
sequence of states. Individual states are defined as equivalence classes for discrete elements 
within the given process (Lames, 2020). Thus, in the context of table tennis, a state represents a 
group of shots sharing similar properties. Accordingly, shots assigned to the same state are 
similar in terms of technique and their tactical role during the rally. Further, transitions are 
possible between different states based on their occurrence and frequency in the modelled real 
live process (Lames, 2020).  

A flow chart representation of the utilized state transition model for table tennis is given in Figure 
1. 

The state transition model in this case formally represents a finite Markov chain or more 
specifically its associated state space. Therefore, the number of possible transitions in the process 
is limited, thus accurately representing the characteristics of an actual rally (Lames, 2020). 
Additionally, this implies the differentiation of three state types: a starting state, transient or sets 
of transient states and absorbing states. The starting state and the absorbing states represent the 
start point and the endpoints of the modelled process. Transient states or transient sets of states 
respectively, make up all intermediary states. After a transient state or set of transient is left the 
process cannot return to it again (Lames, 2020). 

State transitions refer to the transition between different equivalence classes representing 
specific shot types or endpoints of the rally. A state transition to a subsequent state may only 
occur if the specific shot sequence can be observed during the actual match. Thus, the resulting 
transition probabilities are derived from the observed relative frequency of shots during a match. 
Accordingly, a state transition is equivalent to the ball travelling between two individual shots 
or before a point or an error. 

The process always begins in the starting state represented by the service (Service) in the present 
model. From the service the process may either transition to a defensive shot (Def) or a first 
offensive shot (FOS). The definitions for both states were derived from Fuchs and Lames (2021). 
Accordingly, defensive shots are defined as shots played with backspin/side-backspin typically 
played over the table. The first offensive shot is defined as the first shot after the service which 
is played without the involvement of any backspin/side-backspin, i.e. for example top spin or 
flip. This represents an important tactical decision, where a player either decides to take risk 
immediately and attack the opponent or to play more defensive and accept to possibly be put 
under pressure by the opponent (Fuchs & Lames, 2021).   

If a defensive shot is played following the serve the process can subsequently either transit to 
another defensive shot or to a first offensive shot. To that end, it was decided to differentiate 
between two types of first offensive shots depending on if they are played following a serve 
(FOS-S) or later on in the rally following a defensive shot (FOS-D). This is based on the 
observation that both shot types differ in their difficulty with FOSs following a service appearing 
to be more difficult and involving higher risk for the FOS player (Fuchs & Lames, 2021). Until 
a FOS is played, the process remains in the state Def.  

After playing a FOS, state transitions are possible to the subsequent FOS+ states which exhibit 
distinct characteristics, setting them apart from the initial defensive state. The three shots 
following the FOS are assigned to specific equivalence classes FOS+1, FOS+2 and FOS+3. 
FOS+2 is executed by the FOS player, while FOS+1 and FOS+3 are played by the non-FOS 
player. This state design was chosen to account for the advantage of the FOS player during the 
three shots following the FOS (Fuchs & Lames, 2021) as well as to examine the influence of the 
FOS in subsequent shots. Shots after FOS+3, where the advantage caused by the FOS is assumed 
to be no longer present, are assigned to the state representing the finishing part of the rally (Fin). 
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Regarding formal aspects of finite Markov chains this additionally accounts for the chain 
property which demands a certain invariance of the process (Lames, 2020). 

All the aforementioned states following the serve represent transient states (FOS, FOS+1, 
FOS+2 and FOS+3) or sets of transient states (Def and Fin). Transitions to an absorbing state 
are possible from the starting state as well as all transient states in the process. In terms of a table 
tennis rally those states are equivalent to point and error. Points in this context are seen as 
equivalent to winners where the receiving player is not able to play a follow up shot.   

Simulations Using Finite Markov Chains  

Finite Markov chains represent a stochastic process in which the transition to a subsequent state 
may only depend on the present state. This property is termed Markov property (Kemeny & 
Snell, 1976). Moreover, the theory of finite Markov chains allows for a series of calculations 
based on an initial state transition matrix which can be of value for performance analysis (Lames, 
1991). Specifically, this allows to approximate the number of steps from any state to an 
absorbing state as well as the absorption probability from each state. In terms of a model for 
table tennis this is especially interesting concerning the state serve as the approximated steps 
until absorption as well as the absorption probability can be viewed as equivalent to the overall 
rally length and probability of winning a point. For a more detailed description of the calculation 
steps in finite Markov chain modelling also see Lames (2020) as well as Rothe and Lames 
(2022).  

Using the theory of finite Markov chains (Kemeny & Snell, 1976), Lames (1991) introduced the 
concept of determining the relevance of tactical behaviors in terms of performance by simulating 
changes in associated state transitions. Simulating a change in a selected state transition by 
deflecting the corresponding transition probability results in a modification of the modelled point 
winning probability. The resulting difference between the original and the modified winning 
probability from the state serve is subsequently used to quantify the impact of the simulated 
change in tactical behavior. This percentage difference of point winning probability is referred 
to as performance relevance. 

The induced change in transition probability is always calculated proportionally to the initial 
transition probability. This is to account for the varying difficulty of changing tactical behaviors 
reflected by the simulations thereby also providing comparability between the resulting 
performance relevance. Given the example in Figure 2 it seems reasonable to assume that 
increasing the transition probability from Def to Def is less difficult than increasing the transition 
probability between FOS and point. To that end Lames (1991) suggested a formula for the 
proportional deflection of transition probabilities: 

✂�☛✁✄ ✌ ✞ ☎ ✆✝ ✟ ✠☛✁✄ ✟ ✡☞ ✍ ✠☛✁✄✎ 

Here, ✞ and ✝ represent constants. These constants were determined in a way that the level of 
correlation between the initial transition probability ✠☛✁✄ and the calculated performance 
relevance are as minimal as possible (Lames, 1991). ✞ stands for a constant deflection that is 
applied even when ✠☛✁✄ is 0 or 1 and is set applying the mentioned criterion to 0.01. ✝ stands for 
the part of the deflection that is proportional to ✠☛✁✄ as one may assume that it is easier to change 
a transition probability in the middle of the distribution compared to very low or high ones that 
✔☞✎✎✓✗ ✄✍✎ ✕✝✞✕☎✡✠✕✝✄✆✘✓✎ ✘✆☎☎✟✎☎✞ ✠☞ ✏ ✆✝✜ ✑✚ ✛✠ ☎✎✞✑✎✌✄ ✄✍✎✞✎ ✘✠✕✝✜✆☎✟✎✞ ☞✠☎ ✞✟✡✕✓✆✄✟✠✝

purposes, original transition probabilities < 50% are deflected upwards and transition 
✑☎✠✘✆✘✟✓✟✄✟✎✞ ✠☞ ✒ ✓✏✔ ✜✠✒✝✒✆☎✜✞✚  

Additionally, deflecting a transition probability needs to be compensated to preserve the sum of 
1 for all transition probabilities of this state. This is done here according to a suggestion of Lames 
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(1991)  with a compensation proportional to the size of the transition probability to be 
compensated (✠☛�✁✂) as this compensation is not connected to a substantial tactical assumption:  

✂�☛�✁✂ ✌ ✒✠☛�✁✂✄✡☞ ✍ ✠☛✁✄✎☎ ✟ ✂�☛✁✄ 

Figure 2 depicts the calculation of the performance relevance for the transition between the states 
FOSA-S  and error. The transition probabilities of all remaining state transitions from this state 
are compensated as previously specified. Below, the resulting winning probabilities for the 
original as well as the simulated transition probability are given. This results in a performance 
relevance of -1.55 % 

  
Figure 2. Example of a simulated change of the transition probability (%) between FOSA-S � Point B (Error) as 
well as the resulting winning probabilities (%) from the bronze medal match Lin vs Ovtcharov. 

Model Validation 

As mentioned in the forgoing paragraph finite Markov chains are subject to the Markov property. 
Therefore, the usage of all described calculations leveraging the theory of finite Markov chains 
likewise is based on the assumption of the Markov property thereby necessitating a validation 
of this property (Lames, 2020; Pfeiffer et al., 2010).  

For that purpose, predictive validity has been referred to as an adequate mean to demonstrate 
whether the assumption of the Markov property is warranted (Lames, 2020; Pfeiffer et al., 2010). 
This was assessed by examining the concurrency of calculated values assuming the Markov 
property for winning probability as well as rally lengths with their empirically observed 
counterparts in all matches of the sample. Concurrency of these values was tested using 
Pearson✁s correlation. While for calculating performance relevance only the overall winning 
probability i.e. the winning probability starting with state serve is used, content validity was also 
tested for all remaining states to demonstrate the general validity of the utilized state transition 
model.   

Statistical Testing 

To assess differences in game structure between male and female players the performance 
relevance of all examined state transition was compared concerning the factor sex. Since data 

Lin (A) DEF B FOS B - S FOS B - D FOS+1 B FOS+2 B FOS+3 B Fin B Point A Point B

Service A 55.22 41.79 0.00 2.99

DEF A 57.14 42.86 0.00 0.00

FOS A - S 75.00 6.82 18.18

✆ ✆ ✆ ✆

FOS A - S* 71.36 6.49 22.16

FOS A - D 66.67 6.67 26.67

FOS+1 A 59.38 9.38 31.25

FOS+2 A 60.00 6.67 33.33

FOS+3 A 50.00 16.67 33.33

Fin A 64.71 5.88 29.41

✝ 47.27

✝ 48.82

✝ -1.55

Winning probability simulated TP

Winning probability original TP

Performance Relevance
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for various state transition exhibited a non-gaussian distribution a non-parametric Mann Whitney 
� ✛✎✞✄ ✒✆✞ ✌✍✠✞✎✝ ☞✠☎ ✄✎✞✄✟✝✏✚ ✛✍✎ ✞✟✏✝✟☞✟✌✆✝✌✎ ✓✎✙✎✓ ✒✆✞ ✞✎✄ ✄✠ ✁ ✂ ✏✚✏✓✚ 

Results 

Model Validation 

Correlations between calculated and observed point winning probability and rally length from 
every state were obtained to verify the assumption of the Markov property. Resulting correlation 
coefficients ranged from rcc = .85 to rcc = .95 for point winning probability and rcc = .82 to rcc = 
.97 for rally length. Overall point winning probability (winning probability starting from serve) 
exhibited a correlation coefficient of rcc = .91. Total rally length (rally length starting form serve) 
exhibited a correlation coefficient of rcc = .96.  

  

Transition Matrix of a Single Match 

  
Figure 3 Transition matrix for the men✄s final of the Tokyo Olympics 2020 between Fan Zhendong and Ma Long 
(4-11, 12-10, 8-11, 9-11, 11-3, 7-11). 

Figure 3 depicts an exemplary state transition matrix of the men✁s competition final at the Tokyo 
Olympics between Fan Zhendong and Ma Long, (4-11, 12-10, 8-11, 9-11, 11-3, 7-11). Note that 
in this case the regular transition matrix is split in two sperate matrices for the shots of the 
individual players. Generally, transitions matrices of individual matches allow to identify 
advantages and disadvantages in certain states as well as preferences in shot selection. It is 
possible to identify strengths and weaknesses at the given level of abstraction, i.e. transition 
rates. 

When looking at the transition matrix presented in Figure 3 it is apparent that both players exhibit 
different shot selections and tactical behavior in terms of playing their FOS. Looking at the state 
transition Serve-FOS-S it becomes apparent that Fan tries to attack Ma✁s serve in most cases 

Fan (A) DEF B FOS B - S FOS B - D FOS+1 B FOS+2 B FOS+3 B Fin B Point A Point B

Service A 89.09 10.91 0.00 0.00

Def A 48.21 51.79 0.00 0.00

FOS A - S 78.38 10.81 10.81

FOS A - D 75.00 6.25 18.75

FOS+1 A 57.14 10.71 32.14

FOS+2 A 61.11 5.56 33.33

FOS+3 A 80.00 10.00 10.00

Fin A 67.39 6.52 26.09

Ma (B) DEF A FOS A - S FOS A - D FOS+1 A FOS+2 A FOS+3 A Fin A Point B Point A

Service B 28.30 69.81 0.00 1.89

Def B 53.95 42.11 0.00 3.95

FOS B - S 100.00 0.00 0.00

FOS B - D 75.86 10.34 13.79

FOS+1 B 67.92 7.55 24.53

FOS+2 B 62.50 6.25 31.25

FOS+3 B 81.82 0.00 18.18

Fin B 71.79 12.82 15.38
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(69.81 %) while Ma largely choses to play a defensive shot following Fan✁s serve (89.09 %). In 
contrast to that, Ma attacks a larger proportion of defensive shots than Fan (51.79 % vs. 42.11 
%), however the difference is much less pronounced than in the state transition Serve-FOS-S.  

Further, Fan seems to take higher risk in both FOS states indicated by higher transition 
probabilities to errors in both states (10.81 % and 18.75 % vs. 0 % and 13.79 %). Ma on the 
other hand shows different tactical behavior when playing a FOS following a serve compared to 
after a defensive shot. When playing a FOS following his opponent✁s service, he chooses a rather 
defensive approach allowing his opponent to play a follow up shot (FOS+1) in all cases. For 
FOSs following a defensive shots Ma✁s tactical behavior is much more similar to Fan✁s 
exhibiting a comparable transition probability in the transition from FOS-D to FOS+1 (75 % vs. 
75.81 %). 

In the state FOS+1, which represents the shot immediately following an FOS, Ma seems to be 
more successful in defending his opponent✁s FOS with a considerably lower error rate (24.53 % 
vs. 32.14 %) and higher transition probability to the subsequent state (67.92 % vs. 57.14 %). 
Transition probabilities from FOS+2 and FOS+3 are comparable in both players.  

In longer rallies Ma clearly has an advantage over Fan in this particular match indicated by a 
higher point and lower error rate when compared to Fan (12.82 % and 15.38 % vs. 6.52 % and 
26.09 %). Likewise, Ma generally exhibits lower error rates in all states when compared to Fan. 

Performance Relevance  

Table 1 shows descriptive statistics of the calculated performance relevance of all state 
transitions in male and female players. Statistics include mean, median, minimum, and 
maximum values as well as the standard deviation. Statistically significant differences in terms 
of sex are marked by an asterisk. Furthermore, to allow for better comparison between different 
state transitions the magnitude of performance relevance is referred to in relation to its absolute 
value. 

Generally, male and female players exhibit comparable performance relevancies in a majority 
of states. Only the state transitions Serve-Def, Def-Def and Fin-Fin exhibit statistically 
significant differences in terms of sex. Here the performance relevance of Serve-Def and Def-
Def is higher in male players while the performance relevance of Fin-Fin is higher in female 
players. 

For the state serve, the transition to the subsequent state FOS-S likewise exhibits a certain degree 
of dissimilarity in terms of performance relevance, when comparing male and female players, 
with a higher performance relevance in male players, although this difference is not statistically 
significant. For the state Def male and female players show opposing trends in terms of 
performance relevance. In male players the transition to a subsequent shot in Def exhibits higher 
performance relevance than the transitions to FOS-D while in female players the opposite is the 
case. However, the difference in the transition Def-FOS-D is less pronounced. 

Transitions from both FOS states to the subsequent state FOS+1 exhibit comparable 
performance relevancies in male and female players. The subsequent state transitions FOS+1-
FOS+2, FOS+2-FOS+3 and FOS+3-Fin again exhibit comparable performance relevancies with 
slightly higher values in female players.  

In general, state transitions to point and error are largely comparable between male and female 
players with a greater difference being present only in the transition Fin-Error. Here female 
players exhibit a higher performance relevance than male players, although this difference is not 
statistically significant.  
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Table 1. Descriptive statistics of the performance relevance per state transition. 

 

Figures 3 shows the performance relevancies of state transitions from both FOS states as well as 
all subsequent states to the following transient state and error. Evidently error rates exhibit a 
comparatively higher performance relevance as transitions to transient states. Here all error rates 
apart from the error rate in FOS+3 exhibited performance relevancies greater than 1%.  
Regarding transitions to subsequent transient states specifically, the transitions FOS+1-FOS+2 
as well as Fin-Fin exhibit comparatively high performance relevance.  

Overall, state transitions from FOS+1 exhibit the highest performance relevance in all their 
respective state categories i.e. the highest performance relevance of all transitions to a 
subsequent transient state, point and error. 

State Transitions

m w m w m w m w m w

Serve-Def * 0.32 0.13 0.27 0.08 2.12 1.59 -1.08 -1.34 0.60 0.58

Serve-FOS-S -0.22 -0.06 -0.18 -0.05 1.56 1.61 -2.12 -1.54 0.65 0.57

Serve-P 0.56 0.55 0.52 0.53 1.45 1.60 0.24 0.22 0.18 0.20

Serve-E -0.67 -0.66 -0.62 -0.59 -0.24 -0.30 -1.71 -1.57 0.23 0.24

Def-Def * 0.44 0.25 0.37 0.19 2.64 1.31 -0.71 -0.55 0.49 0.33

Def-FOS-D 0.12 0.24 0.08 0.20 1.40 1.62 -1.27 -1.63 0.49 0.56

Def-P 0.52 0.51 0.49 0.46 1.81 1.24 0.16 0.04 0.24 0.25

Def-E -0.91 -0.87 -0.84 -0.80 -0.12 -0.04 -2.17 -2.18 0.39 0.46

FOS-S-FOS+1 0.82 0.85 0.77 0.88 2.27 2.72 -0.31 -0.35 0.54 0.54

FOS-S-P 0.43 0.39 0.36 0.34 1.33 1.46 0.01 0.04 0.29 0.27

FOS-S-E -1.11 -1.07 -1.09 -1.02 -0.06 -0.04 -2.62 -2.72 0.55 0.55

FOS-D-FOS+1 0.61 0.66 0.55 0.66 2.01 1.91 -0.81 -0.52 0.56 0.52

FOS-D-P 0.54 0.46 0.52 0.41 1.30 1.20 0.06 0.06 0.32 0.28

FOS-D-E -1.07 -1.01 -1.02 -1.02 -0.09 -0.12 -2.45 -2.01 0.49 0.50

FOS+1-FOS+2 1.53 1.62 1.48 1.58 3.17 3.69 -0.24 0.15 0.72 0.73

FOS+1-P 0.90 0.82 0.85 0.71 2.69 1.96 0.04 0.20 0.47 0.40

FOS+1-E -2.12 -2.13 -2.07 -2.10 -0.35 -0.62 -4.07 -4.02 0.76 0.75

FOS+2-FOS+3 0.77 0.89 0.69 0.85 2.66 2.06 -0.57 -0.13 0.53 0.46

FOS+2-P 0.46 0.45 0.43 0.38 1.55 1.30 0.04 0.03 0.27 0.29

FOS+2-E -1.07 -1.15 -1.03 -1.12 -0.04 -0.16 -2.87 -2.49 0.50 0.53

FOS+3-Off 0.50 0.58 0.48 0.55 1.56 1.48 -0.44 -0.29 0.37 0.41

FOS+3-P 0.32 0.31 0.29 0.25 1.06 1.20 0.01 0.02 0.23 0.24

FOS+3-E -0.72 -0.78 -0.67 -0.67 -0.02 0.00 -1.88 -2.00 0.42 0.43

Fin-Fin * 1.10 1.31 0.99 1.20 3.58 3.59 0.08 0.00 0.66 0.74

Fin-P 0.66 0.65 0.60 0.52 2.07 1.78 0.03 0.00 0.43 0.48

Fin-E -1.51 -1.66 -1.31 -1.58 -0.27 0.00 -4.05 -4.24 0.78 0.97

Mean Median Max. Min. Std.
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performance relevance. Generally, concurrent validity was satisfactory in all states, with 
associated correlations exhibiting values greater than rcc = .80.  

One limitation which needs to be mentioned in this regard is the slightly lower concurrent 
validity when compared to earlier studies using this method (Lames, 1991; Pfeiffer et al., 2010). 
A possible explanation for that can be found in the variability of FOS utilization when looking 
at the range of transition probability for the transitions Serve-FOS-S as well as Serve-FOS-D. In 
some cases, while there is consistent usage of the FOS, FOS usage is comparatively low. This 
possibly leads to discrepancies between the calculated and observed winning probabilities as the 
state transition model is less suited to accurately depict playing styles with a lower FOS 
utilization as the model is centered around the FOS and subsequent FOS+ shots. Furthermore, 
the current model does not differentiate between different FOS techniques which differ in terms 
of point winning probability (Fuchs & Lames, 2021). 

Performance relevance 

Calculating the performance relevance of state transitions may serve as a means to establish a 
connection between tactical behavior and sports outcomes. However, since the results presented 
in the scope of this study are based on the mean values of performance relevance, subsequent 
assertions refer to general game structure.  

In that regard, specifically error rates can be found among the state transitions exhibiting 
particularly high performance relevance especially in both FOS states as well as the two 
subsequent states FOS+1 and FOS+2 as shown in Figure 4. This not only signifies the general 
importance of the FOS and subsequent shots but arguably also the general requirement to take 
high risk when playing FOSs as well as the high proficiency in countering and defending the 
FOS among players at the highest level of table tennis (Fuchs & Lames, 2021). Furthermore, 
when looking at previous results (Fuchs & Lames, 2021) and the underlying transition 
probabilities it becomes apparent that a majority of rallies ends through errors in this phase of 
the rally. Therefore, changing the error rates in these states naturally causes a considerable shift 
in winning probability as the FOS player typically holds the greatest advantage during these 
shots but needs to take high risk on his shots to profit from this advantage.  

This is specifically apparent regarding the transition FOS+1 - Error, which not only exhibits the 
highest absolute performance relevance out of all state transitions but also represents the highest 
error rate in its corresponding transition probability. As established by Fuchs and Lames (2021) 
it is crucial for the FOS player to end the rally as quickly as possible following a FOS. Further, 
almost 50% of all rallies involving a FOS already end with this state (Fuchs & Lames, 2021). 
Being able to reduce the error rate in this state is thus crucial for the FOS receiver to reach later 
stages of the rally where his disadvantage is considerably reduced. Merely the transition Fin-
Error seems odd in this context. However, considering that FOS players typically take high risk 
to close the rally immediately with or after the FOS, this is representative of giving away their 
✆✜✙✆✝✄✆✏✎✠✕✞ ✑✠✞✟✄✟✠✝ ✟✝ ✄✍✎ ☎✆✓✓✖✚ �✟✌✎ ✙✎☎✞✆✁ ☞✠☎ ✄✍✎ ✂✄☎ ☎✎✌✎✟✙✎☎ ✄✍✟✞ ☎✎✑☎✎✞✎✝✄✞ ✆ ✔✘✟✏ ✑✠✟✝✄✗

turning around their initial disadvantage during the rally.  

Regarding transitions between transient states, particularly the transitions FOS+1-FOS+2 as well 
as the transition Fin-Fin stand out with comparatively high degrees of performance relevance. 
This is somewhat in line with the assertions in the forgoing paragraph. As already mentioned, 
the state FOS+1 is the most disadvantageous for the FOS receiver. Similar to the relevance of 
the transition to error in this state, keeping the rally going is crucial for the FOS receiver at this 
stage in order to reduce the advantage of the FOS player. Furthermore, the FOS may thus be 
able to adapt to the change in play, making it easier to anticipate the subsequent shot. Similar to 
the transition Fin-Error, the comparatively high performance relevance of the transition Fin-Fin 
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is again representative of the fact that the FOS player loses his advantage in longer rallies. 
Specifically, the first shot in this state represents the shot where a considerable decrease in 
winning probability for the FOS player can be observed (Fuchs & Lames, 2021). Moreover, Fin 
A and Fin B form a transient set where the process may stay for several strokes as opposed to 
all FOS states which are transient states with a maximum of one occurrence per rally. Thus, an 
improvement in the transitions of a transient set has several chances to become effective. 

Besides, it is also interesting to look at the discrepancy in performance relevance between the 
transitions FOS-D-FOS+1 and FOS-S-FOS+1. This might point to a different tactical intent 
when attacking the serve with a FOS compared to playing the FOS after a defensive shot. In the 
transition FOS-S-FOS+1, the receiver arguably tries to create an early perturbation in the rally 
preventing the server from taking the initiative. Here the aim is likely not to immediately close 
the point but preventing the server to attack with a FOS of its own, which is connected to a high 
success rate of the server, contributing to a higher significance of the subsequent shot (Fuchs & 
Lames, 2021). Attacking the serve immediately with flip technique was found to be a common 
strategy especially in male receivers (Fuchs & Lames, 2021; Yu & Gao, 2022) but to a lesser 
degree also in female players (Fuchs & Lames, 2021). While female players more often 
immediately attack the serve with a top spin shot due to differences in serve and receiving game, 
this seems to be less of a problem for female players as it is easier for them to control an 
opponent✁s to spin shot (Zhang & Zhou, 2017). Moreover, immediately attacking the serve is 
connected to a lower immediate point rate and higher error rate which further contributes to the 
higher significance of the transition to the subsequent shot FOS+1 following a FOS-S when 
compared to a FOS-D. 

Comparison between male and female players 

Concerning the comparison of male and female players in terms of performance relevance it is 
apparent that the game structure is rather similar in both groups. However, there are still some 
general differences worth mentioning. These mainly concern the early and end phase of the rally 
namely the states Serve, Def and Fin. 

First the serve and receiving game seems to be of slightly higher significance in male than in 
female players. This is evident through the significantly higher performance relevance of the 
transition Serve-Def and as well as the higher performance relevance of the transition Serve-
FOS-S. A possible explanation in that regard can be found in the utilization of different FOS 
techniques namely a higher utilization of top spin FOS in female players in contrast to male 
players✁ higher reliance on the flip technique (Fuchs & Lames, 2021). Fuchs and Lames (2021) 
attributed this observation to the fact that male players prefer to serve and return short to avoid 
a direct top spin shot of the receiver which is supported by the findings of �✁✠✂✟✄ ✎✄ ✆✓✚ ☎✆✏✆✏✝. 
Furthermore, this results in male receivers playing a FOS following a serve more often over the 
table which implies the utilization of the flip technique for that purpose (Fuchs & Lames, 2021). 
Alternatively, this might cause the receiver to play the return as a defensive shot allowing the 
server to attack with a FOS on their follow up shot. Otherwise, in cases where the receiver can 
play a top-spin FOS, this is more detrimental for male servers than for female servers. 

The difference in service and receiving game is arguably also evident when looking at transitions 
from the state Def. Here the transition Def-Def exhibited a significantly higher degree of 
performance relevance in male players. This is also in line with previous findings. Female 
players seemingly prefer to play their return with a half-long or long push to take the initiative 
in the rally immediately while male players more often tend to return short (Zhang & Zhou, 
2017). Zhang and Zhou (2017) attribute this difference to the higher difficulty for men to control 
a top spin shot of the serving player following their return. As already mentioned, this seems to 
be less of a concern for female players. As attacking a short ball with a flip technique FOS seems 
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to be less efficient (Fuchs & Lames, 2021) it can be of greater relevance for men to induce a 
subsequent defensive shot by their opponent which can be attacked with a top spin FOS. In 
contrast the transition Def-FOS-D shows higher performance relevance in female players. This 
is likely representative of the fact that women are able to better defend from an opponent✁s top 
spin FOS than their male counterparts. In some cases, it could therefore be beneficial for female 
players to speculate on a low-quality FOS by their opponent which might give them the 
opportunity for a successful counterattack.  

Another distinctive feature concerning sex differences in terms of performance relevance can be 
found in the higher relevance of the state Fin in female players, specifically in the significantly 
higher performance relevance of the transition Fin-Fin. Looking at the findings of Fuchs and 
Lames (2021) it is evident that the decrease in winning probability is bigger in women when 
rallies aren✁t closed with the shot corresponding to the state FOS+2 in the present state transition 
model. Consequently, it seems reasonable to assume that longer rallies are more detrimental for 
female FOS players, thereby explaining the aforementioned difference in performance 
relevance. This is also in line with the higher performance relevance in the transition FOS+3-
Fin although the difference is not statistically significant for this transition. Nevertheless, game 
structures in male and female players are largely similar in terms of performance relevance. This 
is especially true for the significance of both FOS sates and the FOS+ states as evidenced by 
Figure 4 

Conclusion 

This study implemented a novel state transition model for table tennis which was focused on the 
concept of FOS. Furthermore, finite Markov chain modelling and methods of simulative 
assessment were employed to attain the performance relevance of individual state transitions 
within the model, representing tactical behaviors. Thereby this work provides a comprehensive 
analysis of the general game structure in table tennis as well as the impact of individual tactical 
behaviors within it. Specifically, the presented method provides novel insights in the 
characteristics of the FOS and especially regarding the immediately following shots. 
Furthermore, differences in game structure and the impact of tactical behavior were examined 
in terms of players✁ sex. This could provide a framework for future research approaching models 
in theoretical performance analysis with a greater focus on specific tactical behavior allowing 
for more concrete insights for analysts and practitioners alike.  



IJCSS � Volume 24/2025/Issue 1              www.iacss.org 

15 

References 

�✁✠✂✟✄✁ �✚✁✁✆✓✆✏✠✓✟ ✂✆✝✄✠✝✟✁ ☎✚✁ ✆✆✄✞✟✂✆✜✎✓✟✞✁✁✚✁✝ ☎✄☎✆✕✘✁ ✞✚ ☎✆✏✆✏✝✚ ☎✎☎✙✎ ✆✝✆✓✖✞✎✞ ✠☞ ✎✓✟✄✎

European table tennis matches. International Journal of Racket Sports Science 2(1), 1-
8.  

Fuchs, M., & Lames, M. (2021). First Offensive Shot in Elite Table Tennis. International 

Journal of Racket Sports Science, 3(1), 10-21.  
Galeano, J., Gómez, M.-Á., Rivas, F., & Buldú, J. M. (2022). Using Markov chains to identify 

player✁s performance in badminton. Chaos, Solitons & Fractals, 165, 112828.  
Hughes, M., & Bartlett, R. (2002). The use of performance indicators in performance analysis. 

Journal of Sports Sciences, 20, 739-754. doi:10.1080/026404102320675602 
Hughes, M., Evans, S., & Wells, J. (2001). Establishing normative profiles in performance 

analysis. International Journal of Performance Analysis in Sport, 1, 1-26. 
doi:10.1080/24748668.2001.11868245 

Kemeny, J. G., & Snell, J. L. (1976). Markov chains. New York: Springer-Verlag. 
Kolbush, J., & Sokol, J. (2017). A logistic regression/Markov chain model for American 

college football. International Journal of Computer Science in Sport, 16(3), 185-196.  
Lames, M. (1991). Leistungsdiagnostik durch Computersimulation: Ein Beitrag zur Theorie 

der Sportspiele am Beispiel Tennis. Frankfurt a.M.: Verlag Harri Deutsch. 
Lames, M. (1994). Systematische Spielbeobachtung. Münster: Philippka. 
Lames, M. (2020). Markov Chain Modelling And Simulations In Net Games. In C. Ley & Y. 

Dominicy (Eds.), Science Meets Sports: When Statistics Are More Than Numbers (pp. 
147-170): Cambridge Scholars Publishing. 

Lames, M. (2023). Performance Analysis in Game Sports: Concepts and Methods. Cham: 
Springer Nature. 

Lames, M., & McGarry, T. (2007). On the search for reliable performance indicators in game 
sports. International Journal of Performance Analysis in Sport, 7(1), 62-79.  

Liu, T., Zhou, C., Shuai, X., Zhang, L., Zhou, J., & Yang, L. (2022). Influence of different 
playing styles among the top three teams on action zones in the World Cup in 2018 
using a Markov state transition matrix. Frontiers in Psychology, 13, 1038733.  

Marino, T. K., Ferreira, A. R., Morgans, R., Schildberg, W. T., Aoki, M. S., Corrêa, U. C., & 
Moreira, A. (2023). The emergence of critical incidents in Rugby Union matches using 
Markov chain analysis. Science and medicine in football, 7(4), 323-330.  

McGarry, T. (2009). Applied and theoretical perspectives of performance analysis in sport: 
Scientific issues and challenges. International Journal of Performance Analysis in 

Sport, 9(1), 128-140.  
Newton, P. K., & Aslam, K. (2009). Monte Carlo tennis: a stochastic Markov chain model. 

Journal of Quantitative Analysis in Sports, 5(3).  
O✁Donoghue, P. (2005). Normative profiles of sports performance. International Journal of 

Performance Analysis in Sport, 5(1), 104-119.  
Parlebas, P. (1985). Modélisation du jeu sportif: le système des scores du volley-ball. 

Mathématiques et Sciences humaines, 91, 57-80.  
Pfeifer, P. E., & Deutsch, S. J. (1981). A probabilistic model for evaluation of volleyball 

scoring systems. Research quarterly for exercise and sport, 52(3), 330-338.  
Pfeiffer, M., Zhang, H., & Hohmann, A. (2010). A Markov chain model of elite table tennis 

competition. International Journal of Sports Science & Coaching, 5(2), 205-222.  
Rothe, F., & Lames, M. (2022). Simulation of Tennis Behaviour Using Finite Markov Chains. 

IFAC-PapersOnLine, 55(20), 606-611.  



IJCSS � Volume 24/2025/Issue 1              www.iacss.org 

16 

Rothe, F., & Lames, M. (2023). Markov-chain Modelling and Simulative Assessment of the 
Impact of Selected Tactical Behaviours in Modern Tennis. International Journal of 

Racket Sports Science(5(1)).  
Sampaio, J., & Leite, N. (2013). Performance indicators in game sports. In T. McGarry, P. 

O✁Donoghue, & J. Sampaio (Eds.), Routledge handbook of sports performance analysis 
(pp. 115-126): Routledge. 

Wiesener, F. (2022). �✁✂ ✄☎✆✝✞✟ ✠✡✡✂☛✞✆☞✂ ✌✁✍✟ ✎☎✠✌✏✑ ✆☛ �✒✓✔✂ �✂☛☛✆✞ 

- technique and tactics at the Tokyo 2020 Olympic Games. (Bachelor-Thesis). TU Munich,  
Yu, J., & Gao, P. (2022). Interactive three-phase structure for table tennis performance 

analysis: application to elite men✁s singles matches. Journal of Human Kinetics, 81(1), 
177-188.  

Zhang, H., & Zhou, Z. (2017). An analytical model of the two basic situation strategies in table 
tennis. International Journal of Performance Analysis in Sport, 17(6), 970-985.  

 


