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Abstract: In this paper, the explicit necessary and sufficient
conditions are established for the existence of proportional-integral
observer for the state estimation of linear time-invariant continuous-
time systems. In particular, it is proven that for a given linear
time-invariant continuous-time system of order n, having m inputs
and p linearly independent outputs, a proportional-integral observer
of order n can be constructed if and only if the given system is
detectable. Furthermore a simple procedure is given for the con-
struction of proportional-integral observer. Our approach is based
on properties of real and polynomial matrices.
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1. Introduction

In 1963, Luenberger initiated the theory of observers for the state estimation of
linear time-invariant continuous-time systems, Luenberger (1963); see also Lu-
enberger (1964, 1966, 1971). Then, in Luenberger (1971) he proposed the full
order observer. Seven years later, Wojciechowski (1978) added an additional
term to Luenberger’s full order observer for the state estimation of single-input
single-output linear time-invariant systems. This term is proportional to the
integral of the output estimation error. The resulting new observer was called
proportional-integral observer and has also a long and rich history. The main
result of Wojciechowski (1978) was later generalized to multivariable linear time-
varying systems (see Kaczorek, 1979; Shafai and Carroll, 1985). Furthermore,
Shafai and Carroll (1985) first considered a reduced order proportional-integral
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observer. Then, Beale and Shafai (1989) studied the robustness property of
feedback control systems using a proportional-integral observer. Niemann et
al. (1995) derived the necessary and sufficient conditions, under which the
proportional-integral observer achieves Exact Loop Transfer Recovery for linear
time-invariant continuous-time systems, and similar results have been obtained
by Shafai et al. (1996) for linear time-invariant discrete-time systems. It was
proven by Söffker, Yu and Muller (1995) that the proportional-integral observer
can estimate the state not only of linear time-invariant systems, but also of
systems with arbitrary external input, which appears as unknown input, non-
linearity or unmodelled dynamics.

It was shown by Busawon and Kabore (2000) that, for some classes of sys-
tems, the proportional-integral observer has the ability to completely decouple
the modeling uncertainties, while keeping satisfactory convergence properties.
Furthermore, a comparison of classical proportional observer with proportional-
integral observer was given, using a simulation example. A parametric eigen-
structure assignment design approach for proportional-integral observers of mul-
tivariable linear systems was proposed in Duan, Liu and Thompson (2001,
2003) and Wu, Duan and Liu (2012). In Bakhshande and Söffker (2017) a
proportional-integral observer based backstepping controller was proposed for
systems with model uncertainties and measurement noise. Bakhshande, Bach
and Söffker (2020) proposed a proportional-integral observer based sliding mode
controller for nonlinear hydraulic differential cylinder systems, affected by un-
certainties. Bia loń, Pasko and Niestrój (2020) studied the state reconstruction
problem of an induction motor, using proportional-integral observer and it is
stated by the authors of that paper that the proportional-integral observer pro-
vides better state reconstruction quality in comparison with the proportional
Luenberger observer of Luenberger (1971). Proportional-integral observer-based
approaches for fault detection were developed in Hu et al. (2022), Duan and
Wu (2006), Khedher et al. (2009), Hamdi et al. (2012), Gao, Cecati and Ding
(2015), Shafai and Saif (2015), Shafai and Moradmand (2020) and Lin (2022),
and in the references, provided therein. The proportional-integral observer lit-
erature is extremely rich; for more complete references, we refer the reader to
Bakhshande, Bach and Söffker (2020) and to Bakhshande and Söffker (2015),
Liu (2011) and Bakhshande (2018).

To the best of our knowledge, the problem of existence of proportional-
integral observer for the state estimation of linear time-invariant continuous-
time systems is still an open problem. This motivates the present study. In
this paper, using basic notions and basic results from linear systems and control
theory and the theory of matrices, the explicit necessary and sufficient conditions
for the existence of proportional-integral observer for the state estimation of
linear time-invariant systems are established. In particular, it is proven that for
a given linear time-invariant continuous-time system of order n, having m inputs
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and p linearly independent outputs, a proportional-integral observer of order n

can be constructed if and only if the given system is detectable. Furthermore,
a simple procedure is given for the construction of the proportional-integral
observer.

2. Problem statement

Consider a linear time-invariant continuous-time system, described by the fol-
lowing state-space equations:

ẋ (t) = Ax(t) + Bu(t) (1)

y(t) = Cx(t) (2)

where A, B and C are real matrices of size (nxn), (nxm) and (pxn), respectively,
x(t) is the state vector of dimensions (nx1), u(t) is the vector of inputs of size
(mx1) and y(t) is the vector of outputs of size (px1). Without any loss of
generality we assume that

rank [C] = p. (3)

Let us consider a linear time-invariant continuous-time system, described by the
equations

˙̂x(t) = (A− LC)x̂(t) + Ly(t) + Bu(t) + Fw(t) (4)

ẇ(t) = G[y(t)−Cx̂(t)] (5)

where x̂(t) is the state vector of system (4), (5) of dimensions (nx1), w(t)
is a vector of dimensions (kx1), and L, F and G are real matrices of size
(nxp), (nxk) and (kxp), respectively. The linear time-invariant system (4), (5)
is a proportional-integral observer of order n for the system (1), (2), if and only
if for arbitrary initial conditions x̂(0), x(0) and any input u(t), the following
relationships hold (see Kaczorek, 1979; Shafai and Carroll, 1985; Beale and
Shafai, 1989; Niemann et al., 1995; Söffker, Yu and Muller, 1995; Duan, Liu
and Thompson, 2001):

lim
t 7→+∞

e(t) = 0 (6)

lim
t 7→+∞

w (t) = 0 (7)

where e(t)= [x̂(t)−x(t)] is the state estimation error, x̂(t) is an estimate of the
state vector x(t), and w(t) is a vector representing the integral of the weighted
output estimation error, see Duan, Liu and Thompson (2001). The relationships
(6) and (7) are simultaneously satisfied if and only if the following matrix

R =

[

A− LC F
−GC 0

]

(8)



30 K. H. Kiritsis

is Hurwitz stable (i.e., all of its eigenvalues have negative real parts) (see Ka-
czorek, 1979; Shafai and Carroll, 1985; Beale and Shafai, 1989; Niemann et al.,
1995; Söffker, Yu and Muller, 1995; Duan, Liu and Thompson, 2001). Thus,
the problem of existence of the proportional-integral observer of order n can be
stated as follows: Do there exist real matrices L, F and G such that the matrix
R of appropriate dimensions, given by (8), is Hurwitz stable? If so, give the
conditions for the existence and a procedure for the calculation of the matrices
L, F and G.

3. Basic concepts and preliminary results

This section contains lemmas, which are needed to prove the main results of
this paper and some basic notions from linear systems and control theory that
are used throughout the paper. And so, let R be the field of real numbers. Also
let R[s] be the ring of polynomials with coefficients in R. Further, let C be
the field of complex numbers, and let C+ be the set of all complex numbers λ

with Re(λ) ≥ 0. All nonzero finite real numbers are called units of R[s] (Mc
Duffee, 1946). A matrix, whose elements are polynomials over R[s], is termed
a polynomial matrix. A polynomial matrix U(s) over R[s] of dimensions (kxk)
is said to be unimodular if and only if det [U(s)] is a unit of R[s] (Mc Duffee,
1946).Every polynomial matrix W(s) of size (mxp) with rank [W(s)]= r, can
be expressed as (see Kucera, 1991):

U1(s)W(s)U2(s) = M(s). (9)

The polynomial matrices U1(s) and U2(s) are unimodular and the matrix M(s)
is given by

M (s)

[

Mr(s) 0
0 0

]

. (10)

The non-singular polynomial matrix Mr(s) of size (rxr) in (10) is given by

Mr (s) = diag[a1(s), a2(s), . . . ., ar(s)]. (11)

The nonzero polynomials ai(s) for i = 1, 2, ..., r are termed invariant polynomials
of W(s) and have the following property

ai(s) divides ai+1(s), for i = 1,2,. . . .,r-1. (12)

The relationship (9) withM (s), given by (10), is called Smith-McMillan form
of W(s) over R[s]. Since the matrices U1(s) and U2(s) are unimodular and the
polynomial matrix Mr(s), given by (11), is non-singular, from (9) and (10) it
follows that

rank [W(s)] = rank [Mr(s)] = r. (13)
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Let A(s) and B(s) be matrices over R[s] of appropriate dimensions. If there is
a matrix Q(s) over R[s] of appropriate dimensions, such that

A(s) = B(s)Q(s), (14)

then we say that the matrix Q(s) is a right divisor of the matrix A(s) (Wolowich,
1974). Let A(s) and B(s) be matrices over R[s] of appropriate dimensions. If
there are matrices D(s), A1(s) and B1(s) over R[s] of appropriate dimensions,
such that

A(s) = A1(s)D(s), B(s) = B1(s)D(s) (15)

then the polynomial matrix D(s) is called the common right divisor of poly-
nomial matrices A(s) and B(s) (Wolowich, 1974). A greatest common right
divisor of two polynomial matrices A(s) and B(s) is a common right divisor
which is a left multiple of every common right divisor.

Let A and C be matrices over R of size (nxn) and (pxn), respectively, and
C not zero. Then, there always exists a unimodular matrix U(s) over R[s] such
that (Wolowich, 1974)

[

C
Ins−A

]

= U(s)

[

V(s)
0

]

. (16)

The non-singular polynomial matrix V(s) of size (nxn) is a greatest common
right divisor of the polynomial matrices [Ins−A] and C (Wolowich, 1974). Since
the polynomial matrix U(s) is unimodular, from (13) and (16) it follows that

rank

[

C
Ins−A

]

= rank

[

V(s)
0

]

= rank [V(s)] = n. (17)

Definition 1 The nonzero polynomial c(s) over R[s] is said to be strictly Hur-
witz if and only if c(s) 6= 0, ∀s ∈ C+.

Remark 1 From the Definition 1 it follows that the set of all strictly Hurwitz
polynomials over R[s] consists of all units of R[s] and all polynomials c(s) over
R[s] with deg[c(s)] ≥ 1 ( by deg[c(s)] we denote the degree of c(s)), whose roots
are all in the open left-half complex plane.

Definition 2 Let V(s) be a non-singular matrix over R[s], of size (nxn).Also
let ci(s) for i = 1, 2, ..., n be the invariant polynomials of polynomial matrix
V(s). The polynomial matrix V(s) is said to be strictly Hurwitz if and only if the
polynomials ci(s) are strictly Hurwitz for every i = 1, 2, ..., n, or, alternatively,
if and only if det[V(s)] is a strictly Hurwitz polynomial.
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Definition 3 The matrix A over R of size (nxn) is said to be Hurwitz stable
if and only if all eigenvalues of the matrix A have negative real parts or, alter-
natively, if and only if the characteristic polynomial of the matrix A is a strictly
Hurwitz polynomial.

Definition 4 Let A and C be matrices over R of sizes (nxn) and (p x n),
respectively. Then, the pair A, C) is said to be detectable if and only if there
exists a matrix K over R of size (nxp) such that the matrix [A+KC] is Hurwitz
stable (Wonham, 1968).

Definition 5 Let A and C be matrices over R of sizes (nxn) and (pxn), re-
spectively, and C not zero. Then, an eigenvalue λ of the matrix A is said
to be observable (Trentelman, Stoorvogel and Hautus, 2001), if and only if the
following condition holds:

rank

[

C
Inλ−A

]

= n.

Let A be a real matrix of size (nxn). The spectrum of the matrix A is the set
of all of its eigenvalues and is denoted by σ(A). An eigenvalue λ of A is called
a stable eigenvalue if and only if Re(λ) < 0. Otherwise, the eigenvalue λ of
the matrix A is said to be unstable. The following Lemma is taken from Zhou,
Doyle and Glover (1996).

Lemma 1 Let A and C be matrices over R of size (n x n) and (p x n), re-
spectively, and C not zero. Further, let σ(A) be the spectrum of the matrix A.
The pair (A, C) is detectable if, and only if, one of the following equivalent
conditions holds:

(a) rank

[

C
Ins−A

]

= n , ∀s ∈ C+

(b) ∀ λ ∈ σ(A) with Re(λ) ≥0 and for all x such that Ax = λx, Cx 6= 0,

or, alternatively, rank

[

C
Inλ−A

]

= n , ∀λ ∈ σ(A) with Re(λ) ≥ 0.

Remark 2 From condition (b) of Lemma 1 it follows that the pair (A, C) is
detectable if and only if all unstable eigenvalues of the matrix A are observable,
see Zhou, Doyle and Glover (1996).

Lemma 2 Let V(s) be a non-singular polynomial matrix over R[s], of size (n
x n). Also let c i(s) for i = 1, 2, ..., n, be the invariant polynomials of the
polynomial matrix V(s). The polynomial matrix V(s) is strictly Hurwitz if and
only if the following condition holds:

(a) rank[V(s)] = n, ∀s ∈ C+.
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Proof Let V(s) be a non-singular and strictly Hurwitz polynomial matrix of
size (nxn) with invariant polynomials ci(s) for i = 1, 2, ..., n. From Definition 2
it follows that the polynomials ci(s) are strictly Hurwitz for every i = 1, 2, ..., n,
and therefore, from Definition 1, it follows that

ci(s) 6= 0, ∀s ∈ C+, ∀i = 1,2, . . . ,n. (18)

We define the polynomial matrix

Vn(s) = diag[c1(s), c2(s), . . . .,cn(s)]. (19)

From (18) and (19) it follows that

rank[Vn(s)] = rank{[diag[c1(s), c2(s), ...., cn(s)]} = n, ∀s ∈ C+. (20)

The Smith-McMillan form of the polynomial matrix V(s) over R[s] is given by

K(s) V(s) L(s) = Vn(s), (21)

where K(s) and L(s) are unimodular matrices. Since the matrices K(s), L(s)
are unimodular, from (13), (20) and (21) we have that

rank [V(s)] = rank[Vn(s)] = n, ∀s ∈ C+. (22)

This is condition (a) of the Lemma. In order to prove sufficiency, we assume
that condition (a) holds. Using (13) from (19) and (21), we obtain that

rank [V (s) ] = rank[Vn(s)] = rank{diag[c1(s), c2(s),. . . .,cn(s)]} = n.

(23)

Since, by assumption, condition (a) holds, we have that

rank [V(s)] = n, ∀s ∈ C+. (24)

Relationships (23) and (24) imply

rank [Vn(s)] = rank{diag[c1(s), c2(s),. . . .,cn(s)]} = n, ∀s ∈ C+. (25)

From (25) it follows that

ci(s)) 6= 0, ∀s ∈ C+, ∀i = 1, 2, ..., n. (26)

Relationship (26) and Definition 1 imply that polynomials ci(s) are strictly
Hurwitz for every i = 1, 2, ..., n, and therefore, according to Definition 2, the
non-singular polynomial matrix V(s) over R[s], is strictly Hurwitz. This com-
pletes the proof.
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Lemma 3 Let A and C be matrices over R of sizes (n x n) and (p x n), re-
spectively, and C not zero. Further, let V(s) be a greatest common right divisor
of polynomial matrices [Ins − A] and C of size (n x n). The pair (A, C) is
detectable if and only if the following condition holds:

(a) The polynomial matrix V(s) is strictly Hurwitz.

Proof Let the pair (A, C) be detectable. Then, from Lemma 1, it follows that

rank

[

C
Ins−A

]

= n ∀s ∈ C+. (27)

Since, by assumption, the polynomial matrix V(s) is the greatest common right
divisor of the polynomial matrices [Ins-A] and C, from (16) it follows that there
exists a unimodular matrix U(s), such that

[

C
Ins−A

]

= U(s)

[

V(s)
0

]

. (28)

Since the polynomial matrix U(s) is unimodular, then from (17) and (28) it
follows that

rank

[

C
Ins−A

]

= rank

[

V(s)
0

]

= rank[V(s)]. (29)

From relationships (27) and (29) we have that

rank[V(s)] = n, ∀s ∈ C+. (30)

Relationship (30) and Lemma 2 imply that the polynomial matrix V(s) is
strictly Hurwitz. This is the condition (a) of the Lemma. To prove sufficiency,
we assume that the polynomial matrix V(s) is strictly Hurwitz. Then, from
Lemma 2, it follows that

rank[V(s)] = n, ∀s ∈ C+. (31)

Since, by assumption, the polynomial matrix V(s) is the greatest common
right divisor of polynomial matrices [Ins-A] and C, from (31) and (29) it follows
that

rank

[

C
Ins−A

]

= n , ∀s ∈ C+. (32)

Lemma 1 and relationship (32) imply that the pair (A, C) is detectable. This
completes the proof.

The following lemma is taken from Kucera (1991).
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Lemma 4 Let A and C be matrices over R of size (n x n) and (p x n), re-
spectively. Then, the pair (A,C) is observable if and only if for every monic
polynomial c (s) over R[s] of degree n there exists a matrix K over R of size (n
x p), such that the matrix [A + KC] has characteristic polynomial c (s).

The standard decomposition of unobservable systems, given in the following
Lemma, was first published by Kalman (1963) and can be also found in any
standard text of linear systems theory.

Lemma 5 Let A and C be matrices over R of size (n x n) and (p x n), respec-
tively. Further, let the pair (A,C) be unobservable and C not zero. Then, there
exists a non-singular matrix T of size (n x n) such that

T−1AT =

[

A11 0
A21 A22

]

CT = [C1,0].

The pair (A11, C1) is observable and the eigenvalues of the matrix A22 are
the unobservable eigenvalues of the pair (A, C).

The following lemma is taken from Zhou, Doyle and Glover (1996).

Lemma 6 Let A and C be matrices over R of sizes (n x n), (p x n), respectively,
and C not zero. Further, let

A = T

[

A11 0
A21 A22

]

T−1, C = [C1,0]T−1.

with (A11, C1) observable. If the pair (A, C) is detectable then the matrix A22

is Hurwitz stable.

The proof of the following Lemma is based on the results of Kucera (1991).

Lemma 7 Let A and C be matrices over R of sizes (n x n), (p x n), respectively,
and C not zero. Further, let the pair (A, C) be detectable. Then, there exists
a matrix K over R of size (n x p), such that the matrix [A + KC] is Hurwitz
stable.

Proof Let the pair (A, C) be detectable. Detectability of the pair (A, C)
implies that the pair (A, C) is either observable or is unobservable with stable
unobservable eigenvalues.

If the pair (A, C) is observable, then from Lemma 4 it follows that there
exists a matrix K over R of appropriate dimensions, such that

det[Ins−A−KC] = det[Ins−A −KC] = c(s) (33)
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where c (s) is an arbitrary monic, strictly Hurwitz polynomial over R[s] of degree
n. Since the notion of observability is a dual of controllability (i.e., observability

of the pair (A, C) implies controllability of the pair(A
T

, CT )), see Kucera
(1991), the matrix K can be calculated using known methods for the solution of
pole assignment problem by state feedback, see also Kucera (1991). Since c(s)
is the characteristic polynomial of the matrix [A+KC], from Definition 3 and
(33) it follows that the matrix [A+KC] is Hurwitz stable.

If the pair (A, C) is unobservable with stable unobservable eigenvalues, then
from Lemma 5 and Lemma 6 it follows that there exists a non-singular matrix
T such that

A = T

[

A11 0
A21 A22

]

T−1, C = [C1,0]T−1 . (34)

The pair (A11, C1) is observable and the matrix A22 is Hurwitz stable. Hur-
witz stability of the matrix A22 and Definition 3 imply that the polynomialχ (s),
given by

det [Is−A22] = χ (s) (35)

is a strictly Hurwitz polynomial.

Observability of the pair (A11, C1) and Lemma 4 imply the existence of a
matrix K1 over R of appropriate dimensions, such that

det[Is −A11−K1C1]=ϕ(s), (36)

where ϕ(s) is an arbitrary monic, strictly Hurwitz polynomial over R[s] of appro-
priate degree. Since the notion of observability is a dual of controllability (i.e.,

observability of the pair (A11, C1) implies controllability of the pair (A
T

11, C
T
1 )),

the matrix K1 can be calculated using known methods for the solution of pole
assignment problem by state feedback, see Kucera (1991). Let

K = T

[

K1

0

]

. (37)

Using (34) and (37), we obtain that

A + KC = T

[

A11+K1C1 0
A21 A22

]

T−1 . (38)

From (35), (36) and (38), we deduce that

det[(Ins −A−KC]=ϕ(s)χ(s). (39)
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Since by (35) and (36) the polynomials χ (s) andϕ(s) are strictly Hurwitz,
the polynomialϕ(s)χ(s) is also a strictly Hurwitz polynomial. Sinceϕ(s)χ(s)
is the characteristic polynomial of the matrix [A+KC], from Definition 3 and
(39) it follows that the matrix [A+KC] is Hurwitz stable. This completes the
proof.

Lemma 8 Let A be a Hurwitz stable matrix over R of size (n x n). Then, the
following condition holds:

(a) The matrix A is non-singular.

Proof Let A be a Hurwitz stable matrix over R of size (nxn). The character-
istic polynomial a(s) of the matrix A is given by (see Lay, 2005; Gantmacher,
1959)

det[(Ins−A] =a (s) . (40)

From Definition 3 it follows that the polynomial a (s) is a strictly Hurwitz
polynomial over R[s] of degree n. Let ξi for i =1,2,. . . ,n, be the roots of a (s).
Then

a(ξi) = 0 , ∀i = 1, 2, ..., n. (41)

Since a (s) is a strictly Hurwitz polynomial of degree n, from Remark 1 it
follows that all roots of a (s) lie in the open left-half complex plane, that is

Re(ξi) < 0, ∀i = 1, 2, ..., n. (42)

From (42) it follows that

ξi 6= 0, ∀i = 1, 2, ...., n. (43)

Since the polynomial a(s) in (40) is the characteristic polynomial of the
matrix A, the complex numbers ξi for i = 1, 2, ..., n, which satisfy (41), are
the eigenvalues of the matrix A (Lay, 2005; Gantmacher, 1959); therefore, from
(43) it follows that the matrix A is non-singular (Lay, 2005; Gantmacher, 1959).
This is condition (a) of the Lemma and the proof is complete.

4. Main results

The following Theorems 1 and 2, along with Corollary 1, are the main results
of this paper.

Theorem 1 The system (4), (5) is a proportional-integral observer of order
n of system (1), (2) with p linearly independent outputs, only if the following
condition holds:

(a) rank[G] = k.
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Proof Let the system (4), (5) be a proportional-integral observer of order n

of system (1), (2) with p linearly independent outputs. Then, the matrix R of
size ((n + k)x(n + k)), given by (8), is Hurwitz stable. Hurwitz stability of the
matrix R and Lemma 8 imply that the matrix R is non-singular; therefore

rank[R] = rank

[

A− LC F
−GC 0

]

= (n + k). (44)

Since, by (44), the rows of the matrix R are linearly independent over R, a
subset of these rows consisting of the last k rows must be also linearly indepen-
dent over R; therefore

rank[−GC,0] = rank[GC] = k (45)

From (3) it follows that there exists a non-singular matrix T of size (nxn)
such that

C = [Ip,0]T. (46)

By substituting (46) to (45) we obtain that

rank[GC] = rank{[G, 0]T} = k. (47)

Since the matrix T is non-singular and rank[G,0] = rank[G], condition (a)
of Theorem 1 follows from (47) and the proof is complete.

Corollary 1 The system (4), (5) with k integrators is a proportional-integral
observer of order n of system (1), (2) with p linearly independent outputs, only
if the following condition holds:

(a)k ≤ p.

Proof Let the system (4), (5) with k integrators be a proportional-integral
observer of order n of system (1), (2) with p linearly independent outputs.
Then, from Theorem 1, it follows that

rank[G] = k. (48)

Since the matrix G is of size (kxp), condition (a) of Corollary 1 follows from
(48), and hence the proof is complete.

Theorem 2 The system (4), (5) with rank[G] = k, is a proportional-integral
observer of order n of system (1), (2) with p linearly independent outputs, if
and only if the following condition holds:

(a) The pair (A, C) is detectable.
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Proof Let the system (4), (5) with rank[G] = k, be a proportional-integral
observer of order n of system (1), (2) with p linearly independent outputs. Then,
the matrix R of size ((n + k)x(n + k)), given by (8), is Hurwitz stable. The
characteristic polynomial c(s) of degree (n + k) of the matrix R is given by

det

[

Ins −A+LC −F
GC Iks

]

= c(s). (49)

Hurwitz stability of the matrix R and Definition 3 imply that c (s) is a
strictly Hurwitz polynomial over R[s]. Let V(s) be a greatest common right
divisor of polynomial matrices [Ins-A] and C of size (nxn). Then, from (15) it
follows that

[Ins−A] = X(s)V(s) (50)

C = Y(s)V(s). (51)

for polynomial matrices X(s) and Y(s) over R[s] of appropriate dimensions.
Using (50) and (51) and after simple algebraic manipulations, the relationship
(49) can be rewritten as follows

det

[

Ins −A+LC −F
GC Iks

]

=

det{

[

X(s)+LY(s) −F
GY(s) Iks

]

diag[V(s), Ik]} =

det

[

X(s)+LY(s) −F
GY(s) Iks

]

det[V(s)] = c(s). (52)

From the relationship (52) it follows that

det[V(s)] divides [c (s) ]. (53)

Since the polynomial c (s) is a strictly Hurwitz polynomial over R[s], from (53)
it follows that det [V(s)] is a strictly Hurwitz polynomial over R[s]; therefore,
by Definition 2, the polynomial matrix V(s) is strictly Hurwitz. Since the
matrix V(s) is strictly Hurwitz, from Lemma 3 it follows that the pair (A, C)
is detectable. This is the condition (a) of the Theorem.

In order to prove sufficiency, we assume that condition (a) holds. Detectabi-
lity of the pair (A, C) and Lemma 7 imply the existence of matrix K over R

of size (nxp), such that the matrix [A+KC] is Hurwitz stable, that is

det[Ins −A−KC] = π(s), (54)

where π(s) is a strictly Hurwitz polynomial over R[s] of degree n. The matrix
K in (54) can be calculated as in the proof of Lemma 7.
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From (3) it follows that there exists a non-singular matrix T of size (nxn)
such that

C = [Ip,0]T. (55)

Let M be an arbitrary non-singular matrix over R of size (pxp). Since, by
assumption, rank[G] = k, we put

G = [Ik,0]M. (56)

From (56) it follows that the matrix G, of size (kxp), has full row rank. Let
Φ be an arbitrary Hurwitz stable matrix over R of size (kxk). Further, let X
be a matrix over R of size (nxk), given by

X = T−1diag[M−1, In−p]

[

(−Φ)
Λ

]

(57)

where Λ is an arbitrary matrix over R of size ((n− k)xk). From (55), (56) and
(57), we obtain:

−GCX = −[Ik,0]M[Ip,0]TT−1diag[M−1, In−p]

[

(−Φ)
Λ

]

=

= −[Ik,0]

[

(−Φ)
Λ

]

= Φ. (58)

Hurwitz stability of the matrix Φ and Definition 3 imply that the polynomial
ρ(s), given by

det[Iks−Φ] = ρ(s) (59)

is a strictly Hurwitz polynomial over R[s] of degree k. Now, we form the matrix
Q over R of size ((n + k)x(n + k)), see Takahashi (1996),

Q =

[

In X
0 Ik

]

. (60)

The matrix Q over R, given by (60), is non-singular and its inverse is given
by

Q−1 =

[

In −X
0 Ik

]

. (61)

We have:

Q−1RQ = Q−1

[

A− LC F
−GC 0

]

Q

=

[

A + (−L + XG)C (A− LC)X + F + XGCX
−GC −GCX

]

. (62)
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We put

L = XG −K (63)

F = −[ (A− LC)X + XGCX]. (64)

Now, by substituting (58), (63) and (64) into (62), we obtain:

Q−1RQ = Q
−1

[

A− LC F
−GC 0

]

Q =

[

A+KC 0
−GC Φ

]

. (65)

From the relationship (65), by using (54) and (59), we deduce that

det [Is −R] = det

[

Ins −A−KC 0
GC Iks −Φ

]

=

det[Ins −A−KC]det[Ins−Φ] = π(s)ρ(s). (66)

The polynomial [π(s)ρ(s)] is the characteristic polynomial of the matrix R,
given by

R =

[

A− LC F
−GC 0

]

, (67)

of order n of system (1), (2). Since, according to (54) and (59), the polynomials
π(s) and ρ(s) are both strictly Hurwitz, the polynomial [π(s)ρ(s)] must be also
strictly Hurwitz; therefore, according to Definition 3, the matrix R, given by
(67), with L, F and G given by (63), (64) and (56), respectively, is Hurwitz
stable. Thus, according to (8), the system (4), (5) with L, F and G given
by (63), (64) and (56), respectively, and rank [G]= k, is a proportional-integral
observer of order nof system (1), (2). This completes the proof.

The sufficiency part of the proof of Theorem 2 provides a construction of
the matrices L, F and G of proportional-integral observer of order n for system
(1), (2). The major steps of this construction are given below.

Construction

Given: A, B and C

Find : L, F and G, with rank [G]= k

Step 1: Check condition (a) of Theorem 2. If this condition is satisfied, go
to Step 2. If condition (a) is not satisfied, the construction of a proportional-
integral observer of order n is impossible.

Step 2: Detectability of the pair (A, C) and Lemma 7 imply the existence
of a matrix K over R of size (nxp), such that the matrix [A+KC] is Hurwitz
stable. The matrix K can be calculated as in the proof of Lemma 7.
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Step 3: Find a non-singular matrix T of size (nxn), such that

C = [Ip, 0]T

Step 4: Let M be an arbitrary non-singular matrix over R of size (pxp).
Further, let Φ be an arbitrary Hurwitz stable matrix over R of size (kxk). Also
let Λ be an arbitrary matrix over R of size ((n− k)xk). Put

X = T−1diag[M−1, In−p]

[

(−Φ)
Λ

]

G = [Ik,0]M

L = XG−K

F = −[(A− LC)X + XGCX].

5. Computational examples

In this section, computational examples are provided, illustrating applicability
of the results here forwarded.

Example 1 Consider a linear system (1), specified by:

A =

[

0 −2
1 3

]

, B =

[

0 3
1 2

]

and C = [0, 1]

n = 2,m = 2 and p = 1.

The task consists in finding a proportional-integral observer of order n which
estimates the state vector of the given system.

We shall follow the steps of construction, given in the preceding section. To
execute step 1, we form the following matrices

[

C
I2λ1 − A

]

=





0 1
1 2

−1 −2





[

C
I2λ2 − A

]

=





0 1
2 2

−1 −1





where λ1 = 1 and λ2 = 2 are the eigenvalues of the matrix A. We have that
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rank

[

C
I2 λ1 − A

]

= rank





0 1
1 2

−1 −2



 = 2

rank

[

C
I2λ2 − A

]

= rank





0 1
2 2

−1 −1



 = 2.

The last relationships and the Definition 5 imply that the eigenvalues λ1

and λ2 are observable; therefore, the given system is observable, see Trentel-
man, Stoorvogel and Hautus (2001). Observability of the pair (A, C) implies
detectability of the pair (A, C). This fact, and Theorem 2 imply the existence
of a proportional-integral observer of order n, which estimates the state vector
of the given system.

Since the given system is in observability standard form, Kucera (1991), the
matrix K, given by

K =

[

1
−5

]

produces [A+KC] in the companion form, Kucera (1991),

[A+KC] =

[

0 −1
1 −2

]

with characteristic polynomial c(s) = s2 + 2s + 1. Since the roots s1,2 = −1
of the polynomial c(s) have negative real parts, the polynomial c(s) is strictly
Hurwitz and therefore, according to Definition 3, the matrix [A+KC] is Hurwitz
stable. This completes step 2.

In order to carry out step 3, set

T =

[

0 1
1 0

]

.

To execute step 4, we form the following matrices

Φ = −1

Λ = µ

G = 1

M = 1

X = T−1diag[M−1, In−k]

[

(−Φ)
Λ

]

=

[

µ

1

]

L = XG K =

[

µ−1
6

]
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F = −[ (A− LC)X + XGCX] =

[

1
2 − µ

]

,

where µ is an arbitrary finite real number.

Example 2 Consider a linear system (1), specified by:

A =





2 0 0
0 2 0
3 0 2



 , B =





1 0
0 1
0 0



 and C=

[

1 0 0
0 1 0

]

n = 3, m = 2 and p = 2.

The task consists in finding a proportional-integral observer of order n, which
estimates the state vector of the given system.

We shall follow the steps of construction, given in the last section. To execute
step 1, we form the following matrix

[

C
I3s−A

]

=













1 0 0
0 1 0

s− 2 0 0
0 s− 2 0
−3 0 s− 2













.

For s = 2 we have that

rank

[

C
2I3 − A

]

= rank













1 0 0
0 1 0
0 0 0
0 0 0

−3 0 0













= 2 < 3.

The last relationship and condition (a) of Lemma 1 imply that the given
system is not detectable; therefore, according to Theorem 2, the construction of
proportional-integral observer of order n is impossible.

6. Conclusions

The explicit necessary and sufficient conditions for the existence of full order
proportional-integral observer for the state estimation of linear time-invariant
continuous-time systems are established in this paper. The proof of the main
results of this paper is constructive and furnishes a simple procedure for the
construction of full order proportional-integral observer for the state estimation
of linear time-invariant continuous-time systems.
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Söffker, D., Yu, T. J. and Muller, P. C. (1995) State estimation of
dynamical systems with non-linearities by using proportional-integral ob-
server. International Journal of Systems Science, 26, 1571-1582.

Takahashi, K. (1996) Eigenvalues of matrices with given block upper trian-
gular part. Linear Algebra and its Applications, 239, 175-184.

Trentelman, H. L., Stoorvogel, A. A. and Hautus, M. (2001) Control
Theory for Linear Systems. Springer-Verlag, London.

Wojciechowski, B. (1978) Analysis and synthesis of proportional-integral
observers for single-input single-output time-invariant continuous systems,
PhD dissertation.Technical University of Gliwice, Poland.

Wolowich, W. A. (1974) Linear Multivariable Systems. Springer Verlag,
Berlin.

Wonham, W. M. (1968) On a matrix Riccati equation of stochastic control.
SIAM Journal of Control and Optimization. 6, 681-698.

Wu, A. G., Duan, G. R. and Liu, W. (2012) Proportional multiple-integral
observer design for continuous time descriptor linear systems. Asian Jour-
nal of Control, 14, 476-488.

Zhou, K., Doyle, J. C. and Glover, K. (1996) Optimal and Robust Con-
trol. Prentice-Hall, New Jersey.


